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Small-scale properties of a stochastic cubic-autocatalytic reaction-diffusion model

Jean-Sébastien Gagnon,1,* David Hochberg,2,† and Juan Pérez-Mercader1,3,‡
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We investigate the small-scale properties of a stochastic cubic-autocatalytic reaction-diffusion (CARD) model
using renormalization techniques. We renormalize noise-induced ultraviolet divergences and obtain β functions
for the decay rate and coupling at one loop. Assuming colored (power-law) noise, our results show that the
behavior of both decay rate and coupling with scale depends crucially on the noise exponent. Interpreting the
CARD model as a proxy for a (very simple) living system, our results suggest that power-law correlations in
environmental fluctuations can both decrease or increase the growth of structures at smaller scales.
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I. INTRODUCTION

The macroscopic (or large-scale) behavior displayed by
complex systems is, in general, the result of complicated
mechanisms operating at shorter space-time scales. For in-
stance, an eukaryotic cell contains a nucleus and a myriad
of organelles that interact via numerous chemical nonlinear
interactions to produce complex macroscopic behaviors (like
movement and replication). Together, these mechanisms make
“the whole greater than the sum of its parts.”

In many instances, we only have access to a large-scale
dynamical description of the system and, of course, we are
interested in determining what is the underlying internal
mechanism that makes the system work at the larger scales.
Answering the above question is in general not possible and in
the cases where the question can be formulated, answering it
is a daunting task. However, given the ubiquity and relevance
of these systems, it is worthwhile to try to gain insight from
simpler, more tractable models.

In this context we can ask if, for example, there are
generic features of these systems that we could use to our
advantage when trying to go from large (or infrared, IR) to
short (or ultraviolet, UV) scales. Fortunately, from the study
of chemistry and out-of-equilibrium systems, it is known that
the IR-scale dynamics of many complex systems contains,
at least, three basic components: a diffusive component, a
reactive component, and a stochastic component. Broadly,
they represent the exchange of chemical information, its
processing and the influence of the environment (both internal
and external).

The goal of this paper is to study a prototype of chemical
system possessing the above three characteristics. We focus
on the stochastic version [1] of a two-species chemical model
originally introduced by Higgins [2] and Selkov [3] in their
studies of glycolysis, and later on used by Gray and Scott
[4–6] (see also Ref. [7]) as a model for autocatalysis. This
cubic autocatalytic reaction-diffusion (CARD) model has an
interesting phenomenology. Indeed, numerical simulations of
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the deterministic CARD model show the appearance of a
variety of spatiotemporal patterns such as stripes, spirals, and
self-replicating domains [8] (see Ref. [9] for a bifurcation
analysis). Self-replicating domains have been observed ex-
perimentally in a chemical system and can be qualitatively
explained using the CARD model [10,11]. This makes the
CARD model a useful proxy for a (very simple) living
system (see Sec. II A). Understanding the behavior of such
a simple system might provide insight into real, more complex
organisms.

In a more realistic setting, the effect of the environment
is introduced via a noise term. The same types of patterns
are obtained in simulations of the stochastic CARD model
[1,12] compared to its deterministic counterpart, with the
important difference that the noise strength can be varied
to induce transitions between patterns. This kind of noise-
controlled transition has been observed experimentally in
a chemical system, where switching between two types of
mechanical noise (stirring and shaking) leads the system
to evolve following two different chemical pathways [13].
Similarly, clockwise and counterclockwise stirring has been
shown to induce chirality in certain chemical solutions [14]
(see also Ref. [15] for the use of noise to model the effect of
planetary conditions on chemical homochirality production).
Noise-induced oscillations have also been observed in the
Belousov-Zhabotinski reaction [16]. This shows that noise can
play an important part in the evolution of a chemical system.
Conversely, it is conceivable to use externally tunable noise to
probe the microscopic dynamics of such a system.

A previous theoretical study of the stochastic CARD
model can be found in Ref. [17]. There, the authors use
Wilsonian renormalization group techniques to coarse-grain
the model and study its dynamics at large scales. In this paper,
we are interested in going from larger to smaller scales in
order to shed some light on internal structures and chemical
reactions taking place inside domains. In other words, we
want to fine-grain the system, as opposed to the well-known
coarse-graining in condensed matter physics. To do that we
use the renormalization group, but run it toward the UV.

As a first step, we investigate the appearance of nontrivial
behavior at small scales in this simple model. For that, we
compute the effects of fluctuations by renormalizing noise-
induced divergences in order to obtain β functions. This
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step, and the intricacies encountered along the way (such as
regularization in the presence of noise), will set the stage for
future work along those lines.

Note that the stochastic CARD model is a particular
example of a system of stochastic partial differential (SPDE)
equations. Although we focus on this model, the tools
developed here could in principle be applied to other systems.
Phenomenologically interesting examples include reaction-
diffusion chemical models (such as the Oregonator [18] and
the Brusselator [7]), the Kardar-Parisi-Zhang (KPZ) equation
[19], and the Burgers equation [20,21].

The rest of this paper is organized as follows. We present
the stochastic CARD model and its properties (with particular
emphasis on the noise) in Sec. II. Section III deals with the
details of the β function computations for the parameters
of the CARD model. Our results for the renormalization
analysis (fixed points and flow diagrams) are presented and
discussed in Sec. IV. We conclude in Sec. V. Feynman
rules and other technical details of one-loop computations
(including regularization in the presence of noise) are relegated
to appendices.

II. THE STOCHASTIC CARD MODEL

A. Model and properties

In the following we consider a stochastic version of the
CARD model [1]. The CARD model is based on the following
model chemical reactions:

U + 2V
λ→ 3V,

V
rv→ P,

(1)
U

ru→ Q,

f→ U.

The substrate U is fed into the system at a constant rate. The
species V turns the substrate U into V via an autocatalytic
reaction. Both species U and V undergo an irreversible reaction
and become the inert products P and Q. In the interpretation
that the stochastic CARD model can be taken as a proxy
for a living system, the substrate U can be viewed as food
continuously fed into the system. The species V is the organism
itself, forming domains (or “cells”) over the substrate via some
form of metabolism embodied by the autocatalytic reaction.

The evolution equations corresponding to the Gray-Scott
reactions Eq. (1) in the general case where diffusion and noise
are present are

∂V

∂t
= Dv∇2V − rvV + λUV 2 + ηv(x), (2)

∂U

∂t
= Du∇2U − ruU − λUV 2 + ηu(x) + f, (3)

where we use the shortcut notation x = (x,t), B = B(x,t) is
the spacetime-dependent concentration for species B (with
B = U, V), Db is the diffusion constant for species B, rb is
the decay rate into inert products for species B, ηb(x) is the
spacetime-dependent stochastic noise term for species B, λ

is the rate constant for the autocatalytic reaction between U
and V, and f is the constant feed rate of U into the system.

All model parameters are positive. Note that we use roman
script to denote chemical compounds and italic script for
concentrations.

The presence of a nonzero feed rate f is rooted in biology.
In general, biological organisms are open, out-of-equilibrium
systems with an external input of energy. As discussed by
Morowitz [22], this external energy input is considered to
be crucial for the formation of complex structures in living
systems. In the case of a vanishing feed rate, all species
eventually decay into inert products and the system dies off.
For a nonvanishing feed rate and away from substrate diffusion
centers, there exists a constant equilibrium value Ueq = f/ru

for the substrate.
The system of Eqs. (2) and (3) has a conserved quantity

in the absence of feed and decay terms. To see that, note that
the diffusion equation is derived from two building blocks: the
continuity equation and Fick’s law (i.e., the flux of a chemical
species is proportional to a gradient of concentration). Defining
the flux of B as jb = −Db∇B, we can rewrite Eqs. (2) and (3)
as:

∂V

∂t
+ ∇ · jv = −rvV + λUV 2 + ηv(x), (4)

∂U

∂t
+ ∇ · ju = −ruU − λUV 2 + ηu(x) + f, (5)

which have the form of a continuity equation. The terms on the
right-hand side are sources and sinks of U’s and V’s. Adding
the two equations together and setting f = ru = rv = 0, we
get

∂(V + U )

∂t
+ ∇ · (jv + ju) = ηv(x) + ηu(x). (6)

Thus, the total concentration U + V is conserved on average
(if the noise has zero mean). This conservation law is
broken explicitly by the feed and decay terms. Note that the
cancellation of the λUV 2 terms is a direct consequence of
stoichiometry. This is another way of uncovering the U (1)
symmetry found in Ref. [23,24].

Let’s rewrite Eqs. (2) and (3) in a way more suitable for
our purposes. Define Ũ ≡ U − Ueq = U − f/ru. Plugging
this definition in the evolution Eqs. (2) and (3), we get after
simplifications

∂V

∂t
= Dv∇2V − rvV + λŨV 2 + λf

ru

V 2 + ηv(x), (7)

∂Ũ

∂t
= Du∇2Ũ − ruŨ − λŨV 2 − λf

ru

V 2 + ηu(x). (8)

After this redefinition of the field U , the constant feed
term disappears. The price to pay is to have two additional
interactions in the evolution equations; they can be treated in
the same way as the “regular” λUV 2 interactions, except that
their couplings are proportional to the feed rate.

In this paper, we assume that the following condition is
satisfied:

λŨV 2 � λf

ru

V 2 → U � 2
f

ru

; (9)

i.e., the interactions proportional to the feed rate are negligible
compared to the regular interactions. This happens when the
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FIG. 1. One-loop diagrams contributing to ru and λ.

concentration of U is very large compared to its equilibrium
value, in which case feeding more U’s does not produce
significant effects on the amount already present. A more
concrete way of thinking about this approximation goes as
follows. Imagine a Petri dish full of food (U) and a few seeds
of organism (V). The Petri dish is connected to a tube that
injects more food into the system at a rate f . The amount
of food in the system decreases via decay into inert products
or via conversion into organisms. There exists two limiting
initial conditions for the food: Ularge � Ueq and Usmall � Ueq.
For Ularge, there is so much food in the Petri dish that the
system evolves by producing organisms without the need of
any external feeding. Since interactions are generally small,
the main source of food loss is via exponential decay. When
the initial amount of food at a time t is comparable to the
equilibrium value Ulargee

−rut ≈ Ueq, our approximation breaks
down. This happens for times t > r−1

u ln(Ularge/Ueq). The
effect of including the feed term in the renormalization analysis
amounts to adding new Feynman diagrams in Fig. 1 (due to
the additional interaction term λf

ru
V 2). For the sake of brevity

and clarity, we choose to restrict our analysis to the case where
there is a lot of food initially in the system and we neglect the
feed term (and we drop the tilde over U ).

B. Role of noise

An important ingredient in our approach is the presence
of noise in Eqs. (2) and (3). Noise adds fluctuations to an
otherwise deterministic system and is ubiquitous in physics,
chemistry, and biology. Examples include noise in electrical
circuits and solids (e.g., Refs. [25,26]), thermal fluctuations
due to the random motion of molecules in chemical reactions
(e.g., Refs. [25,27]), mechanical noise in chemical reactions
[13], and noisy gene expression (e.g., Ref. [28]). In equilib-
rium, fluctuations are usually small due to the law of large
numbers. In an out-of-equilibrium system like the stochastic
CARD model, the central limit theorem does not necessarily
apply and fluctuations can be larger.

There are two generic types of noise: extrinsic and intrinsic
[29]. Extrinsic noise is caused by the application of a random
force external to the system. It includes environmental effects

such as thermal fluctuations. Since no chemical or biological
organism is perfectly isolated from the outside world, extrinsic
noise is an important ingredient in the analysis of realistic
systems. By contrast, intrinsic noise is still present for a system
in complete isolation. It is caused by the fact that the system
itself is made of discrete particles and is inherent in the very
mechanism by which the system evolves. The randomness
of quantum mechanical processes is an example of intrinsic
noise. Thus, ηv , ηu contain two components (extrinsic and
intrinsic), but there is no way of distinguishing between the
two at the level of the partial differential equations. To make
this distinction, an approach based on the master equation is
required [23,29,30]. This is beyond the scope of this paper.

The deterministic CARD model (i.e., without the noise
terms ηv and ηu in Eqs. (2) and (3)) is studied numerically
in Ref. [8]. The results show the formation of various patterns
(incomplete spirals, stripes, self-replicating spots), where their
appearance is controlled by the parameters of the model (feed
and decay rates). The stochastic CARD model is studied
numerically in Ref. [1,12]. Although both deterministic and
stochastic models produce similar types of patterns, the
presence of Gaussian white noise affects the formation of
patterns in a nontrivial way. For instance, increasing the noise
intensity makes the type of pattern change from growing stripes
to spot self-replication. This is an example of noise-controlled
pattern selection. This last point is crucial for chemical and
biological applications, since it establishes a link between
the internal structure and environment of a system and what
types of patterns are formed. Conversely, controlled noise in an
experiment might be used to probe the microscopic dynamics
of a system.

In the following, we use a two-parameters Gaussian colored
noise to describe the stochastic component in Eqs. (2) and (3).
Its statistical properties are given by

〈ηv(k)〉 = 〈ηu(k)〉 = 0, (10)

〈ηv(k)ηv(p)〉 = 2Av|k|−yv (2π )ds+1δ(ds+1)(k + p), (11)

〈ηu(k)ηu(p)〉 = 2Au|k|−yu (2π )ds+1δ(ds+1)(k + p), (12)

〈ηv(k)ηu(p)〉 = 〈ηu(k)ηv(p)〉 = 0, (13)

where we use the shortcut notation k = (k,ω), and we
have expressed the correlations in Fourier space for later
convenience. All higher-order moments are zero (Gaussian
noise). Different wave numbers k and frequencies ω are
statistically uncorrelated due to the δ(ds+1) functions, where
ds is the dimension of space. We restrict ourselves to spatially
correlated noise in this paper (see Refs. [17,21] for examples of
temporally correlated noise). The noise amplitudes Au,Av > 0
and noise exponents yu,yv are free parameters of the model.
The amplitude gives the overall strength of the fluctuations
while the exponent gives the strength of correlations as a
function of wave number. The model includes Gaussian white
noise as a special case (yu,yv = 0, equal spectral power in
all frequencies), red noise (yu,yv > 0, more spectral power at
low frequencies or long distances), and blue noise (yu,yv < 0,
more spectral power at high frequencies or short distances).
The choice of power-law noise can be justified in two ways.
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First, power laws are found in many natural and manmade
systems, and many plausible mechanisms may produce them
[31]. They allow for stronger fluctuations and possibly more
complex, scale-dependent patterns. Second, power laws can be
used as a basis to approximate more complex noise functions
using Taylor series. In Sec. III we show how noise enters
field-theory computations through loop diagrams and how it
affects the parameters of the model.

III. UV RENORMALIZATION OF THE
STOCHASTIC CARD MODEL

A. Renormalized equations and counterterms

To start our renormalization program, we write down the
bare stochastic CARD equations in Fourier space:

(Dv0|k|2 − iω + rv0)V0

− λ0

∫
dds+1p1

∫
dds+1p2 U0V

2
0 − ηv0 = 0, (14)

(Du0|k|2 − iω + ru0)U0

+ λ0

∫
dds+1p1

∫
dds+1p2 U0V

2
0 − ηu0 − F = 0, (15)

where the zero subscript indicates bare parameters, F =
f (2π )ds+1δ(ω)δ(k) is the Fourier transform of the feed rate,
and we use the shortcut notation

∫
dds+1p = ∫

dds p

(2π)ds

∫
dω

(2π) .
The external feed rate f is considered a classical source and
does not need to be renormalized. Loop corrections to the
other parameters are computed using the Feynman rules found
in Appendix C. In this paper we limit ourselves to one-loop
corrections. At one-loop order there is no correction to the
noises, so we drop the zero subscript on η’s.

We use dimensional continuation as our regulator. See Ap-
pendix A for a discussion of the subtleties when regularizing
in the presence of noise. Defining the renormalized chemical
fields V0 = ZvV and U0 = ZuU , we rewrite the evolution
equations in d dimensions as

[(Dv + A)|k|2 − i(1 + B)ω + (rv + C)]V

− (λ(d) + D)
∫

dd+1p1

∫
dd+1p2 UV 2 − ηv = 0, (16)

[(Du + E)|k|2 − i(1 + F )ω + (ru + G)]U

+ (λ(d) + H )
∫

dd+1p1

∫
dd+1p2 UV 2 − ηu − F = 0,

(17)

where λ(d) is the coupling constant in d dimensions, and

A = ZvDv0 − Dv, E = ZuDu0 − Du,

B = Zv − 1, F = Zu − 1,

C = Zvrv0 − rv, G = Zuru0 − ru,

D = ZuZ
2
vλ

(d)
0 − λ(d), H = ZuZ

2
vλ

(d)
0 − λ(d).

(18)

Parameters without a zero subscript are the renormalized
parameters and A,B, . . . ,H are counterterms.

At one-loop order we have A = B = C = E = F = 0,
implying Zv = Zu = 1, Dv0 = Dv , Du0 = Du, and rv0 = rv .
The only nontrivial one-loop corrections are for ru and λ (see
Fig. 1). They are given by (see Appendix D for details)

	ru
= −λ(d)A(d)

v

rv

(
rv

Dv

) d−yv
2 Kd

2

π

sin
(
π

(d−yv )
2

) , (19)

	λ(0) = 4λ2
(d)A

(d)
v

Dv(Du + Dv)

Kd

2

π

sin(π (d−yv )
2 )

×

⎡
⎢⎢⎣

(
rv+ru

Dv+Du

)−1+ d−yv
2 −

(
rv

Dv

)−1+ d−yv
2

(
rv+ru

Dv+Du

)
−

(
rv

Dv

)
⎤
⎥⎥⎦, (20)

where we use the shortcut notation Kd = 2/(4π )
d
2 	( d

2 ). Note
that we take all external momenta to be zero (hydrodynamic
limit) in the above one-loop computations. This is sufficient
for β function computations of marginal operator couplings,
since external momenta corrections are confined to logarithmic
finite terms in this case.

The sine functions in Eqs. (19) and (20) produce poles at
d − yv = 2m with m ∈ Z. To extract the poles, we define dm =
yv + 2m and expand around d = dm − ε. At leading order in
ε we obtain

	ru
= −λ(dm)A(dm)

v

rv

(
rv

Dv

)m

(−1)m+1Kd

1

ε
, (21)

	λ(0) = 4λ(d) λ(dm)A(dm)
v

Dv(Du + Dv)
(−1)m+1Kd

1

ε

×

⎡
⎢⎣

(
rv+ru

Dv+Du

)−1+m

−
(

rv

Dv

)−1+m

(
rv+ru

Dv+Du

)
−

(
rv

Dv

)
⎤
⎥⎦. (22)

We use the MS prescription to define counterterms, implying
D = H = 	λ(0) and G = 	ru

(0). The corresponding Z factors
are given by

ru0 =
(

1 + 	ru
(0)

ru

)
ru ≡ Zru

ru, (23)

λ
(d)
0 =

(
1 + 	λ(0)

λ(d)

)
λ(d) ≡ Zλλ

(d). (24)

B. β-function computations

As explained in Appendix A, the noise exponents yb dictate
the divergence structure of loop integrals. Different parameters
have different critical dimensions dc at which they start to
require renormalization. For instance, we have [cf. Eqs. (D2)
and (D4)]:

	a ∼ Av

∫
d|p| |p|ds−da

c −1, (25)

with dru
c = yv + 2 and dλ

c = yv + 4. We can identify three
regimes (see Fig. 2). For yv < ds < dru

c (regime 1), both
one-loop corrections are finite and no renormalization is
required. For dru

c � ds < dλ
c (regime 2), only ru diverges and

requires renormalization. For dλ
c � ds < yv + 6 (regime 3),

both ru and λ have to be renormalized. The case ds � yv

corresponds to noise-induced IR divergences and we leave
them for future work. For ds � yv + 6, new UV-divergent
operators not present at tree level are generated. An example

042114-4



SMALL-SCALE PROPERTIES OF A STOCHASTIC CUBIC- . . . PHYSICAL REVIEW E 92, 042114 (2015)

dc
λyv y +6vdc

ds

Case 1 Case 2

r u

Regime 1 Regime 2 Regime 3

FIG. 2. Schematic representation of the three possible regimes
for β function computations. The shaded half circles represent the
range of validity of the different ε expansions we use.

is shown in Fig. 3. A full discussion of those noise-induced
higher-order operators goes beyond the aim and scope of the
present paper. It is shown in Ref. [32] that those higher-order
operators are nonrenormalizable and are suppressed at low
energies. We leave them out of the present discussion and
consider them in future work.

We use the general one-loop results [Eqs. (21) and (22)] to
compute the β functions in each regime. We do an ε expansion
around the critical dimensions using d = da

c − ε. The sign of ε

tells on which side of the critical dimension we are expanding.
The magnitude of ε tells how far from the critical dimension
the system is. Note that, contrary to particle physics, we do
not need to take the ε → 0 limit at the end of the computation.
This is because the noise exponent yv is an external parameter
and can take any value, even fractional ones. Said differently,
power-law noise enables control over the effective dimension
of a system, and consequently over its divergence structure.

1. Regime 1

In this regime both factors Zru
and Zλ are one, thus the

scaling of both β functions βru
and βλ is trivial.

2. Regime 2

In this regime only 	ru
diverges, thus the scaling of βλ is

trivial. There are two ways to compute βru
in this regime: either

expand around d = dru
c + |ε| (case 1) or around d = dλ

c − |ε|
(case 2) (see Fig. 2). We study both cases separately.

The Z factors for case 1 are obtained from Eqs. (21)–(24)
with m = 1,

Zru
= 1 + g(d)L−|ε| Kd

|ε| , (26)

Zλ = 1, (27)

where L is an arbitrary length scale, and

g(d) ≡ λ(d)A(d)
v

ruDv

= λ(dru
c )A

(dru
c )

v

ruDv

L|ε| ≡ g(dru
c )L|ε| (28)

UV 4 ∼

FIG. 3. Example of one-loop higher-order operator. This diagram
is UV divergent for ds � yv + 6 and requires a new counterterm not
present at tree level.

is an effective coupling with vanishing engineering dimension
when ε → 0. The relation between the bare and renormalized
effective coupling is

g
(d)
0 = λ

(d)
0 A(d)

v

ru0Dv

= Zλ

Zru

λ(d)A(d)
v

ruDv

= Zλ

Zru

g(d). (29)

Differentiating on both sides with respect to the arbitrary length
scale L and simplifying, we obtain the β function for the
effective coupling:

βg ≡ L
dg(dru

c )

dL
= g(dru

c )
(−|ε| − g(dru

c )Kd

) + O(g3). (30)

The above result is valid for g(dru
c ) < 1. To interpret physically,

we revert back to the original parameters with a change of
variables. This gives

βru
≡ L

dru

dL
= |ε|ru + λ(dru

c )Av

Dv

Kd + O(λ2). (31)

The β function for case 2 is obtained in a similar way, using
Eqs. (21) and (23) with m = 2. The result is

βg = g(dλ
c )[|ε| + g(dλ

c )Kd

] + O(g3), (32)

or, in terms of the original parameters,

βru
= −

(
|ε|ru + λAvrv

D2
v

Kd

)
+ O(λ2), (33)

where the effective coupling is given by

g(d) = λ(d)A(d)
v rv

ruD2
v

= λ(dλ
c )A

(dλ
c )

v rv

ruD2
v

L−|ε|. (34)

3. Regime 3

In this regime both 	ru
and 	λ diverge, resulting in two

nontrivial β functions. To compute them, we can either expand
around d = dλ

c + |ε| or d = (yv + 6) − |ε|. For the sake of
brevity, we only expand around the former.

The Z factors are obtained from Eqs. (21)–(24) with m = 2:

Zru
= 1 − g(d)L−|ε| Kd

|ε| , (35)

Zλ = 1 + 4h(d)L−|ε| Kd

|ε| , (36)

where

g(d) = λ(d)A(d)
v rv

ruD2
v

= λ(dλ
c )A

(dλ
c )

v rv

ruD2
v

L|ε|, (37)

h(d) = λ(d)A(d)
v

Dv(Du + Dv)
= λ(dλ

c )A
(dλ

c )
v

Dv(Du + Dv)
L|ε|. (38)

Both effective couplings are dimensionless when ε → 0. The
relations between bare and renormalized effective couplings
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are

g
(d)
0 = λ

(d)
0 A(d)

v rv

ru0D2
v

= Zλ

Zru

g(d), (39)

h
(d)
0 = λ

(d)
0 A(d)

v

Dv(Du + Dv)
= Zλh

(d). (40)

Differentiating on both sides with respect to the arbitrary length
scale L and simplifying, we get

βg = g(dλ
c )[−|ε| + g(dλ

c )Kd + 4h(dλ
c )Kd ] + O(g3,h3), (41)

βh = h(dλ
c )[ − |ε| + 4h(dλ

c )Kd

] + O(g3,h3). (42)

Reverting back to the original parameters, we get

βru
= −λAvrv

D2
v

Kd + O(λ3), (43)

βλ = −|ε|λ + 4Av

Dv(Du + Dv)
λ2Kd + O(λ3). (44)

We analyze and discuss the obtained β functions in Sec. IV.

IV. RESULTS AND DISCUSSION

In this section, we study the behavior of the β functions
obtained for regimes 2 and 3 (there is no running of parameters
in regime 1). The corresponding running solutions are also
obtained and interpreted. Note that the plots in this section are
representative examples. We use the same parameters for all
plots in order to make comparisons easier. Since the CARD
model has no direct analog in real chemistry, an exhaustive
study of the parameter space is not necessary. Our goal is to
point out interesting qualitative behaviors arising from power-
law fluctuations that may be present in similar real chemical
systems.

A. Regime 2, case 1

The β function Eq. (31) has no fixed point and its derivative
is dβru

/dru = |ε| > 0. It is thus always positive and increases
monotonically. A plot of the β function for this case is shown
in Fig. 4.

The corresponding solution for the running decay rate is
obtained by integrating Eq. (31). The result is

ru(L) =
[
ru(L∗) + λAvKd

|ε|Dv

](
L

L∗

)|ε|
− λAvKd

|ε|Dv

, (45)

where L∗ is some scale at which ru(L∗) is known and can be
measured. A plot of ru(L) is shown in Fig. 5.

Note that βg [cf. Eq. (30)] is obtained as an expansion in
the effective coupling g and is thus only valid for g < 1. Using
Eq. (29), it translates into a perturbative regime for Eqs. (31)
and (45) given by ru > λAv/Dv .

From Eq. (45) and Fig. 5, we infer that the decay rate ru

decreases with scale when the dimension of the system is
just above dru

c . The decay rate becomes negative for small
values of L, but this behavior always lies in the region where
perturbation theory cannot be trusted.

In the living system interpretation, it means that the
presence of environmental fluctuations in the food+organism

FIG. 4. (Color online) Renormalization group flow diagram for
case 1 of regime 2. We used |ε| = 0.2, K3 = 0.05, Av = 0.5, Dv =
0.3, λ = 0.05 for the plotting. There is no fixed point anywhere.
Shaded region indicates breakdown of perturbation theory (i.e., g > 1
for ru < 0.08). Arrow indicates direction of decreasing L.

system decreases the rate at which food is removed from the
system at small scales. Since the growth of an organism (i.e.,
∂V/∂t) is proportional to the amount of food present (i.e.,
λUV 2), the growth of structures at smaller scales is increased
by fluctuations.

B. Regime 2, case 2

The β function Eq. (33) has no fixed point and its
derivative is dβru

/dru = −|ε| < 0. It is thus always negative
and decreases monotonically. The β function is plotted in

FIG. 5. (Color online) Plot of the running decay rate for case 1
of regime 2. We used |ε| = 0.2, Kd = 0.05, Av = 0.5, Dv = 0.3,
λ = 0.05, ru(L∗) = 0.2 for the plotting. Shaded region indicates
breakdown of perturbation theory (i.e., g > 1 for ru < 0.08).
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FIG. 6. (Color online) Renormalization group flow diagram for
case 2 of regime 2. We used |ε| = 0.2, Kd = 0.05, Av = 0.5,
Dv = 0.3, rv = 0.4, λ = 0.05 for the plotting. There is no fixed point
anywhere. Shaded region indicates breakdown of perturbation theory
(i.e., g > 1 for ru < 0.11). Arrow indicates direction of decreasing L.

Fig. 6. The corresponding running decay rate is

ru(L) =
[
ru(L∗) + λAvrvKd

|ε|D2
v

](
L

L∗

)−|ε|
− λAvrvKd

|ε|D2
v

. (46)

The perturbative regime for Eqs. (33) and (46) lies in the region
where ru > λAvrv/D

2
v .

From Eq. (46) and Fig. 7, we infer that the decay rate
ru increases with scale when the dimension of the system
is just below dλ

c . The decay rate diverges in a power law
fashion at L = 0. This behavior is the opposite of the power
law decrease of the decay rate just above dru

c . In the living
system interpretation, this implies that the growth of structures
is dampened at smaller scales.

FIG. 7. (Color online) Plot of the running decay rate for case 2 of
regime 2. We used |ε| = 0.2, Kd = 0.05, Av = 0.5, Dv = 0.3, rv =
0.4, λ = 0.05, ru(L∗) = 0.2 for the plotting. Shaded region indicates
breakdown of perturbation theory (i.e., g > 1 for ru < 0.11).

This drastic change of behavior in the decay rate ru depends
on the noise exponent yv . We know that ru gets renormalized
(regime 2) when the dimension of space ds lies between yv +
2 < ds < yv + 4 (cf. Sec. III B). Thus, by varying yv , it is
possible to go from one end of the regime to the other. This
seems to be a general feature for any parameters that can
ultimately be traced to the (−1)m+1 factor appearing in the
one-loop Eqs. (21) and (22). In particular, a drastic change in
the properties of a coupling (by varying the noise) could lead
to a change in chemical pathway. This is very similar to the
situation in Ref. [13], where the authors induce a change in
chemical pathway by switching from stirring to shaking in a
noise-controlled experiment.

C. Regime 3

The β function Eqs. (43) and (44) have a line of nonisolated
unstable fixed points at λ = 0. We also note that βλ = 0 while
βru

= 0 at the nontrivial value λ = |ε|Dv(Du + Dv)/4AvKd .
The renormalization group flow for this regime is shown in
Fig. 8. The solutions for the decay rate and coupling are

ru(L) = ru(L∗) + rv(Du + Dv)

4Dv

× ln

{
1 + 4Avλ(L∗)

|ε|Dv(Du + Dv)

[(
L

L∗

)−|ε|
− 1

]}
,

(47)

λ(L) = |ε|Dv(Du + Dv)

4AvKd

1

1 − [
1 − |ε|Dv(Du+Dv )

4AvKdλ(L∗)

](
L
L∗

)|ε| ,

(48)

where ru(L∗) and λ(L∗) are integration constants fixed by
renormalization conditions. Plots of the two functions are

FIG. 8. (Color online) Renormalization group flow diagram for
regime 3. We used |ε| = 0.2, Kd = 0.05, Av = 0.5, Dv = 0.3,
Du = 0.2, rv = 0.4 for the plotting. There is a line of nonisolated
unstable fixed points at λ = 0. Shaded regions indicate breakdown of
perturbation theory (i.e., g > 1 for ru < 2.2λ and h > 1 for λ > 0.3).
Arrows indicate direction of decreasing L.
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FIG. 9. (Color online) Plot of the running decay rate for regime
3. We used |ε| = 0.2, Kd = 0.05, Av = 0.5, Dv = 0.3, Du = 0.2,
rv = 0.4, ru(L∗) = 0.2, λ(L∗) = 0.1 for the plotting. Shaded region
indicates breakdown of perturbation theory (i.e., g > 1 for ru <

2.2λ).

shown in Figs. 9–11. The perturbative regime for Eqs. (43),
(44) and (47), (48) is given by ru > λAvrv/D

2
v and λ <

Dv(Du + Dv)/Av , respectively.
The behavior of the decay rate for regime 3 is similar to the

one for regime 2 (case 2), namely the growth of structures at
smaller scales is dampened by fluctuations. There is also the
possibility that ru could be negative or develop an imaginary
part due to the logarithmic dependence on L, but it can be
shown that those behaviors lie outside of the domain of validity
of perturbation theory.

The coupling has two different types of behavior, depending
on the parameters. For |ε|Dv(Du + Dv)/4AvKdλ(L∗) > 1,
the coupling increases at smaller scales and for
|ε|Dv(Du + Dv)/4AvKdλ(L∗) < 1, the coupling decreases at
smaller scales (compare Figs. 10 and 11). In the exceptional

FIG. 10. (Color online) Plot of the running coupling for regime
3. We used |ε| = 0.2, Kd = 0.05, Av = 0.5, Dv = 0.3, Du = 0.2,
λ(L∗) = 0.1 for the plotting. Shaded region indicates breakdown of
perturbation theory (i.e., h > 1 for λ > 0.3).

FIG. 11. (Color online) Plot of the running coupling for regime
3. We used |ε| = 0.01, Kd = 0.05, Av = 0.5, Dv = 0.3, Du = 0.2,
λ(L∗) = 0.1 for the plotting. Shaded region indicates breakdown of
perturbation theory (i.e., h > 1 for λ > 0.3).

case where |ε|Dv(Du + Dv)/4AvKdλ(L∗) = 1, the coupling
has no scale dependence at all. In all cases, it has a finite
value at L = 0 given by |ε|Dv(Du + Dv)/4AvKd , which
always lies in the perturbative regime. The model is thus not
trivial in the UV. We note also that the coupling diverges at
L/L∗ = |1 − |ε|Dv(Du + Dv)/4AvKdλ(L∗)|−1/|ε|, but that
this divergence always lies in the region where perturbation
theory is not valid.

From the above analysis, we see that noise can have an
important influence on the dynamics of a chemical system
at small scales. For instance, for the parameter values
specified in Figs. 10 and 11 we have |ε|Dv(Du + Dv)/
4AvKdλ(L∗) = 15|ε|. This particular combination of
parameters is equal to one when |ε| = 0.067. For |ε| greater
(less) than 0.067, the coupling increases (decreases) at smaller
scales (compare Figs. 10 and 11). Thus, varying the noise
exponent directly affects the strength of a chemical reaction
and might lead to a different chemical pathway. This is again
similar to the situation in Ref. [13].

In the living system interpretation of the CARD model, the
presence of fluctuations in the environment has two effects.
On the one hand, it increases the rate at which food is removed
from the system, leading to a diminished growth of structures at
smaller scales. On the other hand, this effect is either partially
compensated or amplified by the change in the coupling λ

at smaller scales. For fixed parameter values, the change in
coupling is dictated by the noise exponent.

From the above considerations, we see how correlations
in environmental noise can directly affect the behavior of the
CARD model. For example, a system in two spatial dimensions
subject to gaussian white noise (corresponding to ds − yb = 2,
regime 2, case 1) has only one running parameter ru, while the
same system subjected to spatially correlated noise with yb =
−2 (corresponding to ds − yb = 4, regime 3) would exhibit
two running parameters ru and λ. Those two very different
qualitative behaviors are directly related to the value of the
noise exponent yb.
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V. CONCLUSION

In this paper, we study the effect of power law noise on
the small scale properties of a cubic autocatalytic reaction-
diffusion system (used as a proxy for a very simplified living
system). We show explicitly how noise influences the growth
of structures at smaller scales by changing the value of the
decay rate and coupling.

The change in parameters depends crucially on the di-
vergence structure of the equations, itself dictated by the
noise exponent. This direct link between external noise and
structures at small scales leads to the idea of using noise as
a probe to study chemical reactions, in analogy to the way
beam energy is used to probe properties of matter in nuclear
or particle physics.

Future work along those lines includes working beyond
the approximation of large U compared to the feeding rate
[cf. Eq. (9)] in order to make contact with more realistic
experimental setups. The extension to temporally correlated
noise (in addition to the spatially correlated noise case
considered in this paper) is also an important step to make
contact with experiments. To properly implement the fine-
graining program advocated in the Introduction, a systematic
study of higher-order operators is also necessary. This is work
in progress.
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APPENDIX A: REGULARIZATION IN THE
PRESENCE OF NOISE

Before computing the β functions proper, we discuss some
subtleties that arise when regularizing one-loop diagrams
in the presence of noise. The most common regulator in
high-energy physics is dimensional regularization, because it
is very convenient and, more importantly, it preserves gauge
symmetry. There is no gauge symmetry in the CARD model,
so using dimensional regularization is not mandatory. We still
use it for all our computations in this paper because of its
convenience, but its results must be interpreted carefully. To
help interpreting the results, we use both dimensional and
momentum regularization on a generic one-loop integral and
show that they give the same results (with some caveats).

1. Dimensional regularization

The type of integrals relevant for one-loop computations
are of the form

I (n,ds,y) =
∫

dds p

(2π )ds
|p|−y 1

(|p|2 + �2)n
,

=
∫

dds �

(2π )ds

∫ ∞

0
d|p| |p|ds−1−y

(|p|2 + �2)n
, (A1)

where ds is the dimension of space and y is the noise exponent
parameter. The momentum integral Eq. (A1) may diverge

depending on the values of n, ds , and y. In dimensional
regularization, the dimension of space acts as the regulator
and becomes a variable. We denote this analytically continued
dimension d to distinguish it from the (fixed) dimension of
space ds . Using the usual change of variable t = �2/(|p|2 +
�2) and after some algebra the integral becomes

I (n,d,y) =
(

2

(4π )
d
2

1

	( d
2 )

)
(�2)−n+ d

2 − y

2

2

×
[

	
( − d

2 + y

2 + n
)
	

(
d
2 − y

2

)
	(n)

]
. (A2)

The term in parenthesis comes from geometrical factors and
the rest comes from the momentum integral. In the white noise
limit y = 0, the 	 function coming from geometrical factors
cancels one coming from the momentum integral, and we are
left with the usual result found in textbooks (e.g., Ref. [33]).
None of the complications discussed below arise in that case.

In the case y = 0, we use the Euler’s reflection formula
	(p)	(1 − p) = π/ sin πp to simplify the result. Assuming
n � 1, we obtain

I (n,d,y) =
(

2

(4π )
d
2

1

	
(

d
2

)
)

(�2)−n+ d
2 − y

2

2

1

	(n)

× π

sin π
(

d
2 − y

2

) n−1∏
i=1

(
−d

2
+ y

2
+ n − i

)
. (A3)

Equation (A3) has poles at d − y = 2m, where m ∈ Z. To
study the implications of this, let d → ds + ε. The condition
becomes ds − y = 2m − ε. Since the noise exponent is a free
external parameter dictated by experiment, there is an infinite
number of noise exponent values for which this condition is
satisfied when ε → 0 (i.e., for each value of m, there is a
corresponding value of y). Turning the argument around, it is
also possible to “hit” different poles by externally varying the
noise exponent. This is an important difference with ordinary
quantum field theory.

Another important difference is that the integer m can
be either positive or negative. The case m > 0 corresponds
to the usual UV divergences encountered in particle physics
and they are the focus of the present paper. The case m � 0
requires more care. From Eq. (A7), we see that the integrand
is proportional to d|p| |p|2m−1. For m = −|m|, the integral
measure is (over) compensated by the noise and the integral
develops an IR divergence. This is true even when � = 0.
Those IR divergences occur for large values of the noise
exponent (y � ds), indicating strong noise correlations at
low wave numbers. Thus, strong noise correlations at large
distances are the origin of the IR divergences.

A similar situation arises in thermal field theory, where the
temperature acts as an environmental noise. For definiteness,
let us take a massless λφ4 theory at finite temperature. The
one-loop tadpole self-energy is given by (e.g., Ref. [34])

� = 12λT
∑

n

∫
d3p

(2π )3

1

ω2
n + |p|2 ,

= 12λ

∫
d3p

(2π )3

1

|p|nB(|p|), (A4)
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where T is the temperature, nB is the Bose-Einstein distri-
bution, and the sum is over Matsubara frequencies ωn. For
|p|/T � 1, the Bose-Einstein distribution can be approxi-
mated as nB(|p|) ∼ T/|p|. Thus, at low energies compared to
the temperature, the thermal medium makes the IR behavior
of the integrand stronger. Note that for low energies the
Bose-Einstein distribution is like a power-law noise with a
negative exponent, similar to our m � 0 case. Thus, it is
plausible to think of the noise as producing IR divergences. In
this paper we do not consider those IR divergences and leave
them for future work.

Note that there is no mixing between IR and UV divergences
for the stochastic CARD model. For m > 0, the presence of
decay rates (ru, rv) prevents the appearance of IR divergences.
For m � 0, the momentum powers in the measure are tamed
by the noise and cannot produce any UV divergences. This is
in contrast with the renormalization group analysis of the KPZ
equation found in Ref. [35].

2. Momentum regularization

Let us regularize the integral Eq. (A7) using both IR and
UV momentum cutoffs:

I (n,ds,y) =
∫

dds �

(2π )ds

∫ �

μ

d|p| |p|ds−1−y

(|p|2 + �2)n
. (A5)

The result of the integral is

I (n,ds,y) =
(

2

(4π )
ds
2 	

(
ds

2

)
)(

1

ds − y − 2n

)[
�ds−y−2n

2F1

(
n, − ds

2
+ y

2
+ n, − ds

2
+ y

2
+ n + 1, − �2

�2

)

−μds−y−2n
2F1

(
n, − ds

2
+ y

2
+ n, − ds

2
+ y

2
+ n + 1, − �2

μ2

)]
, (A6)

where 2F1(a,b,c; z) is the hypergeometric function. The first (second) term corresponds to the UV (IR) divergent part of the
integral. We rewrite Eq. (A6) using the series solution representation of the hypergeometric function (see Appendix B):

I (n,ds,y) = 1

2

(
2

(4π )
ds
2 	

(
ds

2

)
)[

−�ds−y−2n

∞∑
k=0

1

k!

	(n + k)

	(n)

1(− ds

2 + y

2 + n + k
)(

−�2

�2

)k

−μds−y(�2)−n

∞∑
k=0

1

k!

	(n + k)

	(n)

1(
ds

2 − y

2 + k
)(

−�2

μ2

)−k

+
n−1∏
k

(
−ds

2
+ y

2
+ n − k

)
1

	(n)

π

sin π
(

ds

2 − y

2

) (�2)
ds
2 − y

2 −n

]

≡ I1 + I2 + I3. (A7)

Let us study how divergences arise in Eq. (A7). The value of ds − y determines the type of divergence encountered. Start with
ds − y /∈ Z. In this case, I3 is finite. For ds − y > 0, I2 is zero in the μ → 0 limit. When the condition kmax < ds

2 − y

2 − n is
satisfied in I1, all terms with k � kmax have positive powers of �. All other terms (with negative powers of �) vanish in the
� → ∞ limit. Thus, we are left with a finite number of fractional power UV divergences. For ds − y < 0, I1 is finite in the
� → ∞ limit. When the condition kmax < | ds

2 − y

2 | is satisfied in I2, all terms with k � kmax have negative powers of μ. All
other terms (with positive powers of μ) vanish in the μ → 0 limit. Thus, we are left with a finite number of fractional power IR
divergences.

More care is required for the case ds − y ∈ Z, and one needs to use the limiting procedure ds − y = 2m − ε with m being an
integer [cf. Eq. (B3)] to obtain sensible results. In this case, I3 contains 1/ε poles. Such poles also appear in I1 or I2, depending
on the value of ds − y. Since the integral Eq. (A5) is regularized and thus finite, all 1/ε poles should vanish. To show that it is
indeed the case, let us do an example with m = 0:

I (n,m = 0) ∼ O(ε0) − μ−ε(�2)−n 1(− ε
2

) +
n−1∏
k=1

(
n − k + ε

2

) 1

	(n)

π

sin π
(− ε

2

) (�2)−n− ε
2 , (A8)

= 2

ε
(�2)−n(1 − ε ln μ) − 2

ε
(�2)−n + O(ε0). (A9)

Other values of m are done in a similar way. Thus, for each
value of m, there is a logarithmic divergence in addition to
nonfractional power divergences.

A comparison between Eqs. (A3) and (A7) indicates the
following. First note that I3 is identical to Eq. (A3) obtained
with dimensional regularization. Thus, for ds − y = 2m ∈ Z,

there is a one-to-one correspondence between 1/ε poles in
dimensional regularization and logarithmic divergences in mo-
mentum regularization. All other fractional (for ds − y /∈ Z)
and nonfractional (ds − y = 2m ∈ Z) power divergences in
momentum regularization are set to zero in dimensional
regularization. This is the expected behavior of dimensional
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regularization; it is thus a perfectly valid and well-defined way
of regularizing integrals in the presence of noise, except for
potential fine tuning issues.

In the standard model of particle physics, regularizing
power divergences to zero using dimensional regularization
(for computational purposes) does not make the problem
of fine tuning go away. For instance, quadratic divergences
appear when computing loop corrections to the Higgs boson
mass mH . This implies that mH is very sensitive to the scale
� at which the standard model needs to be replaced by a
more fundamental theory (e.g., � ∼ 1016 GeV in the case
of grand unified theories). Since there is a large hierarchy
between the electroweak scale and the scale of new physics,
it requires a large fine tuning of the bare mass to keep
mH small (e.g., Ref. [33]). This type of fine tuning is in
general considered to be very “unnatural.” In our case, the
fine tuning is nowhere as severe as in the Higgs boson case.
In complex chemical reactions, there is typically no more than
1–3 orders of magnitude difference in time scales between
one set of reactions and the next faster set of reactions
(see, for example, the list of reaction rates of the oscillating
Belousov-Zhabotinsky reaction [36]). This small hierarchy
does not require any important fine tuning and thus does not
lead to any “unnaturalness.”

APPENDIX B: HYPERGEOMETRIC FUNCTION

The hypergeometric function 2F1(a,b,c; z) is convergent
within the radius |z| < 1, but it can be analytically continued
to other values of z. The (almost) complete definition of
2F1(a,b,c; z) is [37]

2F1(a,b,c; z) =
∞∑

k=0

(a)k(b)k
k!(c)k

zk, (B1)

for |z| < 1 and generic values for a, b, c, and

2F1(a,b,c; z)

= 	(b − a)	(c)

	(b)	(c − a)
(−z)−a

∞∑
k=0

(a)k(a − c + 1)k
k!(a − b + 1)k

z−k

+ 	(a − b)	(c)

	(a)	(c − b)
(−z)−b

∞∑
k=0

(b)k(b − c + 1)k
k!(−a + b + 1)k

z−k, (B2)

for |z| > 1 and a − b /∈ Z. When a − b ∈ Z, we use the
limiting procedure:

2F1(a,b,c; z) = lim
ε→0

2F1(a,b + ε,c; z). (B3)

In the above,

(a)k =
{

1 (k = 0)
a(a + 1) . . . (a + k − 1) (k > 0), (B4)

is the Pochhammer symbol.

APPENDIX C: FEYNMAN RULES

The following Feynman rules are discussed in Ref. [17]
(see also Ref. [38] for a more general discussion). They
are obtained by iterating the Fourier-transformed stochastic

Gv0 =

Gu0 =

Nv0 =

Nu0 =

Γv0 =

Γu0 =

FIG. 12. Feynman rules for the stochastic CARD model corre-
sponding to Eqs. (14) and (15).

CARD equations and identifying each component with a
picture. Free response functions are given by (see Fig. 12)

Gv0(k) = 1

Dv|k|2 − iω + rv

,

Gu0(k) = 1

Du|k|2 − iω + ru

. (C1)

They correspond to directed lines, with arrows following the
sign of the frequency. Tree-level interactions are given by (see
Fig. 12)

	v0 = −	u0 = λ. (C2)

Without noise, the above response functions and interactions
can only produce (arbitrary complicated) tree diagrams (classi-
cal theory). Fluctuations are necessary to obtain loop diagrams
in field theory. The role of fluctuations is played by noise in
the stochastic CARD model. Noise averaging [cf. Eqs. (11)
and (12)],

Nv0(k) = 2Av|k|−yv , (C3)

Nu0(k) = 2Au|k|−yu , (C4)

enables the joining of two lines with opposite momenta to
form loops (see Fig. 12). Each closed loop corresponds to
one noise averaging and thus to one factor of noise amplitude
A. In analogy to quantum field theory, the noise amplitude
in stochastic partial differential equations plays the role of
Planck’s constant [39]. A major difference with quantum field
theory is that A is an external, tunable parameter, whereas h is
a constant of nature.

The components shown in Fig. 12, supplemented with
conservation of momentum at each vertex and integration over
undetermined momenta, form the basis of perturbation theory.
With the appropriate combinatoric factor, they can be used to
write down any Feynman diagram for the stochastic CARD
model.

042114-11
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APPENDIX D: ONE-LOOP CORRECTIONS TO ν AND λ

From Fig. 1 and the Feynman rules in Appendix C, one can
write the one-loop correction to the decay rate ru:

	ru
= −λ

∫
dds p

(2π )ds

∫
dω

(2π )
Gv0(p)Gv0(−p) 2Av|p|−yv .

(D1)
Using contour integration to do the frequency integral, we get

	ru
= −λAv

∫
dds p

(2π )ds
|p|−yv

(
1

Dv|p|2 + rv

)
. (D2)

The above integral is potentially divergent and is regulated
using dimensional regularization. Setting ds → d and using
Eq. (A3) to do the momentum integration, we directly obtain
Eq. (19).

The one-loop correction to the coupling λ is done in a
similar way. The expression corresponding to the second
diagram in Fig. 1 is

	λ(0) = −4λ2
∫

dds p

(2π )ds

∫
dω

(2π )
Gv0(p)Gv0(−p)

×Gu0(−p) 2Av|p|−yv , (D3)

where we set external momenta to zero [see the discussion
below Eq. (19)]. Using contour integration to do the frequency
integral we get

	λ(0) = −4λ2Av

∫
dds p

(2π )ds
|p|−yv

(
1

Dv|p|2 + rv

)

×
(

1

(Du + Dv)|p|2 + ru + rv

)
. (D4)

We combine the two response functions by introducing a
Feynman parameter:

	λ(0) = −4λ2Av

Dv(Du + Dv)

∫ 1

0
dx

∫
dds p

(2π )ds

|p|−yv[|p|2 + �2(x)
]2 ,

(D5)
where

�2(x) = x

(
rv + ru

Dv + Du

)
+ (1 − x)

(
rv

Dv

)
. (D6)

Equation (20) is obtained by setting ds → d and using
Eq. (A3).
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