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Dynamics of the transverse Ising model with next-nearest-neighbor interactions
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We study the effects of next-nearest-neighbor (NNN) interactions on the dynamics of the one-dimensional
spin-1/2 transverse Ising model in the high-temperature limit. We use exact diagonalization to obtain the
time-dependent transverse correlation function and the corresponding spectral density for a tagged spin. Our
results for chains of 13 spins with periodic boundary conditions produce results which are valid in the infinite-size
limit. In general we find that the NNN coupling produces slower dynamics accompanied by an enhancement of
the central mode behavior. Even in the case of a strong transverse field, if the NNN coupling is sufficiently large,
then there is a crossover from collective mode to central mode behavior. We also obtain several recurrants for the
continued fraction representation of the relaxation function.
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I. INTRODUCTION

The dynamical properties of quantum spin systems have
been the subject of investigation for the past few decades
[1–8]. Recently, there has been an upsurge of interest in
spin-1/2 systems, due largely to experiments with ultracold
atoms trapped in optical lattices which mimic those systems.
Most of the studies in optical lattices are concerned with
static properties; however, the dynamical properties of low-
dimensional spin-1/2 systems have already been studied in
optical lattice settings [9].

The transverse Ising (TI) model stands as one of the simplest
quantum spin models with nontrivial spin dynamics. It was
introduced in the early 1960s as a theoretical model to study
order-disorder transitions in double-well ferroelectric systems
such as KH2PO4 and its deuterated form KD2PO4 (KDP)
crystals [10,11] and in PbH PO4 [12]. The magnetic insulator
LiHoF4 is another system that can be described by the TI
model [13]. Theoretical efforts have revealed some interesting
phenomena in those systems, such as the appearance of central
modes, collective modes, anomalous diffusion, etc. Exact
results have also been obtained for the dynamical correlation
functions in the TI and XY models for one-dimensional (1D)
lattices at infinite temperatures [14–17].

Experimental realizations of 1D quantum magnetic
chains have been observed in a variety of compounds,
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tetramethylammonium-manganese-trichloride (TMMC) be-
ing a typical example [18,19], as well as some one-
dimensional ladder structures such as (VO)2P2O7 [20] and
Cu2(C5H12N2)2Cl4 [21]. The magnetic compound CoNb2O6

is an experimental realization of the TI model that shows a
quantum phase transition at zero temperature [22,23]. Recent
experiments with ultracold atoms trapped in optical lattices
have introduced novel realizations of spin-1/2 systems, such as
ferromagnetic Heisenberg quantum magnets [9] and fermionic
quantum gases [24–26].

In real magnetic systems the interactions may not be be-
tween neighboring spins only. Next-nearest-neighbor (NNN)
interactions may play an important role and should be included
for a more realistic picture. The model that adds NNN inter-
actions to the TI model is known as the transverse anisotropic
next-nearest-neighbor Ising (ANNNI) model [27]. At T = 0,
this model displays a rich phase diagram with ferromagnetic or
antiferromagnetic phases, disordered or paramagnetic phases,
and floating phases [28–30].

In the present paper we are interested in the role of
the NNN interactions on the dynamics of the transverse
ANNNI model. This problem has been studied earlier using
the method of recurrence relations [31,32]. The short-time
behavior of the time-dependent spin correlation function is
well understood. Our numerical method yields results which
are valid at much longer times. In addition, our calculations
show that the important features of the spectral densities at the
thermodynamic limit are already contained in our results.

In the study of spin dynamics, both the time-dependent au-
tocorrelation function and the spectral density play important
roles. The latter is related to the experimental crosssection
of forward inelastic neutron scattering in real spin systems.
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Several approaches have been used to calculate these quanti-
ties, including exact diagonalization [33–35] and the method
of recurrence relations [8,17,36–38]. The latter has also
been applied to electron gases [39], velocity autocorrelation
functions of many-body systems [40], and harmonic oscillator
chains [41,42].

In the exact diagonalization method, one numerically finds
all of the eigenvalues and eigenstates of the Hamiltonian in
order to determine the dynamic correlation functions of the
system. Since the number of states increases exponentially
with the size of the system L, numerical efforts are limited to
systems with relatively small sizes. Even with such restrictions,
these methods have produced reliable results when compared
with known exact results.

On the other hand, the method of recurrence relations
produces analytic results for the dynamic correlation functions
of interest. There are a few instances where the recurrence
relations method produces exact results, such as in the TI
and XY models [17], as well as in harmonic oscillator
chains [41,42]. It does not require explicit knowledge of the
eigenvalues and eigenstates of the Hamiltonian. However,
one must determine the recurrants, which are essential to
the method. They are the coefficients of a continued fraction
representation of the Laplace transform of the correlation
function [7,8].

The analytical calculation of the recurrants is usually
very time-consuming, and, consequently, only a few of them
are obtained in general. In those cases, the time-dependent
correlation function is written as a short-time expansion. In
order to extend the time domain, more recurrants are needed.
Often one needs to devise a termination procedure for the
continued fraction. Several approaches along this line have
been used in the literature [1,5,6,43–46]. Given that the known
exact recurrants are needed to form the basis of the termination
scheme, the knowledge of as many recurrants as possible
is a desirable condition for the construction of a reliable
approximation to the continued fraction representation of the
dynamic correlation functions.

This paper is organized as follows. In Sec. II we present
the model and give a review of the method of exact diag-
onalization. In Sec. III we present a short account of the
method of recurrence relations. In Sec. IV we discuss our
results for the dynamical correlation functions. In Sec. V we
show our numerical results for the recurrants of the method of
recurrencer relations, and, finally, we summarize our findings
in Sec. VI.

II. MODEL AND EXACT DIAGONALIZATION

The spin-1/2 transverse ANNNI model for a chain of L

spins is defined by the Hamiltonian:

H = −J

L∑
i=1

σx
i σ x

i+1 − J2

L∑
i=1

σx
i σ x

i+2 − B

L∑
i=1

σ z
i , (1)

where σα
i , α = x,y,z, are Pauli matrices; J and J2 are the

energy couplings between first- and second-neighbor spins,
respectively; B is the energy coupling of a spin in a transverse
magnetic field; and periodic boundary conditions are assumed,
namely σα

i+L = σα
i . Notice that our definition of the coupling

energies implies that in the absence of NNN interactions the
quantum phase transition (T = 0) occurs when B/J = 1.

The time-dependent transverse correlation function of a
tagged spin at site j is defined as

C(t) = 〈
σx

j (0)σx
j (t)

〉
, (2)

where σx
j (t) = exp(iH t)σx

j exp(−iH t), � = 1, and the brack-
ets denote a canonical average. At the infinite-temperature
limit (T = ∞) all states contribute with the same statistical
weight. The correlation function is given by

C(t) = 1

2L
Tr

(
σx

j eiHtσ x
j e−iH t

)
. (3)

Here C(t) is both real and even in t . Also, its time derivative is
zero at t = 0. Its Taylor expansion about t = 0 can be written
as

C(t) =
∞∑

k=0

(−1)k

(2k)!
μ2k t2k. (4)

The moments μ2k are defined in terms of a trace over iterated
commutators,

μ2k = 1

2L
Tr

(
σx

j L2kσ x
j

)
, (5)

where L is the Liouville operator,

LA = [H,A] = HA − AH, (6)

A is an operator, and H is the Hamiltonian.
In terms of the energies and eigenstates of the Hamiltonian,

H |n〉 = En|n〉, the correlation function assumes the form:

C(t) = 1

2L

∑
m,n

cos(En − Em)t |〈n|σx
j |m〉|2. (7)

The moments are now given by

μ2k = 1

2L

∑
m,n

(En − Em)2k|〈n|σx
j |m〉|2. (8)

Another quantity of interest is the spectral density S(ω),
given by the time Fourier transform of C(t),

S(ω) =
∫ ∞

−∞
C(t)e−iωtdt. (9)

By using Eq. (7) the spectral density reads

S(ω) = π

2L

∑
m,n

|〈n|σx
j |m〉|2[δ(ω − εnm) + δ(ω + εnm)],

(10)
where εnm ≡ En − Em.

In our numerical calculations, the Dirac δ functions are
approximated by rectangles of width a and unit area, centered
at the zeros of their arguments. The width a can be adjusted to
reduce fluctuations. However, that does not change the general
shape of the spectral density S(ω). Numerical evaluation of
the eigenstates and eigenvalues of the Hamiltonian allows us to
directly evaluate both the time-dependent correlation function,
Eq. (7), and the spectral density, Eq. (10).
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III. METHOD OF THE RECURRENCE RELATIONS

The time evolution of an operator A in the Heisenberg
representation, A(t) = exp(iH t)Aexp(−iH t), in a system
governed by a Hamiltonian H , is cast as the expansion

A(t) =
d−1∑
ν=0

cν(t)fν, (11)

where fν’s are orthogonal basis vectors spanning a d-
dimensional Hilbert space S. In general, these vectors are
not normalized. In the infinite-temperature limit, the scalar
product in S can be defined by

(A,B) = 1

Z
Tr AB†, (12)

where Z is the canonical partition function.
Consider the time evolution of a tagged spin at site j . Thus

we set A(t) ≡ σx
j (t) in Eq. (11) and choose the basal vector

f0 = σx
j . It follows that the time-dependent coefficient co(t) =

C(t), the time-dependent spin correlation function, Eq. (2).
The remaining basis vectors are obtained recursively by the
recurrence relation (RRI):

fν+1 = iLfν + 	νfν−1, ν � 0, (13)

with L defined in Eq. (6), 	0 ≡ 1, f−1 ≡ 0, and

	ν = (fν,fν)

(fν−1,fν−1)
, ν � 1, (14)

are called recurrants, which are obtained from the ratio of the
norms of the basis vectors in S. Therefore they are positive
definite.

The time-dependent coefficients cν(t) are determined from
the second recurrence relation (RRII):

	ν+1cν+1(t) = −dcν(t)

dt
+ cν−1(t), 0 � ν � d − 1, (15)

where c−1(t) ≡ 0. According to RRII, the time dependence
is determined entirely from the 	ν’s, hence the importance of
accurate and reliable knowledge of them. The recurrants can be
used for the characterization of infrared singularities in spectral
densities [46]. Furthermore, they can help to understand how
correlation functions of very different systems may sometimes
exhibit the very same time dependence [47].

To proceed further, it is convenient to obtain the Laplace
transform of RRII,

	1a1(z) = 1 − a0(z), (16)

	ν+1aν+1(z) = −z aν(z) + aν−1(z), n � 1, (17)

where

aν(z) =
∫ ∞

0
cν(t)e−ztdt, Re(z) > 0. (18)

In particular, a0(z), also known as the relaxation function, is
defined by:

a0(z) =
∫ ∞

0
C(t)e−zt dt, Re(z) > 0. (19)

It follows from Eqs. (16) and (17) that a0(z) can assume the
form of a continued fraction,

a0(z) = 1

z + 	1

z+ 	2
z+···

. (20)

The spectral density S(ω) can be obtained from a0(z) by
using the relation

S(ω) = lim
ε→0+

Re[2a0(ε − iω)]. (21)

There are also conversion formulas connecting the recurrants
to the moments [6]. Without loss of generality we set μ0 = 1,
which is consistent with the normalized time-dependent corre-
lation function defined in Eq. (2). Once the the first moments
are known up to order 2k, the conversion formulas yield
the first k recurrants 	1, . . . ,	k . Then one obtains 	1 = μ2,
	2 = −μ2 + μ4/μ2, 	3 = (μ2

4/μ2 − μ6)/(μ2
2 − μ4), etc.

IV. RESULTS FOR THE DYNAMICAL CORRELATION
FUNCTIONS

Consider first the TI model defined in Eq. (1) with B = 1
and J2 = 0. In this case the dynamical correlation functions for
the infinite system are known exactly in the high-temperature
limit [16,17]. Figure 1 shows our numerical results for the
time-dependent correlation function for B = 1 and several
lattice sizes. The results agree very well with the exact
result of the infinite system, C(t) = exp(−2J 2t2). Notice the
logarithmic scale for C(t), which magnifies the differences
between the numerical finite chain results and the known exact
result. The region of agreement between infinite and finite
chains is extended as L increases. For example, the smallest
size shown L = 9 agrees very well up to t = 3.3, whereas
the largest size L = 13 is very close to the exact result up to
approximately t = 4.1. The discrepancy is about one part in
1014 for longer times.

The corresponding spectral densities are depicted in
Fig. 2, which shows our results for finite chains and the exact
Gaussian result S(ω) =

√
π/2J 2 exp(−ω2/8J 2) for L = ∞.

0.0 1.0 2.0 3.0 4.0 5.0
t

10-20

10-15

10-10

10-5

100

C(t)

L = 9
L = 11
L = 13
Exact

FIG. 1. (Color online) Time-dependent transverse correlation
function of a tagged spin in the TI model when B = J = 1.0 for
chain sizes L = 9,11, and 13, together with the known Gaussian
result of the infinite chain. Here and in the next figures we use J = 1
as the unit of energy.
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ω
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(a)

(b)

(c)

FIG. 2. (Color online) Spectral density for the TI model for B =
1 and several chain sizes, (a) L = 9, (b) L = 11, and (c) L = 13. The
solid line is the exact Gaussian result for the infinite system.

Notice that the curve for L = 13 shows excellent agreement
throughout the frequency range. Throughout the paper we use
J = 1 as the unit of energy.

Our results were obtained by using Eq. (10), where we
approximate the Dirac δ functions by a rectangle of unit
area and width a = 0.1. Smaller values of the parameter
a, would simply increase the fluctuation of S(ω) about the
exact Gaussian result. One should note that even for smaller
lattices such as L = 9 and 11, the curves nearly reproduce the
exact Gaussian result, albeit showing larger fluctuations. These
fluctuations become smaller as the lattice size increases. In this
way, S(ω) for small lattice sizes already convey the essential
quantitative features of the infinite system.

0.0 2.0 4.0 6.0 8.0 10.0
t

0.0

0.2

0.4

0.6

0.8

1.0

C(t)

J2 = 1.0

J2 = 2.0

J2 = 0.0 J2 = 0.5

FIG. 3. (Color online) Time-dependent correlation function for
B = 0.5 and several values of the NNN coupling J2. Each curve is
the overlap of two curves: one obtained for L = 12 and other for
L = 13.

We now turn to the transverse ANNNI model. Our
calculations were done in the high-temperature limit. We
consider the cases B = 0.5, B = 1.0, and B = 2.0, which are
representative values of the energy couplings of the TI model.

We first consider the influence of NNN interactions for
the case B = 0.5. In Fig. 3, the time-dependent correlation
function is plotted for several values of J2. The curves were
obtained for the chain sizes L = 12 and 13. They agree very
well with each other in the time interval displayed in the
figure. Results will not change noticeably in the scale of the
figure if we use larger lattices. Hence we believe we have
achieved thermodynamic limit results with relatively small
lattices (up to L = 13). We can see from the figure that the
relevant structures in C(t) are already displayed in our results
for finite-sized lattices. The wavering on the curves of C(t) for
the cases J2 = 0.5, 1.0, and 2.0 as well as the two crossings
between the plots for J2 = 0.5 and 1.0 are real and will not
change for larger systems. These results will remain unchanged

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
ω

0.0

4.0

8.0

12.0

S(ω)

J2 = 0.0

J2 = 1.0 J2 = 2.0

J2 = 0.5

FIG. 4. (Color online) Spectral density for B = 0.5 and several
values of J2. All the curves were obtained for chains with L = 13.
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0.0 2.0 4.0 6.0
t

0.0

0.2

0.4

0.6

0.8

1.0

C(t)

J2 = 0.0

J2 = 4.0

J2 = 1.0

J2 = 0.5

J2 = 2.0

FIG. 5. (Color online) Time-dependent correlation function for
B = 1 and several values of J2. The curves were obtained with L = 12
and 13.

for systems at the thermodynamic limit. Our results show that
C(t) decays at slower rates as J2 increases.

The spectral density is depicted in Fig. 4, which was
obtained for a chain of L = 13. Smaller-sized lattices produce
essentially the same results, but with larger oscillations. Those
oscillations are a finite-size effect and do not survive in the

-6.0 -3.0 0.0 3.0 6.0
0.0

1.0

2.0

3.0

S(ω)

-6.0 -3.0 0.0 3.0 6.0
ω

0.0

2.0

4.0

6.0

S(ω)

(a)

(b)

J2 = 2.0 J2 = 4.0

J2 = 0.0 J2 = 0.5

J2 = 1.0

FIG. 6. (Color online) Spectral density for B = 1 and several
values of J2, obtained for chains of length L = 13. The vertical scales
of (a) and (b) were chosen to show more clearly the details of each
of the curves.

0.0 2.0 4.0 6.0
t

-0.5

0.0

0.5

1.0

C(t)

J2 = 4.0

J2 = 2.0

J2 = 0.5J2 = 1.0

J2 = 0.0

FIG. 7. (Color online) Time-dependent correlation function for
B = 2.0 and various values of J2. The curves were obtained for chain
sizes L = 12 and 13.

thermodynamic limit. When J2 = 0, central mode behavior
dominates the dynamics. For larger values of J2 there is an
enhancement of the central peak, with a rise of its height
around ω = 0 accompanied by a narrowing of the curve. In
these cases NNN interactions foster central mode behavior.

The case B = 1.0 and J2 = 0 corresponds to the TI model
at criticality (T = 0) [22]. In Fig. 5 the time-dependent correla-
tion function C(t) is shown for some values of J2. For J2 = 0.5
the decay of C(t) becomes slower as compared to that of
the TI model. However, an oscillation appears, approximately
between 2.0 � t � 4.0, and then the correlation function goes
steadily toward zero as t increases. As we consider higher
values of J2 the rate of decay becomes slower, with suppression
of the oscillation present when J2 = 0.5. For larger values of
J2 the oscillations in C(t) disappear entirely and the time decay
is slower. The corresponding spectral densities are depicted in
Fig. 6. When J2 = 0 we obtain the known Gaussian result.
However, for J2 = 0.5, two small shoulders appears around
ω = ±1. For J2 = 1.0 the shoulders disappear altogether and

-10.0 -5.0 0.0 5.0 10.0
ω

0.0

0.4

0.8

1.2

1.6

S(ω)

J2 = 0.0 J2 = 0.5

J2 = 4.0

J2 = 1.0 J2 = 2.0

FIG. 8. (Color online) Spectral density for the case B = 2 and
several values of J2. The plots were obtained for chains of size
L = 13.
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TABLE I. Recurrants for the transverse ANNNI model, with B =
1.0, J2 = 1.0, and several chain sizes.

	ν L = 11 L = 12 L = 13 L = ∞
	1 4.00000 4.00000 4.00000 4.00000
	2 16.0000 16.0000 16.0000 16.0000
	3 28.0000 28.0000 28.0000 28.0000
	4 41.1429 41.1429 41.1429 41.1429
	5 51.3016 51.3016 51.3016 51.3016
	6 73.0933 73.0933 73.0933 73.0933
	7 78.5228 78.5228 78.5228 78.5228
	8 92.4927 92.4927 92.4927 92.4927
	9 110.406 110.406 110.406 110.406
	10 127.334 127.334 127.334 127.334
	11 151.014 151.014 151.014 151.014
	12 168.388 168.385 168.385 168.385
	13 191.746 191.673 191.672 191.67
	14 216.807 216.023 215.961 216.0
	15 233.220 229.579 229.217 2.3 × 102

	16 269.065 259.252 258.141 2.6 × 102

	17 298.445 281.726 278.903 2.8 × 102

	18 336.633 312.762 305.475 3 × 102

0 5 10 15 20 25 30
ν

0

20

40

60

80

100

120

140

160

Δν

L = 12
L = 13

FIG. 9. (Color online) Recurrants for B = J2 = 1.0 and chain
sizes L = 12 and 13.

there is a sharp increase of the central peak around ω = 0.
Again, central mode behavior becomes dominant.

Finally, we consider the case B = 2.0. The time-dependent
correlation function is shown in Fig. 7 for several NNN inter-
action energies J2. For small NNN couplings the dynamics

TABLE II. Recurrants for the transverse ANNNI model for B = 0.5 and several NNN couplings at the thermodynamic limit.

	ν J2 = 0.0 J2 = 0.5 J2 = 1.0 J2 = 2.0 J2 = 4.0

	1 1.00000 1.00000 1.00000 1.00000 1.00000
	2 8.00000 10.0000 16.0000 40.0000 136.000
	3 9.00000 14.2000 25.0000 53.8000 152.059
	4 5.33333 16.1239 28.8000 50.4268 71.8116
	5 11.6667 21.0443 28.3778 52.7022 185.597
	6 10.2857 31.3921 46.8047 79.3706 129.162
	7 12.0476 34.7908 74.3243 161.212 303.648
	8 23.3149 42.0656 44.2156 158.841 677.005
	9 25.6176 52.0678 74.9213 92.9177 314.612
	10 28.6558 59.7696 90.0865 139.676 273.028
	11 20.9597 69.1325 107.447 185.526 258.917
	12 25.0746 76.1694 104.371 186.036 508.166
	13 32.5912 84.4063 107.801 258.059 480.341
	14 28.7291 9.707 × 10 1.672 × 102 1.7394 × 102 563.317
	15 29.4130 1.083 × 102 1.53 × 102 3.800 × 102 462.216
	16 2.9875 × 10 1.15 × 102 1.6 × 102 3.602 × 102 7.1686 × 102

	17 3.772 × 10 1.3 × 102 1.7 × 102 3.49 × 102 1.4118 × 103

	18 3.55 × 10 1.4 × 102 2.2 × 102 2.87 × 102 8.243 × 102

	19 4.2 × 10 2 × 102 2 × 102 4.3 × 102 1.021 × 103

	20 6 × 10 2 × 102 2 × 102 5.7 × 102 6 × 102

	21 2 × 102 4.9 × 102

	22 2 × 102 5 × 102

	23 2 × 102 4 × 102

	24 2 × 102 6 × 102

	25 2 × 102 6 × 102

	26 2 × 102 8 × 102

	27 2 × 102 7 × 102

	28 2 × 102

	29 2 × 102

	30 2 × 102

	31 2 × 102
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TABLE III. Recurrants for the transverse ANNNI model with B = 1.0 and several NNN couplings at the thermodynamic limit.

	ν J2 = 0.0 J2 = 0.5 J2 = 1.0 J2 = 2.0 J2 = 4.0

	1 4.00000 4.00000 4.00000 4.00000 4.00000
	2 8.00000 10.0000 16.0000 40.0000 136.000
	3 12.0000 17.2000 28.0000 56.8000 155.059
	4 16.0000 27.1256 41.1429 64.4958 87.9579
	5 20.0000 38.1134 51.3016 79.4813 209.873
	6 24.0000 45.0486 73.0933 132.517 209.281
	7 28.0000 52.3881 78.5228 173.651 454.794
	8 32.0000 68.9177 92.4927 172.678 600.475
	9 36.0000 80.7347 110.406 160.869 321.680
	10 40.0000 88.8777 127.334 207.220 393.603
	11 44.0000 108.274 151.014 240.888 411.160
	12 48.0000 116.218 168.385 283.646 678.810
	13 52.0000 138.065 1.9167 × 102 306.446 516.472
	14 56.0000 1.463 × 102 2.160 × 102 3.958 × 102 663.910
	15 60.0000 1.64 × 102 2.3 × 102 4.465 × 102 1013.41
	16 64.0000 1.84 × 102 2.6 × 102 4.1 × 102 1258.29
	17 6.8 × 10 1.9 × 102 2.8 × 102 4.8 × 102 1019.40
	18 7.2 × 10 2 × 102 3 × 102 5.6 × 102 1.001 × 103

	19 7.6 × 10 2 × 102 3 × 102 6.3 × 102 1.25 × 103

	20 8.0 × 10 3 × 102 4 × 102 6 × 102 1.81 × 103

	21 3 × 102 4 × 102 6 × 102 2.021 × 103

	22 3 × 102 1.213 × 103

	23 3 × 102 1.4 × 103

	24 1.6 × 103

	25 2 × 103

TABLE IV. Recurrants of the transverse ANNNI model for B = 2.0 and several NNN couplings at the thermodynamic limit.

	ν J2 = 0.0 J2 = 0.5 J2 = 1.0 J2 = 2.0 J2 = 4.0

	1 16.0000 16.0000 16.0000 16.0000 16.0000
	2 8.00000 10.0000 16.0000 40.0000 136.000
	3 24.0000 29.2000 40.0000 68.8000 167.059
	4 32.0000 48.5260 72.0000 108.502 146.744
	5 80.0000 98.5757 112.711 143.235 265.255
	6 56.0000 79.5622 114.557 194.311 344.992
	7 53.7143 92.3654 140.778 241.101 539.695
	8 65.9453 141.023 187.668 274.712 640.982
	9 87.4673 181.068 208.883 302.936 516.588
	10 63.5371 180.048 234.620 343.635 604.328
	11 86.4555 198.269 267.206 400.984 675.242
	12 103.953 208.378 306.764 469.974 8.4865 × 102

	13 122.743 289.404 3.6132 × 102 5.4070 × 102 8.8739 × 102

	14 158.820 3.1198 × 102 3.972 × 102 6.1 × 102 1.229 × 103

	15 175.134 3.204 × 102 4.35 × 102 6.7 × 102 1.405 × 103

	16 131.441 3.76 × 102 4.7 × 102 7.3 × 102 1.340 × 103

	17 1.5046 × 102 3.56 × 102 5.1 × 102 8.0 × 102 1.46 × 103

	18 1.60 × 102 4.3 × 102 6 × 102 8.0 × 102 1.77 × 103

	19 1.8 × 102 4.0 × 102 6 × 102 9 × 102 2.1 × 103

	20 2 × 102 5 × 102 7 × 102 9 × 102 2.0 × 103

	21 1 × 103 2 × 103

	22 1 × 103 2 × 103

	23 1 × 103

	24 1 × 103
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FIG. 10. (Color online) Recurrants of the infinite transverse
ANNNI model with B = 1.0 and several values of J2 (data taken
from Table III).

is dominated by the collective mode with well-defined
oscillatory behavior. As J2 increases, a crossover from collec-
tive to central mode behavior takes place. This is best seen in
Fig. 8, which shows the spectral function. The crossover
occurs, approximately, in the range 1.0 < J2 < 2.0.

V. NUMERICAL EVALUATION OF THE RECURRANTS

In the spin-1/2 transverse ANNNI model in 1D at infinite
temperature, the first 5 analytic results [31] and the first 9
numerical results [32] for the recurrants are known. By using
exact diagonalization we obtain between 18 and 31 recurrants
with varying degrees of accuracy.

In Table I we report our numerical results for B = J2 = 1.0
and system sizes L = 11, 12, and 13. The first recurrants for
these lattice sizes have already converged to their thermody-
namic values (L = ∞), which are displayed in the last column.
For ν � 13, there is a gradual reduction in the accuracy
of the thermodynamic recurrants, such that the highest-
order reported, 	18, contains only a single significant digit.
Figure 9 shows the results from exact diagonalization given in
Table I for L = 12 and 13.

Our main results for the recurrants are presented in
Tables II, III, and IV for the cases B = 0.5, B = 1.0,
and B = 2.0, respectively. These are already the values
of the recurrants for infinite systems, free from finite-size
effects.

In Fig. 10 we show the recurrants for the case B = 1.0
and several NNN couplings. The case J2 = 0 reproduces the
known result of the TI model, with linear dependence of 	ν

with ν. In our numerical work with L = 13 spins, we obtain
the first 20 exact or near exact recurrants. One of the effects
of increasing J2 is that the recurrants increase at a higher rate,
on the average. In addition, no clear pattern can be inferred
from the first recurrants shown in the figure. It may prove very
difficult to devise a reliable extrapolation scheme for large
values of J2, especially due to the seemingly erratic oscillations
of the 	’s in those cases. In the case J2 = 4.0, a power-law fit
using the data of the figure yields 	ν ∼ ν1.5, which is slower
than a quadratic growth, with its known problems associated
with the convergence of the continued fractions, as discussed
by Sen [48]. As can be seen in Figs. 5 and 6(b), both time-
dependent correlation function and the spectral density for that
case are obtained without any problems by using the method
of exact diagonalization. Furthermore, as we saw earlier, direct
results from exact diagonalization of a chain with size L = 13
already provide a good quantitative picture for the dynamic
correlation functions of the infinite system (L → ∞).

VI. SUMMARY

We have studied the dynamics of the 1D transverse
ANNNI model at the high temperature limit by using exact
diagonalization of finite chains. We determined the time-
dependent spin correlation function and the associated spectral
density for chains with sizes up to L = 13 with periodic
boundary conditions. Our results closely approximate to the
exact thermodynamic ones and are free from finite-size effects.
NNN couplings produce slower time decays for the correlation
functions, as well as an enhancement in the central mode
behavior. For the case where the applied transverse field is
sufficiently large, an increase in the NNN coupling produces a
crossover from collective mode (dominated by the transverse
field) to central mode behavior. We also obtained several
additional recurrants, more than doubling the number of those
already known in the literature.
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