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We analyze the critical properties of the three-dimensional Ising model with linear parallel extended defects.
Such a form of disorder produces two distinct correlation lengths, a parallel correlation length ξ‖ in the direction
along defects and a perpendicular correlation length ξ⊥ in the direction perpendicular to the lines. Both ξ‖ and
ξ⊥ diverge algebraically in the vicinity of the critical point, but the corresponding critical exponents ν‖ and ν⊥
take different values. This property is specific for anisotropic scaling and the ratio ν‖/ν⊥ defines the anisotropy
exponent θ . Until now, estimates of quantitative characteristics of the critical behavior for such systems have
been obtained only within the renormalization group approach. We report a study of the anisotropic scaling in this
system via Monte Carlo simulation of the three-dimensional system with Ising spins and nonmagnetic impurities
arranged into randomly distributed parallel lines. Several independent estimates for the anisotropy exponent θ

of the system are obtained, as well as an estimate of the susceptibility exponent γ . Our results corroborate the
renormalization group predictions obtained earlier.
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I. INTRODUCTION

The effect of structural disorder on criticality remains one
of the most attractive issues in condensed-matter physics [1].
Realistic systems always contain some imperfections of their
structure. Thus the question of how disorder influences the
critical properties of a system deserves considerable interest.
Obviously the modifications introduced depend on the amount
of disorder as well as on the type of disorder. Quenched
disorder is usually studied in the form of dilution (random
site [2] or random bond [3] systems) or as a random field [4],
random connectivity [5], or anisotropy [6,7].

In our study we will focus on the effect of weak disorder in
the form of random sites. In the simplest case, such disorder
may be considered as uncorrelated, randomly distributed
pointlike defects. The relevance of pointlike disorder for
critical behavior is predicted by the Harris criterion [8]: It
changes the universality class of d-dimensional systems if
the heat capacity critical exponent αpure of the corresponding
homogenous (pure) system is positive. Since in d = 3 the
pure Ising model has αpure > 0, weak pointlike disorder
there leads to a new critical behavior. Results of analytical,
numerical, and experimental studies of this celebrated system
are reviewed in Ref. [2].

Many real systems contain more complex forms of disorder,
for instance, dislocations, disordered layers, grain boundaries,
cavities, or other extended defects. To take this into account
Weinrib and Halperin have proposed a model [9] in which
defects are correlated with a correlation function decaying
with distance x according to a power law: g(x) ∼ x−a . There
is possible interpretation for the integer value of a: The case
a = d − 1 (a = d − 2) describes lines (planes) of random

orientation, while a = d corresponds to the above-mentioned
uncorrelated defects. The critical properties of such systems
have been extensively studied by the renormalization group
(RG) approach [9–12] as well as through Monte Carlo (MC)
simulations [13–15].

Another possible implementation of extended defects
was proposed by Dorogovtsev [16] within the model of a
d-dimensional spin system with quenched random impurities
that are strongly correlated in εd dimensions and randomly
distributed over the remaining d-εd dimensions. In contrast
to the model of Weinrib and Halperin which is isotropic [9],
Dorogovtsev’s model describes a system which is expected
to behave differently along the directions “parallel” to the
εd -dimensional impurity and in the “perpendicular” hyper-
planes. The case εd = 0 corresponds to pointlike defects,
and extended parallel linear (planar) defects are respectively
given by εd = 1(2). Generalization of εd to non-negative real
numbers may be interpreted as an effective fractal dimension of
a complex random defect system. However, the relation of ana-
lytically continuation to noninteger Euclidean dimension and a
fractal dimension is not straightforward [17]. Critical behavior
of these systems was extensively studied by RG methods with
the help of double ε = 4 − d, εd expansions [16,18] as well
as applying a resummation technique to the RG asymptotic
series directly at d = 3 and fixed εd [19–22]. There exist
also investigations in the mean-field approximation [23] as
well as MC simulations which have some connections with
Dorogovtsev’s model with Ising spins and extended defects
with εd = 2 [24,25]. In these latter studies, disorder was
modeled by random bonds between planes of spins.

In this paper we will consider the critical behavior of
the Ising model with parallel linear extended defects in
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dimension d = 3. Being of considerable interest from the
fundamental point of view, such a model describes experi-
mentally achievable situations and may be realized, e.g., as
a magnetic film with cylindrical nonmagnetic defects. Such
defects (nanopores) might be produced using focused ion
or electron beams [26]. To our best knowledge, the model
with parallel linear extended defects in dimension d = 3 has
not been studied numerically so far, although the existing
analytical predictions are accurate enough to challenge MC
verification. Therefore we present such MC study in our paper.
The aim of this paper is therefore precisely to report such an
extended numerical study.

The paper is organized as follows. In the next section we
briefly present the analytical predictions for scaling of a three-
dimensional (3D) system with parallel extended defects as
well as the RG estimates for the critical exponents of the
Ising system with randomly distributed parallel linear defects.
In Sec. III we note the essentials of anisotropic finite-size
scaling. The formulation of our model, the definition of the
observables, as well as the details of the simulations are listed
in Sec. IV. We present the results of simulations in Sec. V, and
Sec. VI summarizes our study.

II. ANALYTICAL RESULTS FOR A SPIN MODEL
WITH EXTENDED DEFECTS

The critical behavior of the model under consideration is
described by the following effective Hamiltonian:

H =
∫

ddx

(
1

2

{
μ2

0 + V (x) �φ 2(x) + [∇⊥ �φ(x)]2

+α0[∇|| �φ(x)]2
} + u0

4!
[ �φ 2(x)]2

)
. (1)

Here �φ is an m-component vector field: �φ = {φ1 · · · φm}
(below we will be mainly interested in the Ising case m = 1),
μ0 and u0 are the bare mass and the coupling of the magnetic
model, α0 is the bare anisotropy constant, and V (x) represents
the impurity potential, which is assumed to be Gaussian
distributed with zero mean and correlator:

V (x)V (x ′) = −v0δ
d−εd (x⊥ − x ′⊥). (2)

Here the overline denotes the average over the potential
distribution and (−v0) is a positive constant proportional to
both the concentration of impurities and the strength of their
potential. The impurities are envisaged as εd -dimensional
objects, each extending throughout the system along the coor-
dinate directions symbolized as x||, whereas in the remaining
d-εd dimensions they are randomly distributed. Operators ∇⊥
and ∇|| mean differentiation in the coordinates x⊥ and x||,
correspondingly. One assumes that the linear size of the defects
is much larger than the spin-correlation length and also larger
than the linear separation between any pair of defects. This
assumption is valid for defect concentrations well below the
percolation threshold.

The static critical behavior [16,18–22] of this model as
well as critical dynamics near equilibrium [19,22,27,28] were
examined by means of the RG method. A double expansion in
both ε, εd was suggested and RG functions were calculated
to the first order [16]. These results were consistent with

a crossover to a new universality class in the presence of
extended defects. These calculations were extended to the
second order in Ref. [18]. Here it was argued that the Harris
criterion is modified in the presence of extended impurities:
Randomness is relevant if

εd > d − 2

νpure
, (3)

where νpure is the correlation length critical exponent of the
pure system. For pointlike defects (εd = 0) Eq. (3) repro-
duces the usual Harris criterion. A resummation technique
applied to the RG asymptotic series [19–22] led to reliable
estimates of the critical exponents for this model. Furthermore,
different scenarios for the effective critical behavior were
discussed [22]. Within the RG approach, the influence of
cubic anisotropy of the order parameter [29] and the effect of
replica symmetry breaking on the disorder average [30] were
studied. Reports of short-time critical dynamics in systems
with extended defects are also available in the literature [31].
For completeness, we also mention here several other papers
where models with more complex forms of disorder, including
extended defects as a particular case, were analyzed [32,33].

The model described by the effective Hamiltonian (1) has
rich scaling behavior. As already mentioned, such a system
is no longer isotropic. Due to the spatial anisotropy, two
correlation lengths exist, one perpendicular and one parallel
to the extended impurities direction: ξ⊥ and ξ||. As the
critical temperature Tc is approached, their divergences are
characterized by corresponding critical exponents ν⊥, ν||:

ξ⊥ ∼ |t |−ν⊥, ξ|| ∼ |t |−ν||, (4)

where t is the reduced distance to the critical temperature
t = (T − Tc)/Tc. The correlation of the order parameter
fluctuations in two different points acquires an orientational
dependence [16]. Thus, the critical exponents η⊥ and η||, which
characterize the behavior of the correlation function in the
directions perpendicular and parallel to the extended defects,
must be distinguished. Spatial anisotropy also modifies the
critical dynamics near equilibrium producing two dynamical
exponents: z|| and z⊥ [27]. On the other hand, as far as the
interaction of all order parameter components with defects
is the same, the system susceptibility is isotropic in the
order parameter space [16] and can be expressed by the pair
correlation function [29]:

χ (k⊥,k||,t) = |t |−γ g

(
k⊥

|t |ν⊥
,

k||
|t |ν||

,±1

)

= k
η⊥−2
⊥ g⊥

(
1,

k||
k

ν||/ν⊥
⊥

,
|t |

k
1/ν⊥
⊥

)

= k
η||−2
|| g||

(
k⊥

k
ν⊥/ν||
||

,1,
|t |

k
1/ν||
||

)
. (5)

In Eq. (5), k||, k⊥ are the components of the momenta along
εd and d-εd directions, respectively; γ is the magnetic sus-
ceptibility critical exponent; and g, g⊥, and g|| are the scaling
functions. The following scaling relations hold [18,19,29]:

γ = (2 − η⊥)ν⊥ = (2 − η||)ν||. (6)
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The critical exponent α of the specific heat is related to ν⊥,
ν|| by the hyperscaling relation that differs from the ordinary
one [16]:

α = 2 − (d − εd )ν⊥ − εdν||. (7)

All the other scaling relations are of the standard form. This
implies that one should calculate at least three independent
static exponents (e.g., ν||,ν⊥,γ ) instead of two, as in the
standard case, to find the other static exponents by scaling
relations.

We are mostly interested in the case of Ising spins m =
1 and linear parallel extended defects εd = 1. For this case
we list below the numerical estimates of critical exponents
obtained within RG approaches. These estimates based on

√
ε

expansions are as follows [19]:

ν⊥ = 0.67, ν|| = 0.84, γ = 1.34, z⊥ = 2.67, z|| = 2.22. (8)

More reliable estimates are obtained with help of resummation
of two-loop RG functions for static exponents [21]:

ν⊥ = 0.750, ν|| = 0.880, γ = 1.483, (9)

and for dynamic exponents [22]:

z⊥ = 2.418, z|| = 2.217. (10)

It is desirable to check these results with MC simulations. In
the following section we show how finite-size scaling may
be used to extract quantitative characteristics of the critical
behavior from MC data obtained for finite systems.

III. ANISOTROPIC FINITE-SIZE SCALING

Systems studied by MC simulations have limited sizes.
Therefore finite-size scaling (FSS) [34–38] plays a key role in
extracting the critical exponents of thermodynamical functions
from MC data. According to FSS theory, in the vicinity
of the critical point t → 0, the order parameter M and the
susceptibility χ of isotropic systems scale with the linear size
L as:

M(t → 0) = L−β/νM(L), (11)

χ (t → 0) = Lγ/νχ̃ (L), (12)

where M, χ̃ are magnetization and susceptibility scaling
functions. There is no dependence on the direction on the
lattice in this case (the x, y, and z directions are equivalent for
the three-dimensional model). A quantity of special interest
often used within MC simulations, namely the fourth-order
Binder cumulant [39], obeys the following behavior:

U4(t,L) = 1 − 〈M4〉
3〈M2〉2

= Ũ4(tL1/ν), (13)

where 〈M2〉, 〈M4〉 are second and fourth moments of the
distribution of order parameters, and Ũ4 is the scaling function.
In isotropic models all curves of the temperature dependence of
U4 for different system sizes intersect in one point, indicating
the location of the critical temperature. It is true even if
one keeps different aspect ratios for the simulation box:
The curves for different sizes at a given generalized aspect

ratio all intersect in the thermodynamic limit at the critical
temperature [40].

There exist different systems that manifest strong
anisotropic scaling at criticality, i.e., the critical exponents for
their correlation lengths differ in different directions. Among
them we mention as examples the behavior of the next-nearest-
neighbor Ising model at the Lifshitz point [41], nonequilibrium
phase transition in driven diffusive systems [42], the dipolar
in-plane Ising model [43], the driven Ising model with
friction [44], the Ising model under shear [45,46], and the
interface localization-delocalization problem [47]. A common
feature of the above-mentioned systems is the presence a single
anisotropy axis which results in the existence of two charac-
teristic length scales: L|| along the anisotropy axis and L⊥ in
the perpendicular directions. According to the generalization
of the FSS concept for systems with two characteristic length
scales [48], the properties of the thermodynamical functions
depend on the “generalized aspect ratio” ρ = L||/Lθ

⊥, with
an anisotropy exponent θ = ν||/ν⊥. Therefore relations (11)
and (12) are modified:

M(t → 0) = L
−β/ν||
|| M||(L||/Lθ

⊥), (14)

χ (t → 0) = L
γ/ν||
|| χ̃||(L||/Lθ

⊥). (15)

Note that (14) and (15) can be equivalently represented as:

M(t → 0) = L
−β/ν⊥
⊥ M⊥(L⊥/L

1/θ

|| ), (16)

χ (t → 0) = L
γ/ν⊥
⊥ χ̃⊥(L⊥/L

1/θ

|| ), (17)

where scaling functions M||(ρ) = ρ−β/ν||M⊥(ρ−1/θ ) and
χ̃||(ρ) = ργ/ν|| χ̃⊥(ρ−1/θ ). Anisotropic finite-size scaling for
the Binder cumulant at the critical point predicts

U4(t → 0) = Ũ4(L||/Lθ
⊥). (18)

Therefore, one has to keep the generalized aspect ratio L||/Lθ
⊥

fixed while performing MC simulations to extract critical
exponents. One can use the values of the exponents (8)–(10)
to evaluate the anisotropy exponent θ for the model under
consideration. Using the results of

√
ε expansions (8) we

can estimate θ = ν||/ν⊥ � 1.25. Taking into account that
ν||/ν⊥ = z⊥/z|| [19], we can get the second estimate of the√

ε expansions: θ = z⊥/z|| � 1.20. Other estimates can be
obtained with help of the results of resummation of two-loop
RG functions: θ = ν||/ν⊥ = 1.173 from (9) and θ = z⊥/z|| =
1.091 from (10). All estimates give θ > 1. This reflects the
physical situation: In parallel directions, the fluctuations are
stronger because they are not limited by defects and the
correlation length in this direction diverges more sharply.

In order to obtain an estimate of θ directly from the MC
simulations, independently of the RG predictions, we can
make use of the relation that characterizes systems possessing
anisotropic scaling when L⊥  L|| at t → 0 [43,49]:

ξ⊥(L||) ∼ L
1/θ

|| . (19)

Such a relation was successfully applied for the analysis
of the second-order phase transitions in Ising models with
friction [44] and under shear [46].
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In the following sections, we use the formulas (14)–(19) to
perform the analysis of the results of MC simulations.

IV. DETAILS OF THE SIMULATIONS

We consider the 3D Ising model on a simple cubic
lattice of L⊥ × L⊥ × L|| = V sites. Each site i = (x,y,z),
1 � x � L⊥, 1 � y � L⊥, 1 � z � L||, is characterized by
the occupation number ci = {0,1} with ci = 1 if the site i

is occupied by a spin si = ±1, while ci = 0 corresponds
to a nonmagnetic site i. Nearest-neighbor spins interact
ferromagnetically with constant exchange J > 0. Explicitly,
the Hamiltonian of the model may be written as

H = −J
∑
〈i,j〉

cicj sisj , (20)

where the sum 〈i,j 〉 is taken over the pairs of nearest-neighbor
spins. We use periodic boundary conditions.

The nonmagnetic sites (ci = 0) in our model have to be
arranged into parallel lines and oriented along a given axis,
say the z axis. The length of these lines coincides with the
system size in z direction, L||. Figure 1 shows one possible
configuration of such lines.

We generate the impurity distribution for a given impurity
concentration p for a lattice of size V in the following way.
We compute the integer number nimp = int(pL2

⊥) of impurity
lines of length L||. We distribute randomly intersections of
these lines with the x-y plane, as shown in Fig. 1.

We compute powers of the magnetization (k = 1,2,4)

Mk =
⎛
⎝ 1

V

∑
{i}

cisi

⎞
⎠

k

, (21)

where {i} means the lattice summation over all sites. From
powers of the magnetization we construct the magnetic
susceptibility and Binder cumulant in the following way:

χ = βV (〈M2〉 − 〈|M|〉2), (22)

U4 = 1 −
( 〈M4〉

3〈M2〉2

)
. (23)

z

x
y

FIG. 1. (Color online) An example of the lattice of size 4 × 4 ×
4 with Ising spins (dark circles) and nonmagnetic impurities (light
circles, red online) collected into nimp = 4 lines.

Here at first step we perform the thermal averaging of the power
of magnetization for each impurity realization (denoted by
angle brackets, e.g., 〈M2〉). Then we average these results over
impurity realizations. The averaging over impurity realizations
is denoted by the overline. In our simulation we fix J/kB = 1,
in which case β = 1/T is the inverse temperature.

We compute also the correlation lengths for directions
parallel to the impurity lines, ξ||, and in the perpendicular
planes, ξ⊥, with the help of the Fourier transform in a similar
way as it was done for isotropic systems [50]. Let us introduce
s(k) = ∑

j eik·rj cj sj , where rj = (x,y,z) is the radius vector
of the spin sj , the wave vector is k = (kx,ky,kz), and we denote
〈χ0〉 = 〈|s(0,0,0)|2〉, 〈χ ||

1 〉 = 〈|s(0,0,2π/L||)|2〉, and 〈χ⊥
1 〉 =

〈|s(2π/L⊥,0,0)|2〉 thermal average of Fourier components for
particular realization of impurities. Then we can compute
the corresponding correlation lengths averaged over impurity
realizations

ξ|| = 1

2 sin(π/L||)

√
〈χ0〉
〈χ ||

1 〉
− 1, (24)

ξ⊥ = 1

2 sin(π/L⊥)

√
〈χ0〉
〈χ⊥

1 〉 − 1. (25)

The simulation is performed with hybrid MC method [51].
Each of MC step consists of one flip of Wolff cluster followed
by V/4 attempts to flip spins in accordance with Metropolis
rule. The Wolff cluster update prevents the critical slowing-
down while Metropolis single spin flips for the system with
impurities should spend a lot of time to provide the update of
weakly connected regions.

In our study we deal with a concentration of impurities p =
0.2. Such concentration is very often used in MC simulations
of an Ising model with disorder [13–15,52], since in this case
the concentration of magnetic sites 1 − p = 0.8 is far from the
percolation threshold and from the pure system. An additional
empirical reason to take this value of p is the following: For
a 3D Ising model with uncorrelated impurities, correction-to-
scaling terms were found to be minimal at concentration of
magnetic sites 0.8 [52], and in the absence of a more robust
argument, we stick to this value in the present work although
correlated disorder is obviously a different situation.

V. RESULTS AND ANALYSIS OF SIMULATIONS

In this section, applying the above-described formalism, we
give three estimates of the anisotropy exponent obtained from
anisotropic FSS predictions for different quantities. From the
FSS of susceptibility we get also an estimate for γ /ν⊥.

A. Computation of the correlation length

To use relation (19) we need to perform calculations at a
fixed value of the variable L‖tν‖ , e.g., at the critical temperature
of an infinite system. Let us assume that the value of the
critical temperature of an infinite system is very close to the
value of the pseudocritical temperature of the system with
maximal size. In this case that is the temperature of the
susceptibility maximum χmax of the largest system available.
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FIG. 2. (Color online) Maxima of magnetic susceptibility χ ;
βA

max = 0.25655(10) for method A and βB
max = 0.25648(5) for method

B for a system 1283 and p = 0.2.

We perform the computation for a cubical system of size 1283

with concentration of impurities p = 0.2. Disorder average
may be performed in either of two possible protocols: In the
first procedure, we measure the temperature dependence of
the susceptibility at each disorder realization. Then all these
curves are averaged to get a single curve of χ that depends
on β. The value β at which χ (β) has a maximum is then
associated with the critical temperature (we refer to this as
method A). The alternative is to average temperatures at which
χmax is achieved for each disorder realization (we refer to this
as method B).

The results obtained with both methods are given in Fig. 2.
The two curves displayed by continuous lines in the figure
show χ (β) behavior for two separate samples, whereas the
dotted curve shows the χ (β) averaged over 320 samples. Using
method A we first average the susceptibility and then find
the point βA

max = 0.25655(10) (magenta diamond in Fig. 2).
Using method B we first find a maximum of susceptibility
for each disorder configuration and then average location of
these maxima over samples βB

max = 0.25648(5) (black square
in Fig. 2). These two evaluations for βmax for methods A
and B coincide within the evaluation of numerical accuracy.
Method A corresponds to the averaging of the free energy over
the impurity realizations and we shall use this evaluation of
the pseudocritical point βA

max = 0.25655(10). With the value
of the critical temperature at hand we can perform a study
through relation (19) to extract the anisotropy exponent θ . To
this end, we analyze the correlation length ξ⊥ of the system of
size 128 × 128 × L||, fixing the perpendicular size L⊥ = 128
and varying L|| for both values of βmax. Results of simulations
for L|| = 25–50 are given in Fig. 3, where we plot ξ for the ⊥
and || directions as a function of L||.

Then we perform the fit of data for ξ⊥ in accordance with
the formula:

ξ⊥(L||) = aLb
||, (26)

using fitting parameters a and b. For method A we get
a = 1.27(4), b = 0.76(1), while for method B we estimate
a = 1.06(3), b = 0.81(5). Comparing (26) with (19), we get
θ = 1/b with the following estimates: θ ≈ 1.31 (method A)

 10

 20

 30

 40

 60

 80
 100

 25  30  35  40  50

L||

ξ(
L

||)

128 × 128 × L||

FIG. 3. (Color online) Results of the fit of ξ as a power-law
dependence of L|| for a system of size 128 × 128 × L|| and p = 0.2
at point βA

max = 0.25655(10) for method A and βB
max = 0.25648(5)

for method B.

and θ ≈ 1.23 (method B). Taking these values as an accuracy
interval of θ , 1.2 � θ � 1.3 we see that these are in reasonable
agreement with the existing analytic RG estimates (see
Sec. III).

B. Computation of the Binder cumulant

Another way to identify the right value of the exponent θ

is the following. We expect that all curves for the temperature
dependence of the Binder cumulant U4 for systems of different
sizes but fixed generalized aspect ratio with proper θ will
intersect at the critical point. Therefore we can consider the
system of size L⊥ × L⊥ × L|| and keep the condition L|| =
Lθ

⊥, but we will perform a series of simulations for various
values of θ . For each θ , we compute the cumulant U4(β,L⊥)
as a function of the inverse temperature β for various values
of L⊥. At the proper value θ∗ we expect the intersection of
the curves of Binder cumulants. We perform simulations for
L⊥ = 20,40,60,80,100, and the disorder average is performed
over Nimp = 128 realizations of impurities.

In Figs. 4(a)–4(d) we plot the cumulant for values θ =
1, 1.1, 1.2, 1.3, respectively. Each curve corresponds to U4(β)
averaged over 128 disorder realizations. As one can see, the
presence of disorder smears the single crossing point into a
region of temperatures where all curves cross. The narrowest
region is expected for the value of θ which is sufficiently
close to the real one. To analyze this situation for different
values of θ , we use the following procedure. We split the
total set of Nimp = 128 different impurity realizations onto
eight series and compute the average value (averaged over
128/8 = 16 realizations) of the invariant Uk

4 for each set k =
1,2, . . . ,8. Later we use the averaging of Uk

4 for the evaluation
of numerical accuracy. In Fig. 5(a) we plot for comparison
results for Uk

4 as a function of β for two different series k = 1
(lines) and k = 2 (triangles) for θ = 1 and various sizes L⊥ =
20, 40, 60, 80, 100. In this figure we observe an important
difference between the graphs for two series due to fluctuations
induced by the presence of impurities. Our aim is to study
the scattering of intersection points. Ideally, graphs for five
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(c)
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(d)

θ = 1.3
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FIG. 4. (Color online) Magnetization cumulant U4 as a function of the inverse temperature β for different system sizes, keeping the
condition L|| = Lθ

⊥: (a) θ = 1.0, (b) θ = 1.1, (c) θ = 1.2, and (d) θ = 1.3.

system sizes should intersect in 10 points. In Fig. 5(b) we plot
data for Uk=1

4 and indicate the intersection points (βk
ij ,U

k
ij ) by

black circles. Here a pair ij of indexes labels two system sizes
i = 1, 2, 3, 4, 5 for L⊥ = 20, 40, 60, 80, 100. The curves for
some of the system sizes have intersections which fall outside
of the considered interval for β, e.g., for L⊥ = 40 and for
L⊥ = 80, 100. In this case we select as “intersection point”
the point between left side or right side ends of these two lines
selecting the side with the smaller distance between the end
points.

Another possible situation with multiple intersection points
may happen due to a big scattering of the data points caused by
numerical inaccuracy. In this case, we perform the averaging
over all intersection points and proceed with this averaged

point. Then we compute the mean values of the inverse
temperature,

βk
av = 1

10

5∑
i=1

5∑
j<i

βk
ij ,

and of the cumulant,

Uk
av = 1

10

5∑
i=1

5∑
j<i

Uk
ij ,

over 10 intersection points for five system sizes for each set k.
We observe (as expected), that the average of crossing points
does not coincide with the crossing of average lines.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.253  0.254  0.255  0.256  0.257  0.258

β

U
k 4
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(b)

L⊥ = 20
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L⊥ = 60
L⊥ = 80

L⊥ = 100
intersection points (βk

ij, U
k
ij)

FIG. 5. (Color online) The cumulant Uk
4 for the k-th series as a function of β for θ = 1 and various values of L⊥ = 20, 40, 60, 80, 100:

(a) Comparison of results for k = 1 (lines) and k = 2 (symbols). Note that some pair of graphs (for example, for L⊥ = 40 and L⊥ = 80, 100
for k = 1) have no intersection within the considered range. (b) Results for k = 1 and intersection points (βk

ij ,U
k
ij ).
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L⊥ = 20 − 100
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FIG. 6. (Color online) (a) The average of the square deviation of the inverse temperature �β2 of crossing points as a function of θ ; (b) the
average of the square deviation of the cumulant �U 2

4 of crossing points as a function of θ .

Now we can compute the average values of the deviations
squared from the mean values for the inverse temperature,

�β2 = 1

8 × 10

8∑
k=1

5∑
i=1

5∑
j<i

(
βk

ij − βk
av

)2
,

and for the cumulant,

�U 2
4 = 1

8 × 10

8∑
k=1

5∑
i=1

5∑
j<i

(
Uk

ij − Uk
av

)2
,

and evaluate numerical accuracy. In Fig. 6(a) we plot �β2 as
a function of θ .

The amplitude of the square of the inverse tempera-
ture deviation is about 10−6, which is consistent with the
average distance between points �β ∼ 10−3. We do not
observe pronounced minima in the interval 1.0 � θ � 1.3,
and the numerical inaccuracy is comparable with the scattering
of the points. In Fig. 6(b) we plot data for the average square of
the deviation for the cumulant �U 2

4 . The point distribution is
very similar to the ones obtained for the inverse temperature.
The point for θ = 1.1 is below its neighbors, but the distance
between these points is of the order of the numerical accuracy.
Therefore the procedure corroborates θ = 1.1 as the optimal
one.

 10

 100

 10  100

L⊥

χ

β = 0.2565

θ = 1.0
θ = 1.1
θ = 1.2
θ = 1.3
θ = 1.4

FIG. 7. (Color online) Magnetic susceptibility χ as a function of
the system size L⊥ for various values of θ = 1, 1.1, 1.2, 1.3, 1.4 at
the point βA

max = 0.25655(10).

C. Computations of the susceptibility

In this subsection we describe the results of the computation
of the magnetic susceptibility at the critical point βc with
various values of the exponent θ . In Fig. 7 we plot the magnetic
susceptibility χ as a function of the system size L⊥ in the
log-log scale for βA

max = 0.25655(10).
We perform a fit of the magnetic susceptibility by a linear

function of L⊥ in the log-log scale: χ = aLb
⊥ with a and b

being the parameters of the fit. Then we estimate the deviation
of the values of susceptibility measured numerically from
those obtained via the fitting function with the help of a χ̂2

defined as

χ̂2 =
N∑

i=1

[χi − f (Li)]2

σ 2
i

. (27)

Here N = 8 is the number of values χi calculated for i =
1,2, . . . ,N values of L⊥i = 10,20,30,40,50,60,80,100; f (x)
is the fitting function; and σ 2

i is the appropriate variance
defined by the error bars.

The same number of MC steps is used for a given value of
the exponent θ . Therefore, the variance σi is minimal for small
values of the system size L⊥ and increases for larger values of
L⊥. The total number of MC steps decreases with increasing
of θ (from 5 × 106 for θ = 1 to 5 × 105 for θ = 1.45).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.1  1.2  1.3  1.4  1.5

θ

χ̂
2

from Eq. (26)

FIG. 8. (Color online) The χ̂ 2 parameter of the deviation from
the linear fit [Eq. (27)] of the magnetic susceptibility as a
function of θ .
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FIG. 9. (Color online) (a) The χ̂ 2 parameter of the linear fit with variance (χ̂ 2
k for every series, black circles; average result, red triangles)

as a function of θ ; (b) the result of the power of the fit b (bk for every series, black circles; average result, green triangles) as a function of θ .

The parameter χ̂2 of the fitting procedure characterizes the
“quality” of the data with respect to the proposed functional
dependence. In our case this parameter describes the deviation
of points from the straight line in the log-log representation.
We plot χ̂2 as a function of θ in Fig. 8. The general tendency
is the decrease of χ̂2 with an increase of θ . This is due to the
larger variance when the number of MC steps is smaller.

We observe a minimum in the region θ ≈ 1.2–1.3. Unfor-
tunately, for this procedure we cannot evaluate the variance
(inaccuracy) δχ̂2. Therefore we repeat the procedure, splitting
the 320 disorder realizations (for each value of L⊥ for a fixed
θ ) into 10 series and perform the fit by the formula ln(χ ) �
ln(ak) + bk ln(L⊥) for every series obtaining some value χ̂2

k .
Then we average these values, compute numerical accuracy,
and plot the results in Fig. 9(a) (black circles for χ̂2

k and red
triangles for the average value). We can see that χ̂2 reaches
the minimum for θ∗ � 1.25. In Fig. 9(b) we plot the resulting
exponent b as a function of θ . The value of b at θ∗ gives an es-
timate for γ /ν⊥ � 1.85 ± 0.05, using the window 1.1 � θ �
1.3. We present here also the estimate γ /ν⊥ = 1.90 ± 0.08
obtained from data of Fig. 9 for the value θ = 1.1 recognized
as an optimal value in Sec. V B in the cumulant analysis.

VI. CONCLUSION

In this paper we have studied by use of MC simulations the
scaling behavior of thermodynamical quantities in the vicinity
of critical point for a 3D Ising system with randomly dis-
tributed parallel linear extended defects, modeled as nonmag-
netic impurities collected into lines along spatial direction z.
We considered a combined algorithm using the Wolff and
Metropolis methods. Our results are consistently interpreted
using the theory of anisotropic finite-size scaling.

We have estimated the value of the anisotropy exponent θ

using three different methods, namely from dependence of
correlation length ξ⊥ on the linear size of the system near the

critical point, from a temperature dependence of the fourth-
order Binder cumulant, and from finite-size scaling of the
susceptibility. The values estimated are in the range 1.1 �
θ � 1.3 and corroborate RG predictions for the model under
consideration.

We have also measured the value of γ /ν⊥ from anisotropic
finite-size scaling for the susceptibility. The value reported
here γ /ν⊥ � 1.85 is a little bit below the corresponding RG
estimates γ /ν⊥ � 2.0, γ /ν⊥ � 1.98. The value γ /ν⊥ � 1.9
estimated for θ = 1.1 is in better agreement with theoretical
results. We have applied the procedure described in Sec. V
for susceptibility to compute the magnetization. However, it
does not give satisfactory results in this case. This is because
magnetization is a vanishing quantity at the critical point and
therefore it is very sensitive to proper determination of critical
temperature.

Finally, let us mention that in spite of the substantial
computation effort reported in this paper, the numerical values
of the critical exponents are not extremely accurate. This is
due to the difficulty of the numerical techniques to deal with
anisotropic systems (see, e.g., Ref. [53]), but from the MC
simulations presented in this paper, we believe that we can
safely conclude in favor of the anisotropic critical point, since
anisotropic scaling is overall nicely confirmed.
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