
PHYSICAL REVIEW E 92, 042110 (2015)

Active-to-absorbing-state phase transition in an evolving population with mutation

Niladri Sarkar*

Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, India
(Received 23 March 2015; revised manuscript received 18 August 2015; published 5 October 2015)

We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a
species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the
AAPT that shows the significance of mutation and highlights the connection of this model with the well-known
directed percolation universality class. Our model should be a useful starting point to study how mutation may
affect extinction or survival of a species.
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I. INTRODUCTION

Active to absorbing state phase transition (AAPT) forms
a paradigmatic example of nonequilibrium critical phenom-
ena [1,2]. In models exhibiting AAPT [3–5], a species can
exist in both the active and absorbing states, such that once
it is in the latter state, the transition probability to the
active state vanishes. Simplest models that exhibit AAPT
often belong to the well-known directed percolation (DP)
universality class. Some popular examples of systems showing
DP universal scaling behavior [6,7] are the epidemic process
with recovery or the Gribov process [8] and the predator
prey cellular automation models [9–12]. In predator prey
models for example [13,14], the growth (birth) and decay
(death) of particles or species competes and thus there may
be a finite density of the species in the steady state (“active
state”) or extinction of the species (“inactive or absorbing
state”). Under the DP hypothesis [15], a system with a single
absorbing state undergoing AAPT, shows critical behavior
belonging to the DP universality class in the absence of
any special symmetry, long-range interactions, conservation
law, or quenched disorder. Else, non-DP-like critical behavior
cannot be ruled out. In some cases, many absorbing states in
an AAPT have also been found; see, e.g., in Refs. [16,17].

Continuum descriptions of AAPT in models displaying DP
universality are based on the Reggeon field theory [18–20],
which is a stochastic multiparticle process used to describe the
local growth of populations near their extinction threshold in an
uniform environment [3,21]. The parameters of the model de-
pends on the embedding environment, which are taken as con-
stants and their fluctuations are ignored. If the fluctuations of
the environment are taken into consideration, then whether the
DP hypothesis and the DP universality class survive remains a
question of general interest. Studies dealing with the effect of
environmental fluctuations on a species undergoing AAPT has
been made in Refs. [22–25]. It is now believed that nontrivial
environmental dynamics and its feedback on the species
undergoing an AAPT substantially alter the critical exponents
at the AAPT leading to new universal behavior different
from the DP universality class. For instance, by considering
the environment to follow its own fluctuating scale invariant
dynamics, Refs. [22,23] generically found non-DP-like critical
scaling at the AAPT, often associated with weak dynamic
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scaling, where the species undergoing AAPT and the
environment have unequal dynamic exponents. Reference [23]
also finds feedback of the species on the environment to
be relevant in determining the ensuing universal behavior.
These are in general modeled by coupling a second auxiliary
dynamical field having its own dynamics with the species that
undergoes an AAPT.

Mutation of microbes and bacterial colonies has been an
active area of research for quite some time now. Mutation in an
evolving and growing population of a species can significantly
alter its long-time state. Mutation in microbial colonies are
important to understanding how the microbial population
differentiates along the growing front in time and gives rise
to well-defined domains of different colonies [26–28]. For
instance, if the mutation rate that sets the rate of creation of the
mutant of the original species is large, but the back mutation is
small, it is conceivable that the original species will eventually
go extinct, leaving only the mutant population as active. On
the other hand, if the mutation rate is small compared to back
mutation, the original species should continue to thrive with a
small population of the mutant floating around in an otherwise
pure species dominated world. Thus, depending upon the
relative magnitudes of the mutation and the back-mutation
rate, the original species may become extinct by undergoing an
AAPT [27,29]. This has important consequences specially in
the formation of cancer and tumour cells in tissues. If mutation
gives rise to deleterious population, a proliferation of the
mutants might result in cancerous growth in a healthy tissue
[30–33]. So to contain the deleterious mutation, one can
theoretically argue that the back-mutation rate into the original
species should be larger than the forward-mutation rate. Since
survival of the original species depends upon the suppressing
mutation or facilitating back mutation, it is conceivable that a
back mutation that is triggered by the presence of the original
species may serve as a simple model of defense mechanism
against proliferation of the mutant population, e.g., mutant
cells in a body. We incorporate this in a simple way in our
model below.

In this article, we propose a two-species nonconserved
reaction-diffusion model that describes the competing pop-
ulation dynamics of species A and and its mutant B, where the
mutant B is allowed to back mutate into the pure species A. We
study the AAPT displayed by it. Our model is distinguished
by the feature that the density of the mutant species B does
not obey any conservation law in the active state of the model,
as a result of its interaction with the species A, unlike the

1539-3755/2015/92(4)/042110(8) 042110-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.042110


NILADRI SARKAR PHYSICAL REVIEW E 92, 042110 (2015)

models in Refs. [22,23]. Our model is well-suited to study
whether or not the lack of conservation laws for the mutant
B dynamics due to its coupling with the pure species A
undergoing AAPT affects the critical scaling of the AAPT.
Apart from that, a more practical motivation of our model
is definitely the production of mutants during the growth of
a bacterial colony [27,34–36]. Despite the simplicity of our
model, we obtain a set of interesting results. For example, we
find one physically stable fixed point with different dynamic
exponents corresponding to the two species, respectively, when
the diffusion coefficient of the species undergoing AAPT
is much greater than the diffusion coefficient of the mutant
species, which in turn follows a conservation law in the absence
of the pure species. This phenomena is commonly referred to
as weak dynamic scaling in phase transition literature. We
find that the fixed point exhibiting weak dynamic scaling
shows DP-like universal behavior, with exactly the same
critical exponents as the DP universality class, which we
argue as purely coincidental and is a consequence of our one
loop dynamic renormalization group (DRG) analysis. Strong
dynamic scaling with same dynamic exponent of the two fields
are expected when the diffusion coefficient of the two species
are of the same order, a feature we have not discussed in this
article. The rest of the paper is organized as follows: In Sec. II
we introduce our model following a brief review of the DP
universality class. In Sec. III, we do a dynamic renormalization
of our model using the DRG procedure. In Sec. IV, we find
out the fixed points and the corresponding critical exponents
in the weak dynamic scaling regime. In Sec. VI we conclude
our study with a summary of our results.

II. THE MODEL AND EQUATIONS OF MOTION

In this section we introduce our model of population
dynamics of species A and its mutant B with densities ρ(x,t)
and φ(x,t), respectively. Due to the mutation of A to B and the
latter’s back mutation to A lead to nonconservation of B in the
active state of A. Before going to the details of our model, we
recall the DP model in brief.

A. Directed percolation model

Consider a population dynamics model in which the growth
of the population is linearly dependent on the local species
density given by φ(x,t), and the death is proportional to the
square of the species density, which describes death due to
overcrowding. The species density undergoes a nonequilib-
rium AAPT, whose long-wavelength, large-time behavior is
described by the DP universality class. The Langevin equation
for such a population dynamics model can be written in terms
of species density as [37]

∂φ

∂t
= D∇2φ + λgφ − λdφ

2 +
√

φζ, (1)

where the first term on the right-hand side is the diffusion term
with D as the diffusion coefficient, λg is the birth rate, and
λd is the rate of death due to overcrowding. The stochastic
function ζ (x,t) is a Gaussian distributed white noise with zero
mean and a variance:

〈ζ (x,t)ζ (0,0)〉 = 2D2δ(x)δ(t). (2)

The multiplicative nature of the effective noise ensures the ex-
istence of an absorbing state (φ = 0). On dimensional ground,
a characteristic length scale ξ ∼ √

D/|λg| and a diffusive
timescale tc ∼ ξ 2/D ∼ 1/|λg| can be derived from Eq. (1),
with both diverging upon approaching the critical point λg =
0. The critical exponents may be defined in the usual way [37],

〈φ(x,t → ∞)〉 ∼ λβ
g , 〈φ(x,t)〉 ∼ t−α (λg = 0),

(3)
ξ ∼ λ−ν

g , tc ∼ ξz
φ/D ∼ λ

−zφν
g ,

with the mean-field scaling exponents given by

β = 1, α = 1, ν = 1/2, and, zφ = 2. (4)

The anomalous dimension η, which characterizes the scaling
of the two-point correlation function, is zero [37] in the
mean-field limit. To find out how the fluctuations affect
the mean-field scaling exponents, a dynamic renormalization
group (DRG) calculational scheme is used to find out the
corrections to the bare correlation and vertex functions in
the model. It should be noted that the Janssen-de Dominicis
action functional, which corresponds to the Langevin Eq. (1),
has an invariance under rapidity symmetry given by φ̂(x,t) ↔
φ(x,−t) [37], where φ̂ is the auxiliary field conjugate to φ [37].
Invariance under rapidity symmetry is a signature of the DP
universality class and all models, whichever falls under the DP
universality class, should be invariant under the rapidity sym-
metry asymptotically. By performing a perturbative expansion
in ε = dc − d, dc = 4 is the upper critical dimension for this
model using the DRG scheme, one obtains [37],

z = 2 − ε/12, η = −ε/12, and
1

ν
= 2 − ε/4. (5)

These universal scaling exponents characterize the DP
universality class. As the DP hypothesis [15] suggest that the
DP universality class is very robust, any one of the conditions
of the DP hypothesis are to be violated in order to find new
scaling behavior. References [22,24,25] have shown that
fluctuating environments with spatially long-ranged noises
can modify the scaling behavior of the DP universality. In
this article, we have introduced a reaction-diffusion model
involving two species and studied how the interdependence
of the two species on their mutual birth and death affects the
scaling properties of the DP universality class.

B. Two species reaction diffusion model

Our two-species model consists of the species A and its
mutant B. Species A reproduces at a given rate; it can also
mutate to species B and also die due to overcrowding at fixed
rates. Naturally, proliferation of the mutant B, if unchecked,
should lead to eventual extinction of A. In order to enlarge
the scope of our model, we allow back mutation from species
B to A, ensuring a competition between the original species
and the mutant. We consider the specific case where back
mutation of B to A is triggered by the presence of A locally.
Thus, species B can back mutate to A at a given rate, provided
species A is available in its neighborhood. Our choice for
the specific form of back mutation, though admittedly over-
simplified, serves several purposes. For instance, since the back
mutation is facilitated by the presence of A, it suggests that the
original species has an ability to suppress effects of (unwanted
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or random) mutations, necessary for its survival as a species. In
addition, it is consistent with an absorbing state transition of A
with the system being filled up with B, which we are interested
to study. Together with the other processes described above it
provides a minimal model to study mutation and back mutation
in population dynamics of an evolving species and their effects
on the AAPT in the model. The two Langevin equations for
the densities ρ and φ are

∂ρ

∂t
= Dρ∇2ρ + (1 − λ1)ρ + λgρφ − λdρ

2 + √
ρη, (6)

∂φ

∂t
= Dφ∇2φ + λ1ρ − λ2ρφ + √

ρξ. (7)

In Eq. (6), the first term on the right-hand side represents
diffusion of species A with a diffusion coefficient Dρ . The
second term with 1 − λ1 > 0 represents growth (reproduction)
of A at rate 1 − λ1. The third term represents the growth
in population of A due to back mutation of B with a rate
λgφ, λg > 0. The next term is a decay term (λd > 0), which
represents the death of ρ due to overcrowding. The stochastic
noise η(x,t) is the Gaussian-distributed white noise with zero
mean and a variance,

〈η(x,t)η(0,0)〉 = 2D2δ(x)δ(t). (8)

The multiplicative nature of the noise in Eq. (6) ensures
the existence of an absorbing state (ρ = 0). The dynamics
of species B, as given by Eq. (7), is a combination of
diffusion with diffusion coefficient Dφ , production of B
through mutation of A to B at rate λ1, and back mutation of B
by A at rate λ2ρφ, λ1,λ2 > 0. Clearly, back mutation of B can
take place only if there are some species A around locally. We
assume for simplicity that the only source of stochasticity in the
dynamics of φ is ρ, and hence, we model it by a multiplicative
noise

√
ρξ , such that in the absorbing state, the dynamics of B

is noise-free. We choose ξ to be a Gaussian-distributed white
noise with zero mean and a variance,

〈ξ (x,t)ξ (0,0)〉 = 2D1δ(x)δ(t). (9)

Evidently, our model as given by Eqs. (6) and (7) admits
ρ = 0, φ = const. 
= 0 as an absorbing state. One may also add
a conserving additive noise in Eq. (7), reflecting the thermal
fluctuations of φ. This noise would then have survived in the
absorbing state. We neglect this noise for simplicity, which
is akin to assuming a “low-temperature limit” for species B.
Interestingly, in the absence of an additive conserved noise in
Eq. (7), ρ = 0, φ = 0 is also an absorbing state. We ignore this
and focus on the absorbing state ρ = 0, φ = φ0 = const. 
= 0.
It is instructive to compare Eqs. (6) and (7) with the model
in Ref. [23]. In Ref. [23], the second field is a conserved
field in both the active and absorbing states of the species,
and hence is inappropriate to model a mutant. In contrast, φ

here is nonconserved in the active state of A, appropriate to
model population changes of the mutant due to mutation or
back mutation. It is only in the absorbing state of A that φ is
conserved; see also Ref. [27]. This feature clearly distinguishes
our model from Ref. [23].

We write φ = φ0 + δφ. This modifies Eqs. (6) and (7) to

∂ρ

∂t
= Dρ∇2ρ + rρ + λgρδφ − λdρ

2 + √
ρη, (10)

∂δφ

∂t
= Dφ∇2δφ + λ3ρ − λ2ρδφ + √

ρξ, (11)

where r = 1 − λ1 + λgφ0 and λ3 = λ1 − λ2φ0. Coupling con-
stant λ3 should be positive so as to prevent φ from collapsing
into an absorbing state in the presence of ρ, without passing
through an active configuration. Now denoting δφ as φ so as
to avoid notational complexity, the equations of motion for the
two fields in the model can be written as

∂ρ

∂t
= Dρ∇2ρ + rρ + λgρφ − λdρ

2 + √
ρη, (12)

∂φ

∂t
= Dφ∇2φ + λ3ρ − λ2ρφ + √

ρξ. (13)

We redefine the coefficients r = Dρτ and λd = Dρg1/2 for
calculational convenience, so that Eq. (12) now takes the form

∂ρ

∂t
= Dρ(τ + ∇2)ρ + λgρφ − Dρg1

2
ρ2 + √

ρη. (14)

The critical point is given by renormalized τ = 0. To what
extent the nonlinear couplings in our model alter the mean-field
DP exponents given by Eq. (5) may be answered systematically
by using the standard one-loop dynamic renormalization group
(DRG) framework. This requires calculating the primitively
divergent vertex functions in the model up to the one-loop
order in expansions in terms of the effective coupling constants
and absorbing the divergences in redefined or renormalized
parameters of the model. These allow us to obtain the
renormalized vertex or correlation functions in the model,
from which the critical scaling exponents may be obtained.
See Ref. [38] for detailed technical discussions on the DRG
technique.

Using the Langevin Eqs. (14) and (13), together with the
corresponding noise variance Eqs. (8) and (9), the Janssen-De
Dominics [39] generating functional can be constructed, which
can be written as

Z =
∫

DρDρ̂DφDφ̂ exp[−S], (15)

where ρ̂ and φ̂ are the auxiliary fields corresponding to the
dynamical fields ρ and φ, respectively, which enters the
Eq. (15) after elimination of the noises from the generating
functional Z . For calculational convenience we redefine iφ̂ →
φ̂, iρ̂ → ρ̂, and D2 = Dρg2

2 in the generating functionalZ . The
dynamical action functional S corresponding to the model is
then given by

S =
∫

ddx

∫
dtρ̂{∂t + Dρ(−τ + ∇2)}ρ

+
∫

ddx

∫
dtφ̂{∂t + Dφ∇2}φ − λ3

∫
ddx

∫
dtφ̂ρ

− λg

∫
ddx

∫
dtρ̂ρφ

−D1

∫
ddx

∫
dtφ̂φ̂ρ + λ2

∫
ddx

∫
dtφ̂φρ

− Dρg2

2

∫
ddx

∫
dtρ̂ρ̂ρ + Dρg1

2

∫
ddx

∫
dtρ̂ρρ.

(16)
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Unlike the pure DP problem, in Eq. (16), the last two terms
have different coefficients Dρg1/2 and Dρg2/2, due to the
breakdown of the rapidity symmetry by the couplings λg , λ2,
and D1. In addition, time can be rescaled to absorb Dφ in
Eq. (16).

In a naı̈ve perturbative expansion, λg,D1, λ2, and u ≡ g1g2

appear as the expansion parameters. Rescaling space and
time, it is straightforward to show that the upper critical
dimension dc = 4 for the coupling constants λg,D1, λ2, and
u. We also introduce a control parameter θ = Dφ/Dρ known
commonly as the Schmidt number, which determines the
ensuing nonequilibrium steady state (NESS) of our model.
If the renormalized versions of λg,D1, λ2 are nonzero at the
DRG fixed points (FP) at d < dc, then new universal critical
scaling behavior is expected to emerge at the DRG FPs, such
that the critical exponents would pick up values different
from their values for the DP universality class. In the DRG
analysis of our model, ε = dc − d = 4 − d appears as a small
parameter; see Ref. [40] for the detailed technical discussions
on DRG applications in the DP problem.

We begin by identifying the primitively divergent vertex
functions in model Eq. (16). The vertex functions of our model
are defined formally by taking the appropriate functional
derivatives of the vertex generating functional �[ρ,ρ̂,φ,φ̂]
with respect to the various fields ρ, ρ̂, φ, and φ̂, with
�[ρ, ρ̂, φ, φ̂] being the Legendre transform of logZ [38,40]:

�a1a2...an
≡ δn�

δa1δa2...δan

, (17)

where a1,a2,...,an are the fields ρ, ρ̂, φ, φ̂. The bare vertex
functions in our model that have divergent one-loop correc-
tions are listed in Appendix A.

III. RENORMALIZATION GROUP ANALYSIS

To renormalize the vertex functions we choose τ = μ2 as
the appropriate normalization point about which the vertex
corrections are found out up to one-loop order, with μ being the
intrinsic momentum scale of the renormalized theory. Next we
need the multiplicative renormalization Z factors to determine
the scale dependence of the renormalized vertex functions
on the momentum scale μ. This is possible as the Z factors
absorb the ultraviolet divergences arising out of the one-loop
integrals, which makes the resulting theory finite. The Z

factors for the various fields and parameters are defined as
follows:

φ = ZφφR , ρ = Zρρ
R , ρ̂ = Zρ̂ρ̂

R , φ̂ = Zφ̂φ̂R ,

Dρ = ZDρ
DR

ρ , λg = Zλg
λR

g , g1 = Zg1g
R
1 ,

g2 = Zg2g
R
2 , τ = Zττ

R,

λ3 = Zλ3λ
R
3 , λ2 = Zλ2λ

R
2 ,Dφ = ZDφ

DR
φ , D1 = ZD1D

R
1 ,

(18)

where the superscript R refers to renormalized quantities. The
various Z factors can be found out from the normalization
conditions; see Appendix B. Thus, we have 11 renormalized
vertex functions in comparison with the 13 Z factors defined
here. Therefore, there are two redundant Z factors, which
can be chosen arbitrarily. We hence use this freedom to set

Zρ = Zρ̂ and Zφ = Zφ̂ . The Z factors calculated from the
one-loop irreducible diagrams are found to be

Zρ = Zρ̂ = 1 + g1g2

8

μ−ε

16π2ε
, (19)

ZDρ
= 1 − g1g2

8

μ−ε

16π2ε
, (20)

Zτ = 1 + 3g1g2

8

μ−ε

16π2ε
, (21)

Zg1 = 1 + 3g1g2

4

μ−ε

16π2ε
+ 4λ2

gD1

Dρg1Dφ(Dρ + Dφ)

μ−ε

16π2ε
,

(22)

Zg2 = 1 + 3g1g2

4

μ−ε

16π2ε
, (23)

Zλ2 = 1 − g1g2

8

μ−ε

16π2ε
+ λ2g2

(Dρ + Dφ)

μ−ε

16π2ε
, (24)

Zλ3 = Z−1
φ

[
1 − g1g2

8

μ−ε

16π2ε
− λ2g2

(Dρ + Dφ)

μ−ε

16π2ε

]
, (25)

Zλg
= Z−1

φ

[
1 + g1g2

4

μ−ε

16π2ε
+ λ2g2

(Dρ + Dφ)

μ−ε

16π2ε

]
. (26)

We also find that there are no one-loop corrections to �φ̂φ ,
which means that ZφZφ̂ = 1. Using the choice Zφ = Zφ̂ , we
get Zφ = 1 = Zφ̂ . Thus, Eqs. (25) and (26) have only unity as
contributions coming from Zφ :

Zλ3 = 1 − g1g2

8

μ−ε

16π2ε
− λ2g2

(Dρ + Dφ)

μ−ε

16π2ε
, (27)

Zλg
= 1 + g1g2

4

μ−ε

16π2ε
+ λ2g2

(Dρ + Dφ)

μ−ε

16π2ε
. (28)

For the purpose of calculational convenience, we define three
dimensionless constants α, γ , and ψ through

λ2 = Dρg1α, λg = Dρg1γ,D1 = Dρg2ψ. (29)

In what follows below, we treat α, γ,ψ as the coupling
constants in the present problem without any loss of gen-
erality. From the physical interpretations of the different
constants in the present model all of α, γ , and ψ should be
positive. Clearly, if α = 0 = γ , there is no back mutation.
Equation (29) gives us the multiplicative Z factors of α, γ ,
and ψ as Zα = Zλ2Z

−1
Dρ

Z−1
g1

, Zγ = Zλg
Z−1

Dρ
Z−1

g1
, and Zψ =

ZD1Z
−1
Dρ

Z−1
g2

. Their explicit values in terms of the effective
coupling constant,

u = g1g2, (30)

and Schmidt number θ = Dφ/Dρ , take the form

Zα = 1 − 3uμ−ε

4ε
+ αuμ−ε

(1 + θ )ε
− 4uγ 2ψμ−ε

θ (1 + θ )ε
, (31)

Zγ = 1 − 3uμ−ε

8ε
+ uαμ−ε

(1 + θ )ε
− 4uγ 2ψμ−ε

θ (1 + θ )ε
, (32)
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Zψ = 1 − 3uμ−ε

4ε
+ 2uαμ−ε

(1 + θ )ε
, (33)

where we have absorbed a factor of 1/16π2 in the definition
of u. With u = g1g2, the multiplicative Z factor for u is given
by Zu = Zg1Zg2 and Zθ = ZDφ

Z−1
Dρ

. As ZDφ
= 1, due to lack

of renormalization of �φ̂φ , Zθ = Z−1
Dρ

= 1 + uμ−ε

8ε
. Thus, we

have identified the effective coupling constants for the model
to be u, α, γ , and ψ . From the Z factors of these couplings,
the β functions corresponding to the renormalized coupling
constants uR , αR , γ R , and ψR can be obtained, given by

βu = uR

[
−ε + 3uR

2
+ 4uR(γ R)2ψR

θR(1 + θR)

]
, (34)

βα = αR

[
−3uR

4
+ uRαR

(1 + θR)
− 4uR(γ R)2ψR

θR(1 + θR)

]
, (35)

βγ = γ R

[
−3uR

8
+ uRαR

(1 + θR)
− 4uR(γ R)2ψR

θR(1 + θR)

]
, (36)

βψ = ψR

[
−3uR

4
+ 2uRαR

(1 + θR)

]
, (37)

βθ = θR

[
uR

8

]
. (38)

The zeros of the β functions gives us the fixed point (FP)
solutions for the model, i.e., by setting the right-hand side of
Eqs. (34)–(38). The FPs may be obtained in three different
physical limits, viz., θR → 0,∞ and θR remaining finite. The
first two cases should be characterized by weak dynamic
scaling, i.e., by zρ < zφ and zρ > zφ , respectively. In contrast,
the third possibility corresponds to zρ = zφ , implying strong
dynamic scaling. In the limit of θR → ∞, βθ = 0 yields
uR = 0, which though satisfies βu = 0 is not a stable FP; or,
equivalently, even for a very small uR , βθ shoots up to ∞. We
thus discard this possibility. To find the fixed points for a finite
θ value, the full β functions should be equated to zero, which
is a highly daunting task given the complexity of the equations
involved. But for θR → 0, the algebra is tractable. Hence, we
settle for the tractable θR → 0 limit here and leave out the
case of finite θR .

IV. FIXED POINT ANALYSIS AND CRITICAL EXPONENTS

In this section we perform a fixed point analysis corre-
sponding to the θR → 0 limit. In this limit DR

ρ � DR
φ , so that

a weak dynamic scaling with zρ < zφ is expected at the stable
FP. The FPs are given by the solutions of the equations

3uR

2
+ 4uR(γ R)2ψR

θR
= ε, (39)

− 3uR

4
+ uRαR − 4uR(γ R)2ψR

θR
= 0, (40)

− 3uR

8
+ uRαR − 4uR(γ R)2ψR

θR
= 0, (41)

− 3uR

4
+ 2uRαR = 0, (42)

from which nontrivial fixed points corresponding to uR 
= 0,
αR 
= 0, γ R 
= 0, and ψR 
= 0 are obtained. As we can see,
uR ∼ O(ε), but αR , γ R , and ψR are just numbers. To extract
physically meaningful fixed points from Eqs. (39), (40), (41),
and (42), the terms should be divergence free in the θR → 0
limit. But as can be seen, Eqs. (39)–(42) contain θR in
the denominator making them diverge in the θR → 0 limit.
To make them free from divergences, one should scale
(γ R)2ψR ∼ θ . Assuming this scaling to hold good in our case,
we take

m = uα, (43)

and

t = uγ 2ψ

θ
, (44)

as the effective coupling constants in the limit θR → 0.
Evidently, both m and t should be positive on physical ground.
The renormalized effective couplings are hence mR = uRαR

and tR = uR(γ R )2ψR

θR and their corresponding Z factors given by
Zm = ZuZα and Zt = ZuZ

2
γ ZψZ−1

θ , respectively. The explicit
form of the Z factors for the effective coupling constants then
turn out to be

Zu = 1 + 3uμ−ε

2ε
+ 4tμ−ε

ε
, (45)

Zm = 1 + 3uμ−ε

4ε
+ mμ−ε

ε
, (46)

Zt = 1 − uμ−ε

8ε
+ 4mμ−ε

ε
− 4tμ−ε

ε
. (47)

The β functions evaluated from Eqs. (45), (46), and (47) are
written as follows:

βu = uR

[
−ε + 3uR

2
+ 4tR

]
, (48)

βm = mR

[
−ε + 3uR

4
+ mR

]
, (49)

βt = tR
[
−ε − uR

8
+ 4mR − 4tR

]
. (50)

The fixed points (FPs) are evaluated by equating the β

functions to zero. Noting that all of uR,mR, tR > 0 on physical
ground, we discard any FP with negative values of the
renormalized coupling constants. The positive semidefinite
FPs are given by

(1) FPI: Gaussian FP uR = 0,mR = 0, tR = 0.
(2) FPII: DP FP uR = 2ε

3 ,mR = 0, tR = 0.
(3) FPIII: uR = 0,mR = ε, tR = 0.
(4) FPIV: uR = 2ε

3 ,mR = ε
2 , tR = 0.

(5) FPV: uR = 0,mR = ε, tR = 3ε
4 .

Note that FPIV and FPV involves mR > 0 and (mR >

0,tR > 0), respectively. What this means physically is that
there is back mutation involved from mutants B to species
A in both the FPs as the parameters m and t involves the
back-mutation coefficients λ2 and λg . The stability of the FPs
can be found by evaluating the eigenvalues � of the stability
matrix corresponding to each FP. The eigenvalues are found
to be
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(1) FPI (Gaussian FP): The eigenvalues are � =
−ε,−ε,−ε. All the eigenvalues are negative indicating that
the gaussian FP is unstable in all directions.

(2) FPII (DP FP): The eigenvalues are � = ε, −ε
2 , −13ε

12 .
Thus, it is stable only along the uR axis and unstable in all the
other directions.

(3) FPIII The eigenvalues are � = −ε, ε, 3ε. Thus, FPIII
is unstable only along the uR direction.

(4) FPIV: The eigenvalues are � = ε, ε
2 , 11ε

12 . Thus, this FP
is stable along all directions. This is an important observation
considering the fact that it involves back mutation from species
B to A.

(5) FPV: The eigenvalues are � = 2ε, ε,−3ε. Thus, FPV
is unstable along the tR axis but stable in the other two
directions.

The Wilson’s flow are used to determine the critical expo-
nents corresponding to the different FPs. They are evaluated
as follows:

ζρ = μ
∂

∂μ
ln Z−1

ρ , ζρ̂ = μ
∂

∂μ
ln Z−1

ρ̂ , ζDρ
= μ

∂

∂μ
ln Z−1

Dρ
,

(51)

ζτ = μ
∂

∂μ
ln Z−1

τ − 2.

The critical exponents are derived from the flow functions
Eq. (51) as

ηρ = ηρ̂ = −ζρ, (52)

1

ν
= −ζτ , (53)

zρ = 2 + ζDρ
. (54)

We obtain
(1) FPII (DP FP): The exponents are ηρ = ηρ̂ = − ε

12 ,
ν−1 = 2 − ε

4 , dynamic exponent zρ = 2 − ε
12 .

(2) FPIV: z = 2 − ε
12 , ηρ = ηρ̂ = − ε

12 , and ν−1 = 2 − ε
4 ,

which is exactly equal to the DP critical exponents. Thus, this
FP behaves like a DP FP and displays weak dynamic scaling
making it physically acceptable. Note that this FP involves
back mutation from mutant B to species A.

Thus, we find that FPII and FPIV are the physically
acceptable FPs displaying weak dynamic scaling as is expected
in the θR → 0 limit (see below). Also, we see that ∂βθ

∂θR = uR

8 >

0, and ∂βθ

∂AR = 0, with A = u,m, t . This shows that the weak
dynamic scaling shown by the FP FPIV is stable along the
θR direction also. Surprisingly for FPIV, the critical exponents
are all equal to the DP critical exponents. One cannot say for
sure if it falls under the DP universality class, as we have
calculated the exponents only up to one loop order. Higher
loop corrections are necessary to settle the issue. The DP FP
or the FPII also shows DP-like critical exponents, which is not
surprising given that the couplings other than uR are taken to
be zero. But this FP is unstable, which is due to the birth-death
couplings of ρ with φ in our model, unlike its analogue in
the DP model. Clearly, thus on stability grounds, we accept
FPIV as the FP that describes the scaling of the AAPT in the
present model. A schematic diagram of the fixed points in the
parameter space is given in Fig. 1.

u

t

m
R

R

R

2

3
ε ε

2

00ε2
3

( )

(0 ε 3
4

ε )
0 ε 0 )

, ,

, ,

, ,
, ,

( 0 )

(

FPI

FPII

FPIV

FPIII
FPV

0

FIG. 1. (Color online) A schematic DRG flow diagram showing
the stable and unstable fixed points (FPs) of our model in the
parameter space uR-mR-tR . The stable FP is FPIV given by the red
thick dot and the unstable FPs are given by thick green dots. All the
FPs correspond to weak dynamic scaling. Note that the flow is from
the unstable FPs to the stable FPIV.

Finally, with the knowledge of ηρ, ηρ̂ , we now obtain the
scaling of the renormalized equal-time correlator,

〈|ρ(q,t)|2〉 ∼ q2ηρ . (55)

The fact that the critical exponents at the FPIV are identical
to those at the DP FP may be heuristically argued as follows.
Notice that at FPIV, tR = 0, which means either ψR or γ R

or both of them are zero. Thus, either λR
g or DR

1 or both are
zero in this FP. If λR

g = 0, the dynamics of ρ is autonomous
in the renormalized theory; consequently, DP-like exponents
should be expected for the scaling properties of ρ dynamics
near AAPT. On the other hand, if λR

G 
= 0 but DR
1 = 0, then

the renormalized dynamics of φ is effectively noise free. Thus,
to the leading order, φ ≈ λR

1 /λR
2 in the renormalized theory.

If we substitute this in the renormlized version of Eq. (6),
the effective renormalized equation for ρ has the form of the
basic Langevin equation for DP in terms of shifted coefficients.
This indicates the DP-like exponents for ρ near AAPT. This
argument is, however, only suggestive and cannot be used to
claim the equality of the scaling exponents at FPIV with the
same for the DP problem at higher order in perturbation theory.
Due to the difference in the stability properties of FPII and
FPIV already at the one-loop order, we tend to speculate that
these two FPs will correspond to different values for the scaling
exponents at higher loop orders. This can only be checked by
rigorous higher-order calculations, which are beyond the scope
of the present work.

V. CORRELATIONS OF φ

With the knowledge of the scaling at the AAPT, we can
now calculate the renormalized correlator Cφφ of φ. Notice
that there are no anomalous dimension of φ and φ̂, nor is there
any renormalization to Dφ . We linearize Eq. (13) to obtain

∂φ

∂t
= Dφ∇2φ + (λ3 − λ2φ0)ρ + √

ρζ. (56)
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Noting that 〈ρ〉 → 0 near AAPT, the scaling of the renormal-
ized correlation of φ may be obtained as

〈|φ(q,ω)|2〉 = 1

ω2 + D2
φq4

(λ3 − λ2φ0)2〈|ρ(q,ω)|2〉. (57)

Now use the form of renormalized 〈|φ(q,ω)|2〉 at the stable
FPs,

〈|ρ(q,ω)|2〉 ∼ qz+2ηρ

ω2 + Dρq2z
, (58)

such that the equal-time correlator 〈|ρ(q,t)|2〉 ∼ q2ηρ . This
yields

〈|φ(q,t)|2〉 ∼ 1

Dφ

q2ηρ−2−z exp(−Dφq2t), (59)

revealing that (i) zφ = 2 
= zρ implying weak dynamic scaling
and (ii) φ is spatially long-ranged correlated, since 2ηρ − 2 −
z < 0.

VI. CONCLUSION

In this article we have proposed and studied a simple
population dynamics model involving a species and its mutant:
species A (with density ρ(x,t)) reproduces and dies, and
also mutates to species B. We allow for a specific form of
back mutation from B to A that allows for an AAPT of A
that we study here. In the absorbing state, the mutant B is
conserved. We perform a one-loop perturbative DRG analysis
to extract the critical exponents of the AAPT. For reasons of
analytical tractability, we analyze the model at low (θR → 0)
Schmidt number. For θR → 0, we find weak dynamic scaling,
i.e., zρ < zφ = 2 at two FPs: FPII or the DP FP and FPIV,
consistent with θR → 0. Interestingly, FPIV exhibits scaling
exponents that are the same as those in the DP universality
class or FPII. We believe this surprising feature is fortuitous as
it is not likely to be preserved when higher-order contributions
are taken into account. In any case, FPII is unstable whereas
FPIV turns out to be stable in all the directions of the
parameter space. In this article we have not attempted to
obtain the FPs for finite θR , for which strong dynamic scaling
should follow, due to the algebraic complications involved.
Nevertheless, from the overall stability of FPIV with zρ < zφ ,
together with βθ > 0 at this FP and the fact that no stable
FP is obtained for θR → ∞, we speculate that the AAPT in
our model is indeed characterized by weak dynamic scaling
only (zρ < zφ), precluding no stable FP for strong dynamic
scaling. Further conclusive evidence of these will, however,
require numerically obtaining the FPs from the zeros of the
β function Eqs. (34)–(38). Interestingly, the scaling of Cφφ

at the AAPT displays long-ranged spatial correlation, which
is a consequence of the long-ranged ρ fluctuations at the
AAPT.

Our model has a highly simplified structure and is designed
to study specific issues as discussed above. As a result,
it lacks many details of a realistic population dynamics
model. First of all, we have assumed an artificial form for
back mutation, which may be generalized and included in
our model in a straightforward way. In addition, we have
excluded the effects of environment from our study, assuming

a uniform surrounding in which the interactions take place.
These may be included in our model in straightforward ways;
see, e.g., Ref. [22]. In addition, the process of mutation is
generally more complex than a simple conversion of one
species to the other at a given fixed rate, as assumed here [41].
Nonetheless, our model should be useful as a starting point to
understand the critical behavior of AAPT in generic population
dynamics model with mutations or with multiple species. We
expect our studies should be helpful in understanding the
APPT in rock-paper-scissors-type systems [42–45], where one
species feeds on a second species B, which in turn feeds on
another third species that in turn feeds on the first species.
We look forward to further theoretical studies along these
lines.
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APPENDIX A: BARE VERTEX FUNCTIONS

The bare vertex functions for the model can be found out
by taking functional derivatives of the generating functional
�[ρ,ρ̂,φ,φ̂] with respect to the various fields in the model,
i.e., ρ, ρ̂, φ, φ̂. They are listed below:

δ2�

δρ(k,ω)δρ̂(−k,−ω)
= �ρρ̂ = iω + Dρ(−τ + k2), (A1)

δ2�

δφ(k,ω)δφ̂(−k,−ω)
= �φφ̂ = (iω + Dφk2), (A2)

δ2�

δφ̂(−k,−ω)δρ(k,ω)
= �φ̂ρ = −λ3, (A3)

δ3�

δρ̂(q1,ω1)δρ(q2,ω2)δρ(−q1 − q2,−ω1−ω2)

= �ρ̂ρρ = Dρg1

2
, (A4)

δ3�

δρ̂(q1,ω1)δρ̂(q2,ω2)δρ(−q1−q2,−ω1−ω2)

= �ρ̂ρ̂ρ = −Dρg2

2
, (A5)

δ3�

δρ̂(k,ω)δρ(q,�)δφ(−k−q,−ω−�)
= �ρ̂ρφ = −λg,

(A6)

δ3�

δφ̂(k,ω)δφ(q,�)δρ(−k − q,−ω−�)
= �φ̂φρ = λ2,

(A7)

δ3�

δφ̂(k,ω)δφ̂(q,�)δρ(−k − q,−ω−�)
= �φ̂φ̂ρ = −D1.

(A8)
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APPENDIX B: NORMALIZATION CONDITIONS

The renormalized vertex functions when expressed in terms
of the renormalized quantities can be written as follows:

∂�ρ̂ρ

∂ω
|(k=0,ω=0) = i, (B1)

∂�ρ̂ρ

∂k2
|(k=0,ω=0) = DR

ρ , (B2)

�ρ̂ρ(k = 0,ω = 0) = DR
ρ τR, (B3)

∂�φ̂φ

∂ω
|(k=0,ω=0) = i, (B4)

∂�φ̂φ

∂k2
|(k=0,ω=0) = DR

φ , (B5)

�φ̂ρ(k = 0,ω = 0) = −λR
3 , (B6)

�ρ̂ρρ(k = 0,q = 0, ω = 0,� = 0) = DR
ρ gR

1

2
, (B7)

�ρ̂ρ̂ρ(k = 0,q = 0,ω = 0,� = 0) = −DR
ρ gR

2

2
, (B8)

�ρ̂ρφ(k = 0,q = 0,ω = 0,� = 0) = −λR
g , (B9)

�φ̂φρ(k = 0,q = 0,ω = 0,� = 0) = λR
2 , (B10)

�φ̂φ̂ρ(k = 0,q = 0,ω = 0,� = 0) = −DR
1 . (B11)
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[10] U. C. Täuber, M. J. Howard, and H. Hinrichsen, Phys. Rev. Lett.
80, 2165 (1998).
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[40] U. C. Täuber, Crtical Dynamics (Cambridge University Press,
Cambridge, UK, 2014).

[41] R. Donangelo and H. Fort, Phys. Rev. Lett. 89, 038101 (2002).
[42] T. Reichenbach, M. Mobilia, and E. Frey, Phys. Rev. E 74,

051907 (2006).
[43] T. Reichenbach, M. Mobilia, and E. Frey, Nature 448, 1046

(2007).
[44] A. Dobrinevski and E. Frey, Phys. Rev. E 85, 051903 (2012).
[45] M. Parker and A. Kamenev, Phys. Rev. E 80, 021129 (2009).

042110-8

http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1088/0305-4470/38/17/R01
http://dx.doi.org/10.1088/0305-4470/38/17/R01
http://dx.doi.org/10.1088/0305-4470/38/17/R01
http://dx.doi.org/10.1088/0305-4470/38/17/R01
http://dx.doi.org/10.1007/BF01313803
http://dx.doi.org/10.1007/BF01313803
http://dx.doi.org/10.1007/BF01313803
http://dx.doi.org/10.1007/BF01313803
http://dx.doi.org/10.1103/PhysRevE.63.036101
http://dx.doi.org/10.1103/PhysRevE.63.036101
http://dx.doi.org/10.1103/PhysRevE.63.036101
http://dx.doi.org/10.1103/PhysRevE.63.036101
http://dx.doi.org/10.1088/1742-5468/2011/11/P11023
http://dx.doi.org/10.1088/1742-5468/2011/11/P11023
http://dx.doi.org/10.1088/1742-5468/2011/11/P11023
http://dx.doi.org/10.1103/PhysRevLett.99.234503
http://dx.doi.org/10.1103/PhysRevLett.99.234503
http://dx.doi.org/10.1103/PhysRevLett.99.234503
http://dx.doi.org/10.1103/PhysRevLett.99.234503
http://dx.doi.org/10.1209/0295-5075/99/66002
http://dx.doi.org/10.1209/0295-5075/99/66002
http://dx.doi.org/10.1209/0295-5075/99/66002
http://dx.doi.org/10.1209/0295-5075/99/66002
http://dx.doi.org/10.1016/0370-2693(78)90626-3
http://dx.doi.org/10.1016/0370-2693(78)90626-3
http://dx.doi.org/10.1016/0370-2693(78)90626-3
http://dx.doi.org/10.1016/0370-2693(78)90626-3
http://dx.doi.org/10.1016/0003-4916(79)90207-0
http://dx.doi.org/10.1016/0003-4916(79)90207-0
http://dx.doi.org/10.1016/0003-4916(79)90207-0
http://dx.doi.org/10.1016/0003-4916(79)90207-0
http://dx.doi.org/10.1140/epjb/e2012-20918-4
http://dx.doi.org/10.1140/epjb/e2012-20918-4
http://dx.doi.org/10.1140/epjb/e2012-20918-4
http://dx.doi.org/10.1140/epjb/e2012-20918-4
http://dx.doi.org/10.1103/PhysRevLett.80.2165
http://dx.doi.org/10.1103/PhysRevLett.80.2165
http://dx.doi.org/10.1103/PhysRevLett.80.2165
http://dx.doi.org/10.1103/PhysRevLett.80.2165
http://dx.doi.org/10.1088/1751-8113/40/5/002
http://dx.doi.org/10.1088/1751-8113/40/5/002
http://dx.doi.org/10.1088/1751-8113/40/5/002
http://dx.doi.org/10.1088/1751-8113/40/5/002
http://dx.doi.org/10.1088/1751-8113/45/40/405002
http://dx.doi.org/10.1088/1751-8113/45/40/405002
http://dx.doi.org/10.1088/1751-8113/45/40/405002
http://dx.doi.org/10.1088/1751-8113/45/40/405002
http://dx.doi.org/10.1088/1742-5468/2011/05/L05001
http://dx.doi.org/10.1088/1742-5468/2011/05/L05001
http://dx.doi.org/10.1088/1742-5468/2011/05/L05001
http://dx.doi.org/10.1016/S0378-4371(99)00482-3
http://dx.doi.org/10.1016/S0378-4371(99)00482-3
http://dx.doi.org/10.1016/S0378-4371(99)00482-3
http://dx.doi.org/10.1016/S0378-4371(99)00482-3
http://dx.doi.org/10.1007/BF01319549
http://dx.doi.org/10.1007/BF01319549
http://dx.doi.org/10.1007/BF01319549
http://dx.doi.org/10.1007/BF01319549
http://dx.doi.org/10.1103/PhysRevE.48.1710
http://dx.doi.org/10.1103/PhysRevE.48.1710
http://dx.doi.org/10.1103/PhysRevE.48.1710
http://dx.doi.org/10.1103/PhysRevE.48.1710
http://dx.doi.org/10.1103/PhysRevE.62.R5875
http://dx.doi.org/10.1103/PhysRevE.62.R5875
http://dx.doi.org/10.1103/PhysRevE.62.R5875
http://dx.doi.org/10.1103/PhysRevE.62.R5875
http://dx.doi.org/10.1023/A:1010300703724
http://dx.doi.org/10.1023/A:1010300703724
http://dx.doi.org/10.1023/A:1010300703724
http://dx.doi.org/10.1023/A:1010300703724
http://dx.doi.org/10.1103/PhysRevE.86.021122
http://dx.doi.org/10.1103/PhysRevE.86.021122
http://dx.doi.org/10.1103/PhysRevE.86.021122
http://dx.doi.org/10.1103/PhysRevE.86.021122
http://dx.doi.org/10.1088/1742-5468/2014/08/P08016
http://dx.doi.org/10.1088/1742-5468/2014/08/P08016
http://dx.doi.org/10.1088/1742-5468/2014/08/P08016
http://dx.doi.org/10.1088/1751-8113/42/13/135001
http://dx.doi.org/10.1088/1751-8113/42/13/135001
http://dx.doi.org/10.1088/1751-8113/42/13/135001
http://dx.doi.org/10.1088/1751-8113/42/13/135001
http://dx.doi.org/10.1007/s11232-011-0123-x
http://dx.doi.org/10.1007/s11232-011-0123-x
http://dx.doi.org/10.1007/s11232-011-0123-x
http://dx.doi.org/10.1007/s11232-011-0123-x
http://dx.doi.org/10.1088/1367-2630/13/11/113013
http://dx.doi.org/10.1088/1367-2630/13/11/113013
http://dx.doi.org/10.1088/1367-2630/13/11/113013
http://dx.doi.org/10.1088/1367-2630/13/11/113013
http://dx.doi.org/10.1088/1478-3975/9/2/026008
http://dx.doi.org/10.1088/1478-3975/9/2/026008
http://dx.doi.org/10.1088/1478-3975/9/2/026008
http://dx.doi.org/10.1088/1478-3975/9/2/026008
http://dx.doi.org/10.1038/nrc2013
http://dx.doi.org/10.1038/nrc2013
http://dx.doi.org/10.1038/nrc2013
http://dx.doi.org/10.1038/nrc2013
http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1088/1742-5468/2015/05/P05027
http://dx.doi.org/10.1088/1742-5468/2015/05/P05027
http://dx.doi.org/10.1088/1742-5468/2015/05/P05027
http://dx.doi.org/10.1016/j.tpb.2015.03.002
http://dx.doi.org/10.1016/j.tpb.2015.03.002
http://dx.doi.org/10.1016/j.tpb.2015.03.002
http://dx.doi.org/10.1016/j.tpb.2015.03.002
http://dx.doi.org/10.1002/bies.950170706
http://dx.doi.org/10.1002/bies.950170706
http://dx.doi.org/10.1002/bies.950170706
http://dx.doi.org/10.1002/bies.950170706
http://dx.doi.org/10.1111/j.1558-5646.2009.00809.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00809.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00809.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00809.x
http://dx.doi.org/10.1128/AEM.01777-08
http://dx.doi.org/10.1128/AEM.01777-08
http://dx.doi.org/10.1128/AEM.01777-08
http://dx.doi.org/10.1128/AEM.01777-08
http://dx.doi.org/10.1016/j.aop.2004.09.011
http://dx.doi.org/10.1016/j.aop.2004.09.011
http://dx.doi.org/10.1016/j.aop.2004.09.011
http://dx.doi.org/10.1016/j.aop.2004.09.011
http://dx.doi.org/10.1103/PhysRevB.12.4945
http://dx.doi.org/10.1103/PhysRevB.12.4945
http://dx.doi.org/10.1103/PhysRevB.12.4945
http://dx.doi.org/10.1103/PhysRevB.12.4945
http://dx.doi.org/10.1007/BF01312880
http://dx.doi.org/10.1007/BF01312880
http://dx.doi.org/10.1007/BF01312880
http://dx.doi.org/10.1007/BF01312880
http://dx.doi.org/10.1103/PhysRevLett.89.038101
http://dx.doi.org/10.1103/PhysRevLett.89.038101
http://dx.doi.org/10.1103/PhysRevLett.89.038101
http://dx.doi.org/10.1103/PhysRevLett.89.038101
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1103/PhysRevE.85.051903
http://dx.doi.org/10.1103/PhysRevE.85.051903
http://dx.doi.org/10.1103/PhysRevE.85.051903
http://dx.doi.org/10.1103/PhysRevE.85.051903
http://dx.doi.org/10.1103/PhysRevE.80.021129
http://dx.doi.org/10.1103/PhysRevE.80.021129
http://dx.doi.org/10.1103/PhysRevE.80.021129
http://dx.doi.org/10.1103/PhysRevE.80.021129



