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We study the bidimensional voter model on a square lattice with numerical simulations. We demonstrate that
the evolution takes place in two distinct dynamic regimes; a first approach towards critical site percolation and a
further approach towards full consensus. We calculate the time dependence of the two growing lengths, finding
that they are both algebraic but with different exponents (apart from possible logarithmic corrections). We analyze
the morphology and statistics of clusters of voters with the same opinion. We compare these results to the ones
for curvature driven two-dimensional coarsening.
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I. INTRODUCTION

Purely dynamical stochastic models are used to describe
problems beyond physics such as opinion formation [1] and
population genetics [2] and treat issues in ecology, linguistics,
etc. In the former context, questions on the spatial spreading
of opinions are posed in terms of coarsening or segregation,
just as in physical materials.

The voter model [3–5] is one such purely dynamical
stochastic model, used to describe the kinetics of catalytic
reactions [6–8] and as a prototype model of opinion dy-
namics [9,10]. In its simplest realization a bivalued opinion
variable, si = ±1, is assigned to each site on a lattice or graph
with some procedure that determines the initial conditions.
Typically, the initial state is taken to be unbiased, with
equal number of one and the other state. The dynamic rule
is straightforward: at each time step, a variable chosen at
random adopts the opinion of a randomly chosen neighbor.
These moves mimic the influence of the neighbourhood on the
individual opinion. The probability of the chosen spin to flip
in a time step is simply given by the fraction of neighbors with
opposite orientation. The model is parameter free and invariant
under global inversion of the spins, that is to say,Z2 symmetric.
As a site surrounded by others sharing the same opinion cannot
fluctuate, there is no bulk noise and the dynamics are uniquely
driven by interfacial fluctuations. In some papers the model is
defined in terms of a site-occupation variable instead of a spin.

Mathematicians, more precisely probabilists, solve this
model by using a mapping to random walk theory [3,4,11].
Physicists, instead, treat it within the master equation formal-
ism. Once written in this form, one reckons that the transition
probabilities do not satisfy detailed balance and, therefore, the
model is essentially out of equilibrium. Even though there is
no asymptotic thermal state, the dynamics can be solved as
Glauber did for the stochastic Ising chain since the equations
for the correlations of different order decouple [6,8,12].

The voter model’s evolution shows spatial clustering of
similar opinions. It approaches one of the two absorbing
states with complete consensus via a coarsening process in
d � 2. It may also approach consensus in finite-size d > 2
systems but only because of a large random fluctuation with
some small probability (that vanishes in the infinite-size limit).
Otherwise, an infinite family of disordered steady states exists
in d > 2 [11,13]. The coarsening process in d = 2 differs con-
siderably from the curvature driven one, as can be appreciated

in Fig. 1 where a series of snapshots of the spin configuration
at increasing times are shown, proving that the long-term
dynamics are not determined by symmetry properties alone. It
also differs from critical relaxation, especially because of the
lack of bulk fluctuations, see also Fig. 1.

The absence of bulk noise and surface tension entails
important differences with respect to curvature-driven phase-
ordering kinetics [14–16]. In the voter model, regions of one
opinion can only be penetrated by the other at the boundary.
Besides, a large bubble consisting of voters of the same
opinion does not shrink as in curvature-driven processes. It
slowly disintegrates as its boundary roughens diffusively to
reach a typical width of the order of the initial radius [17,18],
while the radius of the droplet remains statistically constant
(the radially averaged magnetization profiles have a stationary
middle point).

Coarsening processes usually conform to the dynamic
scaling hypothesis [14–16]. This assumption states that if
there is a single growing length in the process, say, �(t),
the statistical properties of the system are self-similar with
respect to it. Under this assumption the space-time correlation
is independent of time when distance is rescaled by �(t). In the
voter model the evolution of a random initial condition shows
the growth of ordered spatial regions. However, the exact
asymptotic solution of an infinite system in d = 2 exhibits
logarithmic violations of the standard scaling forms [14].
Although a characteristic length �(t) � √

t can be identified,
the density of interfaces decays as 1/ ln t and the scaling
function for the space-time correlation function C(r,t) involves
an additional logarithmically decaying factor [11] (somehow
similarly to the critical dynamic scaling [19,20] though with a
logarithm instead of an algebraic correction).

The goal of this work is to characterize the coarsening
process in the bidimensional voter model with large but finite
linear size by studying, in detail, the geometric and statistical
properties of the dynamic pattern of domains. Following the
analysis in Refs. [21–24] we will demonstrate that the system
evolves in two time regimes: a preasymptotic approach to
critical percolation and an ultimate approach to full consensus.
With the aim of identifying and distinguishing the growing
lengths in each of these regimes, we compute special time-
dependent observables such as the number density of domains
with a given area or the number density of interfaces with
a given length. As the characteristic length associated to the
approach to percolation, which we call �P (t), grows quite
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(a) t = 4 (b) t = 64 (c) t = 512 (d) t = 4096

(e) t = 4 (f) t = 64 (g) t = 512 (h) t = 4096

(i) t = 4 (j) t = 64 (k) t = 512 (l) t = 4096

FIG. 1. (Color online) Snapshots of the voter (first row) and Ising (second and third rows) models on a 2d square lattice with linear size
L = 640 and periodic boundary conditions. The Ising model has been quenched to T = 0 (second row) and Tc (third row). The images were
taken at the times indicated below the snapshots.

slowly in time we are able to analyze this dynamic regime in
detail (contrary to the what happens in the Ising model, where
�P (t) is such a fast-growing function of time that in practice
critical percolation is reached too quickly to allow for a careful
study of this dynamic regime).

The paper is organized as follows. In Sec. II we introduce
the model and we summarize the time dependence of several
observables that were derived analytically in the past for
infinite-size systems. In Sec. III we present our numerical
results. We discuss the violation of the scaling hypothesis as
observed in the time dependence of the density of interfaces,
persistence probability, two-time correlation function, and
space-time correlation function of an infinite-size system. We
then show our novel results on geometric properties of the
largest cluster, number density of domain areas, and interface
lengths in finite-size systems. We relate their properties to
the fractal properties of these objects. More importantly, this
analysis allows us to demonstrate the existence of the two
dynamic regimes evoked in the previous paragraph: A first
approach to critical site percolation and the further evolution

towards complete consensus in a longer time scale. We end
the paper with a concluding section.

II. ANALYTICAL RESULTS

The definition of the voter model is extremely simple. Each
node i of a graph is endowed with a binary variable si = ±1.
At each time step an agent i is selected at random along with
one of its neighbors j and the selected agent takes the opinion
of the neighbor, i.e., si = sj . In the case of a voter model on a
d-dimensional hypercubic lattice, the spin-flip rate for the site
x is given by [25]

Wx(s) = 1

2τ

⎡⎣1 − 1

2d
sx(t)

∑
y∈N (x)

s y(t)

⎤⎦, (2.1)

where s = (sx)x∈Zd denotes the state of the system at time t ,
sx is the value of the spin on site x, N (x) is the set of its
neighboring sites, and τ defines the time scale of the process.
This particular form of spin-flip rate, which is just a constant
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times the fraction of disagreeing neighboring sites, defines
the so-called linear voter model. It is possible to define other
voterlike models in which the spin-flip rate is not simply a
linear function of the local effective field hx = ∑

y∈N (x) s y but
still satisfy the Z2 symmetry and have similar properties [1,26].
We will focus on the model with spin-flip rate (2.1) here. Note
also that we are taking x ∈ Zd . We will assume the lattice to be
infinite in all the calculations appearing further in this section,
though we will be especially concerned with finite-size effects
in Sec. III.

Equation (2.1) implies that this spin model has no bulk
noise, i.e., if a site “agrees” with all its nearest-neighbors, its
spin-flip rate vanishes. In this sense, the dynamics are similar
to the zero-temperature Glauber ones. The consequence is that
the “consensus” states, i.e., the states in which all sites have
the same opinion, are “absorbing” states. Indeed, if the system
reaches one of the two consensus states, it will never leave it.

However, this does not mean that the asymptotic steady
state must be one of full consensus. In fact, it turns out that
the coarsening process is not always effective in bringing
the system towards a single-domain state, and whether it
does or not depends on the dimensionality of the lattice. For
d � 2 the system coarsens until ultimately reaching a single
domain state, while for d > 2 there is an infinite family of
noncompletely ordered steady states [11,13]. The discrepancy
in the asymptotic regime reached above and below d = 2 will
be further discussed in this section.

The probability distribution satisfies the master equation

d

dt
P (s,t) =

∑
x

[Wx(sx)P (sx,t) − Wx(s)P (s,t)], (2.2)

where sx is the configuration that differs from s only in
that the spin on the site x is reversed. One can then derive
a set of differential equations for the n-spin time-dependent
correlation functions 〈sx1 ...sxn〉 = ∑

s sx1 ...sxnP (s,t) and find
that, since the update rule Wx is simply linear in the local spin,
the equations for the correlation functions of different order
decouple.

The single-body correlation function or average magneti-
zation satisfies [8,27]

d

dt
〈sx〉 = −2〈sxWx(s)〉 = 1

2τd
�x〈sx〉, (2.3)

where �x denotes the discrete Laplace operator,

�x〈sx〉 ≡ −2d〈sx〉 +
d∑

i=1

(〈sx+ei
〉 + 〈sx−ei

〉), (2.4)

and {ei}i=1,...,d are the set of unit vectors defining the lattice.
In the infinite-system-size limit or for periodic boundary
conditions all sites satisfy this same equation. For finite-size
systems with open boundary conditions the sites at the edges
should be considered separately.

Similarly, for the two-body correlation function one
has [8,27]

d

dt
〈sxs y〉 = −2〈sxs y[Wx(s) + W y(s)]〉

= 1

2τd
(�x + � y)〈sxs y〉. (2.5)

Interestingly enough, Eq. (2.2) is mathematically equiv-
alent to the master equation for a continuous-time sym-
metric random walk on Zd with jumping rate τ−1. As a
result, the mean magnetization per site, defined as m(t) =
limL→∞ L−d

∑
x∈{1,...,L}d 〈sx(t)〉, plays the role of the total

probability for the walker and is thus a conserved quantity. The
same result can be obtained by summing both sides of Eq. (2.3)
over all lattice sites. Notice that while the magnetization of
a specific system does change in a single update event, the
average over all sites and over all trajectories of the dynamics
is conserved.

Consider a finite system with an initial fraction ρ of
voters in the +1 state and 1 − ρ in the −1 state, so the
initial magnetization density is m0 = 2ρ − 1. Suppose that the
system reaches consensus in which the state of magnetization
m = +1 occurs with probability p+1(ρ) and the state with
m = −1 with probability 1 − p+1(ρ). Then, since m0 = m∞,
one has 2ρ − 1 = 2p+1(ρ) − 1, hence p+1(ρ) = ρ.

Concerning again Eq. (2.3), by using the discrete Fourier
transform of 〈sx〉, one can prove that its general solution on an
infinite-size lattice has the form [8,27]

〈sx(t)〉 = e− t
τ

∑
y∈Zd

σ y Jx− y

(
t

τd

)
, (2.6)

where σ y = 〈s y(t = 0)〉 and Jx is a shorthand notation for the
multi-index modified Bessel functions, Jx(u) = ∏d

i=1 Ixi
(u),

with Iα the usual modified Bessel function of order α.
If the initial configuration is such that a single +1 voter

sits at the origin and is surrounded by a “sea” of undecided
voters [i.e., sx(0) = ±1 with probability 1/2 for all x 
= 0]
then, since σx = δx,0, the solution to Eq. (2.3) reduces to
〈sx(t)〉 = e−t/τJx[t/(τd)]. By using now the asymptotic rela-
tion Iα(z) ∼ ez/

√
2πz, z � 1, valid for any real α, one finds

the asymptotic behavior of the average site magnetization,
〈sx(t)〉 ∼ [2πt/(τd)]−d/2. Thus, a single voter relaxes to the
average undecided opinion of the rest of the population.

The last result is exact but does not provide meaningful
information on how the steady state of the system is reached.
In this sense, a more interesting quantity is the two-body
correlation function determined by Eq. (2.5). In order to solve
this equation [8] one makes the assumption that at each time
t the state of the system is translationally invariant, so 〈sxs y〉
depends on the lattice vectors x and y only through their dif-
ference n = x − y. Then, by denoting Gn(t) = 〈sx(t)sx+n(t)〉,
Eq. (2.5) simplifies to

d

dt
Gn(t) = 1

τd
�nGn(t), (2.7)

which should be solved subject to the boundary condition
G0(t) = 〈s2

x(t)〉 = 1 for any t . In addition, it is natural to
choose the initial condition Gn(0) = δn,0, which corresponds
to a completely uncorrelated initial state. Equation (2.7) is
basically identical to Eq. (2.3) apart from numerical factors,
and one would be tempted to consider a solution of the form
G̃n(t) = e− 2t

τ Jn(2t/(τd)). However, G̃0(t) does not satisfy the
boundary condition. In order to maintain G0(t) = 1 throughout
the evolution, one can reformulate the problem posed by
Eq. (2.7) as the equivalent lattice diffusion problem with a
constant localised source at the origin and look for a solution
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of the form

Gn(t) = e− 2t
τ Jn

(
2t

τd

)
+

∫ t

0
dt ′ Sd (t − t ′) e− 2t ′

τ Jn

(
2t ′

τd

)
(2.8)

with Sd (t) the “strength” of the source. From a physical point of
view, this solution corresponds to placing a source G0(t = 0) at
the initial time at the origin and supplement it by an additional
input Sd (t)dt that is added during the time interval (t,t + dt)
to keep the overall value unchanged. Equation (2.8) evaluated
at the origin (n = 0) becomes

1 =
[
e− 2t

τd I0

(
2t

τd

)]d

+
∫ t

0
dt ′ Sd (t − t ′)

[
e− 2t ′

τd I0

(
2t ′

τd

)]d

.

(2.9)

By using now the Laplace transform of the strength, Ŝd (λ) =∫ +∞
0 dt Sd (t)e−λt , and the Laplace transform T̂d (λ) of the

function Td (t) = [I0(t)e−t ]d , one arrives at

Ŝd (λ) = −1 + 2

τd

[
λ T̂d

(
τd

2
λ

)]−1

. (2.10)

Using now the integral representation of the modified Bessel
function I0, namely I0(x) = 1

2π

∫ 2π

0 dq ex cos(q), it is possible
to express T̂d in terms of the Watson integrals,

T̂d (λ)= 1

(2π )d

∫ 2π

0
· · ·

∫ 2π

0
dq1· · · dqd

1

λ + d− ∑d
i=1 cos qi

,

(2.11)

and find an expression for Ŝd (λ). For example, in the case
d = 1, Ŝ1(λ) = √

(λ + 2)/λ. More complicated expressions
arise when d is larger and ultimately there is no closed form
for them. Nevertheless, we are just interested in the asymptotic
behavior of the source strength Sd , which in turn is given by
the low-λ limit of its Laplace transform [8],

Ŝd (λ) ∼

⎧⎪⎨⎪⎩
(

τ
2 λ

)− 1
2 if d = 1

(τλ)−1 ln−1[1/(τλ)] if d = 2 as λ → 0(
τd
2 λ

)−1
if d > 2

(2.12)
and thus

Sd (t) ∼
⎧⎨⎩

(
2t
τ

)− 1
2 if d = 1

ln−1
(

t
τ

)
if d = 2 as t → +∞

const. if d > 2
(2.13)

In d = 2, the long-time behavior of the source strength
in the integral is S2(t − t ′) � 1/ ln[(t − t ′)/τ ] � 1/ ln(t/τ ).
Using the asymptotic relations for Iα , and calling n = (n1,n2),
Eq. (2.8) implies

Gn(t) � 1

2πt
+ c

ln(t/τ )

∫ t

0
dt ′ e− 2t ′

τ In1

(
t ′

τ

)
In2

(
t ′

τ

)
(2.14)

as t → +∞ dropping corrections O(t−2), with c a numerical
factor to be determined. Using the integral representation
of the modified Bessel function In for integer values of n,

that is, In(t) = (2π )−1
∫ π

−π
dk exp[t cos k − i n k], Eq. (2.14)

reduces to

Gn(t) � c

ln(t/τ )

1

(2π )2

∫ π

−π

dk1

∫ π

−π

dk2 e−in·k f̂ (k,t)

+O
(

1

t

)
, (2.15)

where k = (k1,k2) and the function f̂ (k,t) is given by

f̂ (k,t) = τ
1 − e− t

τ
(2−cos k1−cos k2)

2 − cos k1 − cos k2
. (2.16)

Apart from a time-dependent prefactor, one can recognize in f̂

the dynamical structure factor of the system, which is defined
as the lattice Fourier transform of the space-time-dependent
correlation function,

S(k,t) = 1

ln (t/τ )
f̂ (k,t) ∝

∑
n∈Z2

Gn(t) ein·k. (2.17)

In the limit |k| → 0, f̂ can be approximated as f̂ (k,t) �
2 τ k−2(1 − e− t

2τ
k2

), where k = |k|, i.e., it becomes isotropic
in k space. Then the large-distance behavior of the correlation
function is characterized by the scaling form

Gn(t) ∼ 1

ln (t/τ )
f

( |n|√
t/2τ

)
, (2.18)

where the scaling function f is just given by the inverse Fourier
transform of f̂ . Equation (2.18) clearly displays the emergence
of a dynamical characteristic length �(t) which scales as

√
t

and the logarithmic violation of dynamic scaling.
An interesting quantity that can be extracted from the two-

body correlation function is the density of reactive interfaces
ρ, defined as the average value of the fraction of unsatisfied
bonds or, equivalently, the fraction of neighboring voters with
disagreeing opinions. This quantity is linked to the correlation
function through the relation

ρ(t) = 1

2

{
1 − 1

2d

d∑
i=1

[
Gei

(t) + G−ei
(t)

]} = 1

2
[1 − Ge(t)],

(2.19)
where ei are the lattice unit vectors. Note that the sum over the
nearest-neighbors can be lifted since the dynamics is isotropic
along the d principal directions of the lattice. From Eq. (2.8)
evaluated at n = (1,0, . . . ,0) and the fact that G0 ≡ 1, one
obtains

ρ(t) = 1

2
e− 2t

τ Id−1
0

(
2t

τd

)[
I0

(
2t

τd

)
− I1

(
2t

τd

)]
+ 1

2

∫ t

0
du Sd (t − u) e− 2u

τ Id−1
0

(
2u

τd

)
×

[
I0

(
2u

τd

)
− I1

(
2u

τd

)]
. (2.20)

Combining the latter equation with Eqs. (2.13) and the asymp-
totic relations I0(z) � I1(z) � ez[1/

√
2πz + O(z−3/2)] and

I0(z) − I1(z) � ez[1/
√

8πz3 + O(z−5/2)], the asymptotic
behavior of the density of reactive interfaces is found to
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be [8,12]

ρ(t) ∼
⎧⎨⎩t−

1
2 if d = 1

ln−1(t/τ ) if d = 2 as t → +∞.

a − bt−d/2 if d > 2
(2.21)

These results allow us to establish some conclusions on the
coarsening process in the voter model: In d � 2 the probability
that two voters at a given separation had opposite opinion
vanishes asymptotically, no matter how much distant they are,
and coarsening eventually leads to a single-domain final state.
In d > 2, an infinite system reaches a dynamic frustrated state,
where opposite-opinion voters coexist and continually evolve
in such a way that the average concentration of each type of
voters remains fixed. Dimension d = 2 is particular since it
lies at the border between the two cases. There is a coarsening
process which brings the system towards the single-domain
state, but it is very slow, since the density of active interfaces
vanishes only as 1/ ln(t/τ ).

As a last effort, we derive the two-time correlation function,
defined as Ax(t,t0) = 〈sx(t)sx(t0)〉, which is an interesting
quantity to look at since it provides information on the typical
time scale for the process to reach a steady state. For fixed
t0 and x0 ∈ Zd , let us introduce the function Fx(t ; x0,t0) =
〈sx(t + t0)sx0 (t0)〉 for any x ∈ Zd and t � 0. Dropping for
a moment the dependence of F on t0 and x0, it is easy
to see that it satisfies the same equation as the single-body
correlation function, i.e., d

dt
Fx(t) = 1

2τd
�xFx(t), apart from

a factor 1/2. Thus Fx(t) = e−t/τ
∑

y f yJx− y(t/τd), where
f y(x0,t0) = 〈s y(t0)sx0 (t0)〉. Then, assuming that at each time
the state of the system is spatially translational invariant and
using Ax(t,t0) = Fx(t − t0; x,t0), one gets

Ax(t,t0) = e−(t−t0)/τ
∑
n∈Zd

Gn(t0) Jn

(
t − t0

τd

)
, (2.22)

with the dependence on x disappearing consistently with the
hypothesis of translational invariance. As a simple check
we verify that setting t = t0 in Eq. (2.22) we find G0(t0).
Indeed, using Jn(0) = ∏d

i=1 Ixi
(0) = 0 for all n 
= 0 and

J0(0) = ∏d
i=1 Ixi=0(0) = 1 this fact is verified.

In the particular case t0 = 0, if the initial configuration is
completely uncorrelated, i.e., Gn(0) = δn,0, then the solution
reduces to

A0(t) = A(t,t0 = 0) = e−t/τ

[
I0

(
t

τd

)]d

(2.23)

with asymptotic behavior A0(t) ∼ [2πt/(τd)]−d/2.
In the limit t � t0 one can use the asymptotic expansion of

Jn(u) = ∏d
i=1 Ixi

(u) � [eu/
√

2πu]d with u = (t − t0)/(τd)
and, therefore,

lim
t�t0

Ax(t,t0) = [2π (t − t0)/(τd)]−d/2
∑
n∈Zd

Gn(t0). (2.24)

The t0-dependent last factor can be estimated as follows:

K(t0) ≡
∑
n∈Zd

Gn(t0) �→
∫

ddx C(x,t0) = 2π

∫
dr r C(r,t0)

(2.25)

with C(x,t) the space-time correlation function in the contin-
uum space limit. Setting d = 2 and using the scaling function
for C(r,t0) expressed in Eq. (2.18),

K(t0) = 2π

∫
dr

r

ln(t0/τ )
f

(
r√
t0/τ

)
∝ 2π

ln(t0/τ )

t0

τ
.

(2.26)

Going back to Eq. (2.24), this implies

lim
t�t0

Ax(t,t0) ∝ 1

ln(t0/τ )
(t/t0 − 1)−1. (2.27)

Further details on how to obtain the analytical results sketched
in this section can be found in Refs. [8,12,27,28].

We have already explained how the asymptotic behavior
of the space-time dependent correlation functions can be
obtained in a way that exploits the special properties of
the master equation. An alternative treatment of the many-
body correlation functions uses an equivalence between the
voter model and an auxiliary process of annihilating random
walks [11,13,29]. By using this approach, Scheucher and
Spohn obtained the same result for the dynamical structure
factor in the small k and long-time limits for d = 2,

S(k,t) ∼ 1

ln(t/τ )

1

κ2(t/τ )
F

[ |k|
κ(t/τ )

]
(2.28)

with κ(t) ∝ t−
1
2 and F (u) = 1

2u2 (1 − e−u2
), as found by

employing the master equation formalism. From here one
recovers the asymptotic form for C(x,t) in Eq. (2.18).

III. NUMERICAL ANALYSIS

In this section we present our numerical results. We first
compare them to the analytical ones recalled in Sec. II for
infinite-size systems and we later focus our attention on finite-
size effects.

We define the model on a square lattice with linear size
L and periodic boundary conditions. In all cases we start the
dynamics at time t = 0 with a random initial condition with
sx = ±1 with probability a half.

One unit of time (i.e., τ ) corresponds to L2 spin-flip
attempts. As the system coarsens the number of flippable spins
decreases and more attempts are necessary to change the con-
figuration significantly. In order to accelerate the simulations
we used a continuous-time Monte Carlo algorithm with the
voter model dynamic rule. Unless otherwise stated, the quan-
tities that we present below were averaged over 105 samples.

As we will be particularly concerned with the geometric
properties of the coarsening process, let us give here a number
of definitions that we will use in the rest of this section.
We define a cluster or geometric domain as the ensemble of
first-neighbor parallel spins. The cluster area is the number
of spins belonging to it. Any such domain is surrounded
by an interface that corresponds to the ensemble of broken
first-neighbor links surrounding the cluster. The total interface
length (external plus internal) is the number of such oppositely
oriented spin pairs.
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(a) t = 4096 (b) t = 8192 (c) t = 16384 (d) t = 32768

(e) t = 65536 (f) t = 131072 (g) t = 262144 (h) t = 524288

FIG. 2. (Color online) Snapshots of the voter model with linear size L = 640 and periodic boundary conditions. The times shown are
ti = 2i , with i = 12–19. With the same convention as in Fig. 1, the +1 voters are in medium gray (red), while the −1 voters are in white. We
highlight here the percolating clusters with different colors. Percolating clusters of +1 opinion are clear gray (green) and of −1 opinion are
black (blue). A single domain of “+1” voters was reached at t ≈ 6.7 × 105.

A. Snapshots

In Fig. 1 we show three series of snapshots of the bidi-
mensional voter model (first row) and the ferromagnetic Ising
model at times t = 4, 64, 512, 4096 (henceforth all numerical
times are expressed in MCs and we omit this time unit to
lighten the notation). The Ising model (IM) has been quenched
to zero temperature (second row) and the critical point (third
row) and it evolves with a heat-bath Monte Carlo algorithm.
Red and white points represent the two spin configurations.
The snapshots illustrate the coarsening phenomenon induced
by the different microscopic dynamics. In the case of the 2dIM
instantaneously quenched to T = 0 the dynamics are purely
curvature driven: for sufficiently long times, all the interfaces
move with a local velocity that is proportional to the local
curvature [14,15]. As a result, the interfaces tend to disappear
independently of one another, i.e., there are no coalescence
processes. Instead, in the voter model the dynamics are driven
by interfacial noise. In other words, if the initial configuration
consisted of a single flat interface between two domains of
opposite opinion, opinions would slowly diffuse from one
domain into the other and, after a sufficiently long time,
the original sharp wall would become a diffuse interface. As
one can see from the snapshots, phase ordering still occurs
but the resulting domains are very jagged and preserve their
fractal geometry even at the late stages of evolution. Note,
however, that the dynamics of the zero temperature Ising model
and the voter model have one important feature in common,
namely, they are both characterized by the absence of bulk
fluctuations. But they also show one important difference in
the morphological properties of their interfaces. Indeed, the
domain walls in the voter model are more similar to the ones

in the critically quenched Ising model, shown in the third series
of snapshots in the same figure, than to the ones in the Ising
model evolving at any subcritical temperature. The critical
configurations are, though, plagued with bulk fluctuations, and
these are absent in the voter model.

In Fig. 2 we display a series of snapshots of the voter model
for even longer times than the ones used in Fig. 1 highlighting
the percolating clusters of the two types. These configurations
could be compared to the ones shown in Ref. [24] for the
2dIM quenched to T = 0. We note that the identity and form
of the percolating clusters are not preserved in the first seven
snapshots, until the system enters the late stage of evolution
and finds full consensus.

In Sec. III F we identify the largest cluster in the system
and we study several of its properties letting us obtain in this
way the exponent linking the system size to the time needed to
reach percolation, and the fractal dimension of the percolating
cluster and the one of its perimeter.

In the case of a finite lattice with periodic boundary
conditions one can distinguish two types of domains: the ones
that are homotopic to a point on the torus and the ones that
wrap around the hole and cannot be completely shrunk without
breaking into disconnected pieces. Even though the former can
have a linear size comparable or even bigger than the one of
the system, we identify the percolating clusters as the ones that
wrap around the torus hole only.

B. Interface density

In Sec. II we provided an expression for the long-time
behavior of the fraction of active interfaces. In the disordered
initial condition ρ(0) � 1/2. In d = 1 the voter model is
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FIG. 3. (Color online) Concentration of active interfaces ρ(t) =
[1 − 〈sx(t)sx+ei

(t)〉]/2 as a function of time. Data for L = 160 and
640 are presented in a log-linear form. The error bars are smaller
than the symbol sizes. The dotted (black) line represents the analytic
asymptotic form ρ(t) = a/(2 ln t + b) with a = 3.14 and b = 5.54.
In the inset we show b = π/ρ(t) − 2 ln t as a function of t for
different lattice sizes together with the analytic value 5.54 shown
with a horizontal dashed line. See the main text for a discussion.

equivalent to the Glauber IM and ρ(t) decays as t−1/2 while
in d > 2 the density of interfaces converges to a constant,
ρ(t) ∼ a − bt−d/2. In d = 3 the model has, then, blocked
configurations asymptotically, as in the 2d and 3d IM at T =0
[30,31]. In the case of d = 2, ρ(t) decays logarithmically and
several authors [32,33] tried to study this particular behavior
with Monte Carlo simulations. By starting from Eq. (2.20) it

is possible to obtain a more refined estimate of ρ(t) [8],

ρ(t) = π

2 ln t + ln 256
+ O

(
ln t

t

)
. (3.1)

This result has to be contrasted to the algebraic decay, ρ(t) ∼
t−d/zd , of curvature-driven domain growth. For instance, in
the 2dIM model this same quantity decays as ρ(t) � �(t)−d =
t−d/zd = t−1, with �(t) the characteristic growing length and
zd = 2.

In Fig. 3 we present numerical data for ρ(t) in a voter model
with linear size L = 160 and 640 with times reaching t = 106.
The analytic result in the asymptotic limit f (t) = a/(2 ln t +
b) with a = π and b = ln 256 � 5.54 accompanies the data as
a dotted (black) line. We have performed detailed fits of the
data finding that the parameter a approaches the analytic value
quickly. We then fixed a = π and we measured the parameter b

by studying b = π/ρ(t) − 2 ln t as a function of t for different
system sizes [ρ(t) are the measured values]. We show the result
of this analysis in the inset to the same figure. The approach
to the analytic value shown as a black dotted horizontal line is
indeed very slow. This fact explains why several authors did
not see the asymptotic law in their numerical data and used
instead a different logarithmic form, ρ(t) = C ln−σ t , with an
effective exponent σ ≈ 0.6, to fit their data [8,33,34].

C. Consensus time

With much longer simulations we were able to measure the
average consensus time, 〈T 〉 = N−1

s

∑Ns

i=1 Ti with Ti the time
required by the i-th sample to reach full alignment and Ns

the total number of samples. In Fig. 4(a) we show the results
obtained by averaging over at least 7 × 103 realisations of the
dynamics for each value of the lattice size L. The averaged
consensus time approximately follows the law 〈T 〉(L) ∼ L2.

2
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FIG. 4. (Color online) (a) The average consensus time 〈T 〉 (red diamonds) for different values of the lattice linear size L in a log-log plot.
The value of 〈T 〉 has been computed over approximately 105 samples for the smaller sizes and over about 7 × 103 samples for L = 640. We
report also the approximate width of the distribution, computed as the standard deviation of the data collected, δT = [N−1

s

∑Ns

i=1 (ti − 〈T 〉)2]1/2,
as vertical dashes with length 2δT on each data point. Roughly, δT /〈T 〉 � 0.74 for all the sizes. The function C xη was fitted to the few
data points available, yielding η � 2.21 and C � 0.75. By introducing a logarithmic prefactor, C xη ln x, the fit yields instead η � 2.05 and
C � 0.33. In the upper part of the same panel we report the skewness γ and the kurtosis κ of the sampled distributions in order to quantify the
deviations from a Gaussian form. (b) The distribution of consensus times for different system sizes L given in the key.

042109-7



TARTAGLIA, CUGLIANDOLO, AND PICCO PHYSICAL REVIEW E 92, 042109 (2015)

However, in Sec. II we recalled that the correlation functions
suffer from logarithmic correction. Therefore, we tried to
take into account this kind of correction by fitting the
function C Lη ln L to the data (L,〈T 〉(L)) and we obtained
η = 2.05 ± 0.01, C = 0.33 ± 0.02, and a better agreement
with the numerical data than with the pure power law.

An estimate of the characteristic width of the probability
distribution of the consensus time is given by the standard
deviation, δT = [N−1

s

∑Ns

i=1 (Ti − 〈T 〉)2]1/2. The relative
standard deviation δT /〈T 〉 was found to lie in the interval
0.70–0.75 for every L and no particular dependence on the
number of samples was observed for Ns > 103. To highlight
this behavior we added vertical dashes of width 2δT (L)
centered on each one of the data points in Fig. 4(a). We stress
that these dashes do not represent any type of error on the
numerical value of the average consensus time but only a
measure of the average dispersion of our data on the available
population of samples.

In Fig. 4(b) we show the histogram of consensus times
pCT(T ,L) for the different lattice sizes that have been
simulated. The curves have approximately all the same shape
when plotted in a log-log scale, so it is reasonable to assume
the following scaling ansatz:

pCT(T ,L) = L−α P
( T

Lβ ln L

)
(3.2)

with exponents α and β to be determined. Equation (3.2)
simply states that the probability distributions of the consensus
time for finite systems with different size have identical form,
apart from a prefactor, if time is rescaled by a typical time
Ttyp ∼ Lβ ln L. This is a natural choice since 〈T 〉 ∼ L2 ln L

and thus we expect β to be very close to 2. In Fig. 5 we show
the result of the scaling for β = 2 and α = 2.22. We could
not appreciate significant improvements of the collapse for
values of β that differ slightly from 2, so our assumption was
confirmed.
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10−1

1

10−2 1

p C
T
(T

,L
)
L

α

T /(L2 ln L)

L = 40
80

160
320
640

FIG. 5. (Color online) Rescaled histogram of the consensus time
pCT(T ,L) for different lattice sizes. Time T is rescaled by L2 ln L,
while the value of pCT(T ,L) is multiplied by Lα . The best collapse
of the different curves was obtained for α � 2.22.

The upper part of Fig. 4(a) displays the skew-
ness, γ ≡ N−1

S

∑Ns

i=1(Ti − 〈T 〉)3/δT 3, and kurtosis, κ ≡
N−1

S

∑Ns

i=1(Ti − 〈T 〉)4/δT 4 − 3, of pCT(T ,L) as a function of
system size. The deviation from zero of the former quantifies
the asymmetry of pCT and of the latter gives a further idea of
the non-Gaussian character of the distribution. The skewness
seems to have converged to a system-size-independent value
that is slightly higher than 1, while the kurtosis still varyies
significantly for different system sizes. The last data points, for
L = 640, are clearly not converged and many more samples
would be needed to reach a good estimate for them.

D. Persistence and autocorrelation

In general one defines Pn(t) as the probability distribution
for the number of opinion changes n experienced by a voter
during the time interval (0,t), with n ∈ {0,1,2, . . . } [27]. The
first of these quantities, P0(t), is equal to the fraction of
voters who did not change opinion up to time t , i.e., the
persistence probability [35]. In terms of spins, it measures
the fraction of sites that have not experienced any spin-flip
up to time t . In most statistical physics models [35], the
persistence decays in time with a power law t−θ with a new
independent persistence exponent θ . In the two-dimensional
Glauber-Ising model at zero temperature, the exponent θ has
been evaluated numerically with high precision and it takes
the value θ ≈ 0.199(2) for initial conditions with short-range
correlations [36]. The asymptotic behavior of P0 in the voter
model in d � 2 was first found numerically [27] and then
computed analytically with a mapping onto a continuum
reaction-diffusion process and the use of field theoretical
tools [37]. In d = 2,

P0(t) ∼ k exp[−a ln2 t + O(ln t)] (3.3)

for our choice τd = 2. The difference in the behavior of the
persistence between the 2dIM and the 2d voter model was
investigated by Drouffe and Godrèche [26], who introduced
a class of stochastic processes on a 2d square lattice that
interpolate between these two. They also confirmed the
unusual time dependence of the persistence decay in the 2d

voter model with numerical simulations.
In this context, we tried to recover the theoretical prediction

in Eq. (3.3) with simulations of the voter model with different
sizes. We present data for L = 160 and L = 640 in Fig. 6(a).
By fitting the simulation data to the function in Eq. (3.3) we
found a ≈ 0.26 and k ≈ e0.36 � 1.44. The estimated value of
a is quite close to the theoretical value predicted by Howard
and Godrèche [37], who found a � 1/4 with corrections of
order 0.01.

In Sec. II we showed that the autocorrelation with a
completely uncorrelated initial configuration, A0(t), has the
asymptotic behavior A0(t) � (πt)−1 in d = 2, with the choice
τ = 1. In Fig. 6 we show numerical data for A0(t) in a system
with linear size L = 640. As one can see, the data are in good
agreement with the theoretical prediction.

In Fig. 7 we plot, instead, the two-time autocorrelation
function A(t,t0) for values of t0 > 0, and two different lattice
sizes. At sufficiently long waiting-time t0 the curves tend to
flatten, losing their decay. This is clearer in the left panel where
data for the smaller size, L = 160, are shown. In this case,
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FIG. 6. (Color online) (a) The logarithm of the persistence probability, ln P0, against ln2 t , for a system of size L = 640. A linear fit to the
data in this scale, f (x) = b − ax, gives a � 0.26 and b � 0.36 (the fitting curve is showed as a dashed blue line). The persistence has been
calculated as an average over 5 × 104 realizations of the dynamics. Data for L = 160 are shown in the inset along with their fitting curve.
(b) Time dependence of the autocorrelation with the initial configuration, A0, in a double logarithmic scale. The function f (t) = at−b has been
fitted to the numerical data, yielding b = 0.995 and a = 0.308, which are both in agreement with what theory predicts, i.e., A(t) ∼ (πt)−1,
shown with a dark dashed segment. In the inset we show data for L = 160 analyzed in a similar fashion.

all curves reach a plateau for t − t0 � 104, signaling that the
steady state has been reached. Indeed, we have calculated the
average consensus time for a system with size L = 160 (see
Fig. 4), and we found T160 � 6 × 104, which is compatible
with the behavior of the autocorrelation function. The same
feature is expected to arise for the larger size L = 640 at a still
longer time delay. In the case L = 640 we scaled the data to the
analytic form (2.27) by plotting ln t0 A(t,t0) against t/t0 − 1
in Fig. 8. The scaling is very good for t0 � 256.

The numerical analysis of several averaged correlation
functions that we have presented so far is in good agreement
with the theoretical predictions for infinite-size systems re-
called in Sec. II. However, we will see in the following part of
this section that by studying other geometrical observables, we
get access to aspects of the dynamics that remain hidden in the
correlation functions. This analysis will allow us to uncover
another dynamic regime.

E. Averaged number of wrapping clusters

We analyzed the time dependence of the average number
of wrapping domains per sample, NP (t ; L), by supposing that
it only depends upon a scaling variable,

NP (t ; L) = N
(

t

LαP

)
, (3.4)

with αP a parameter to be determined and N (u) a scaling
function. At strictly zero argument N (0) = 0 since the
initial random configuration is below the critical percolation
threshold. At infinite value of the argument N (∞) → 1 since
the final state of full consensus has a single domain. In order to
estimate αP we tried to collapse NP (t ; L) for different values
of L by plotting it against the rescaled time t/LαP with trial
values of αP . The values of αP that gave the best collapse were
found in the range 1.65–1.68, and in Fig. 9 we present the
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FIG. 7. (Color online) The two-time autocorrelation function A(t,t0) against time-delay t − t0 for different values of the waiting-time t0.
Panels (a) and (b) show data for systems with linear size L = 160 and L = 640, respectively.
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FIG. 8. (Color online) The two-time correlation function A(t,t0)
times ln t0 against (t/t0 − 1), for different values of the waiting time
t0, in a log-log scale. A segment with slope −1 is shown as a guide-
to-the-eye to stress the good agreement with the exponent found
analytically.

case

αP = 1.667. (3.5)

Even though the quality of the collapse for t/LαP < 0.1 is
very good, we must point out that this is a quite rough
estimate, since we could not appreciate remarkable differences
between slightly different values of αP in the aforementioned
interval. Deviations from the desired scaling form NP (t ; L) ∼
N (t/LαP ) are observed for t/LαP � 0.1. These are indeed
expected since the system enters the next dynamic regime of
approach to full consensus. As u increases from zero, N (u)
increases monotonically up to a certain value greater than 1.
At this stage of the dynamics there are, then, states with more
than one wrapping cluster. The scaling function next decreases
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FIG. 9. (Color online) Average number of wrapping domains
NP (t,L) against rescaled time t/LαP , with αP = 1.667, for systems
of sizes L = 20, 40, 80, 160. As t → +∞ the curves should converge
to 1 (single domain state).

converging to 1 from above. The exponent αP sets the typical
time required for the system to reach a regime with wrapping
clusters to tP ∼ LαP .

F. The largest cluster

We identified the largest cluster at each step of evolution and
we computed several of its properties. This analysis allows us
to distinguish whether the largest cluster has wrapped around
the system in one or more directions and, moreover, to which
kind of criticality it belongs.

We first measured the averaged number of its interfaces
with positive, vanishing, and negative curvature, 〈N+〉, 〈N0〉,
and 〈N−〉, respectively. A nonpercolating cluster has a single
external interface with positive curvature; we therefore call
〈Nep〉 = 〈N+〉 (with ep for external perimeter). A cluster that
percolates in one direction has two interfaces with vanishing
curvature. The interfaces with negative curvature are internal
to the cluster and surround its holes.

Another interesting observable is the area of the largest
cluster Ac that we normalize as Ac/L

DA with DA a fractal
dimension that we need to find. We recall that the fractal
dimension of cluster areas in 2d site percolation [38,39] is

D
cp
A � 1.896. (3.6)

Finally, we calculated the averaged total length of the
boundary lc as the sum of the length of external and internal
interfaces described above. We also normalized this length
as lc/L

DH with DH a fractal dimension. For the sake of
comparison, we recall that for 2d site percolation the cluster
hull fractal dimension [40,41] takes the value

D
cp
H = 1.750. (3.7)

All these quantities show different scaling properties at
short times before percolation is reached and at longer times,
when the percolating cluster has established, and the further
evolution takes the system to the final absorbing state. In the
former time regime, the data scale as a function of t/LαP with
αP = 1.667, see all panels in the right column in Fig. 10 , while
in the latter they do as a function of t/L2 (apart from logarith-
mic corrections), see all panels in the left column in the same
figure. The value of αP is rather large in the voter model (much
larger than in the 2dIM where αP = 1/2 [24]) and this makes
the distinction between the regime of approach to percolation
and the further evolution towards full consensus very hard.

The averaged number of interfaces with positive curvature
smoothly decays from one to zero as more and more
samples wrap around the sample in at least one direction, see
Figs. 10(a) and 10(b). Concomitantly, the averaged number
of maximal size clusters that wrap around the sample in one
direction increases in time from zero initially to a value that
is close to 0.9 to later decay again to zero when the cluster
percolates in the other direction as well, leaving only internal
interfaces in the system (not shown). The averaged number of
internal boundaries has a very similar qualitative behavior to
the one of the zero-curvature ones (not shown either). Panel (a)
confirms the scaling with t/L2 at long times while panel (b)
indicates that the good scaling variable at short times is t/LαP .

Figures 10(c)–10(f) display the area of the maximum
size cluster and the total perimeter length, respectively. The
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FIG. 10. (Color online) The largest cluster. The horizontal axes are t/L2 and t/LαP with αP = 1.667 in all panels in the left and right
columns, respectively. [(a) and (b)] The averaged number of external interfaces (only for nonpercolating clusters). Its area Ac normalized by L2

in (c) and LDA with DA = 1.89583 in (d). [(e) and (f)] Its total perimeter length in the voter and 2dIM quenched to T = 0 (inset) normalized
by LDH with DH = 1.75.
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asymptotic approach of Ac/L
2 in Fig. 10(c) to one and lc

in Fig. 10(e) to zero confirm that the systems approach full
consensus. They also prove that there are no blocked states in
the voter model as there are in the 2dIM at T = 0 [42–46].

The scaling of the horizontal axis in Figs. 10(c) and 10(e) is
intended to work at long times only. The persistent deviations
from scaling should be due to the fact that we did not include
in the scaling variable corrections that depend logarithmically
on the system size, although we know from the analysis of the
consensus time that these should exist.

The scaling of the vertical axis in Fig. 10(d) is intended
to determine the fractal dimension of the area of the largest
cluster, in the short-time regime. We used different values
of DA and we found that the most satisfactory collapse
in the short-time regime is found for DA in the interval
1.89–1.93. In Fig. 10(d) we show the scaling found using the
fractal dimension of 2d critical site percolation, DA = D

cp
A �

1.89583, which is within this interval (while DA for other
critical states lies outside this interval, i.e., Dci

A = 1.948 at the
critical Ising point). Once again, due to the large value of αP

the two relevant asymptotic regimes are not well separated,
and we cannot do better than this in the determination of DA.

Similarly, the scaling of the vertical axis in Fig. 10(f) should
determine the fractal dimension of the boundary of the largest
cluster, DH (although we stress that we show data for the total
interface length here). Using DH = D

cp
H = 1.75 we see that all

curves cross at t/LαP � 1 suggesting that critical percolation
is reached at around tP � LαP . Other choices for the value of
DH do not allow for data collapse at any value of the scaling
variable. Furthermore, one could argue that the scaled data for
t/LαP are slowly approaching, for increasing system size, a
flat form.

In the inset to Fig. 10(f) we show, for comparison, the same
scaling plot, lc/L

DH against t/LαP , for the zero temperature
Ising model quenched from T0 → ∞, with DH = 1.75 and
αP = 0.5. Apart from the rather small system sizes, L =
40, 80, the data for the larger systems show a very good
collapse over a rather large time window. In the Ising model
the two asymptotic time regimes are rather well separated
(as αP = 0.5 differs considerably from zd = 2) and this fact
contributes to the good data collapse.

G. Two growing lengths

We conclude that, as in the 2d Ising model with noncon-
served order parameter [21–24], the dynamics of the finite-size
2d voter model takes place in two distinct regimes: The system
first develops wrapping clusters of critical site percolation
kind; once these are established, the further growth is a more
usual coarsening process. The two growing lengths controlling
the evolution in the two regimes are

�P (t) � t1/αP , �G(t) � t1/zd . (3.8)

In the Ising model on a square lattice the exponents αP and
zd differ, αP = 1/2 [24] and zd = 2. Since αP is so small, for
the system sizes used in numerical simulations the approach
to percolation occurs in a few steps and the time window
is not sufficiently long to allow for a careful dynamic scaling
analysis. Instead, in the voter model, αP � 1.667 is quite large
and does not differ much from zd = 2. The system takes much
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FIG. 11. (Color online) Instantaneous domain area number den-
sities. Main plot: 2d voter model with linear size L = 640. Inset:
2dIM quenched to T = 0 from T0 → ∞ and L = 640. In both cases
the curves are presented in a double logarithmic scale and the times
at which the data are collected are given in the key.

longer to reach critical percolation and the advantage is that a
rather wide time window can be explored in which the relevant
growing length is �P (t).

H. Density of domain areas

We now turn to the statistics of domain areas. We recall that
we defined a cluster or a domain as the connected ensemble of
nearest-neighbor parallel spins and its area as the number of
spins in it.

Figures 11 shows raw data for the time-dependent number
density of domain areas in systems with linear size L = 640.
Initially, the curves show no particular structure, as the random
initial condition is noncritical and the weight of the distribution
at large areas drops significantly. However, as time elapses, a
power law extending over several decades develops, as already
noted by Scheucher and Spohn [11]. Moreover, a bump with
support over areas that are of the order of magnitude of the
size of the system also appears. These areas are the ones of
clusters that wrap around the system, as the ones discussed
in the previous subsection. The height of the bump increases
in time. It tends to become stable at the longest time scales
used, t � 17 × 103. (For a smaller system size, say L = 160,
the same features are realized but, in contrast, after growing
in height the bump tends to wash out after times of the
order of 2 × 103.) This feature is very similar to what was
observed in the 2dIM quenched to zero temperature, although a
stable bump, linked to the system reaching critical percolation,
establishes at a much shorter time scale, tP � 5 for similar
system sizes [21,22] as αP = 1/2 in this case [24]. Indeed, the
curves for t = 0, 1, 4 in the inset are qualitatively identical
to the ones for t = 0, 8,16384 in the main plot. (We will
make a quantitative comparison between the behavior in the
two models below.) In the case of the 2d voter model we
observed that percolating clusters can appear in early stages of
the dynamics, but they tend to break soon after their formation
and reappear later on, taking longer to establish a stable pattern,
see Fig. 2. In particular, for a system with linear size L = 640,
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FIG. 12. (Color online) Time-dependent number density of do-
main areas, nd , multiplied by Aν with ν � 1.98 for L = 640. As the
system comes closer to the percolating state, the number density of
domain areas tends to the time-independent form nd (A,t) ∼ cd Aν ,
save for a correction due to wrapping domains in the bump. The value
of ν was estimated by fitting the aforementioned functional form to
the data corresponding to the latest time. The horizontal line is at
cd ≈ 0.022.

a stable structure of percolating domains establishes only after
a time of the order of tP ∼ 105.

The analytic and numeric analysis of the 2dIM quenched
from infinite to zero [21,22] or the critical [23] temperature
showed that the number density of areas approaches a scaling
form

Aν nd (A,t) = �

[
A

�DA (t)

]
, (3.9)

where DA is the fractal dimension of the areas studied, �(t) is
the relevant growing length, and � a proper scaling function.
After tP this scaling has to be corrected by an additive term
that takes into account the percolating clusters that had already
established (the bump). In the zero-temperature quenches of
the 2dIM the approach to percolation was so fast that the study
of this scaling for times such that the relevant growing length
is �P (t) was not performed. In the critical quenches in [23]
a triangular lattice for which the system was already at the
critical percolation point initially was used. Here, with the
voter model, we have the possibility of studying the dynamic
scaling in the regime of slow approach to percolation in detail,
by taking advantage of the large value of αP .

The same data sets used in Fig. 11 are plotted in the form
Aν nd (A,t) against A in Fig. 12 with ν � 1.98 for L = 640.
The value of the exponent ν was found by fitting the data
nd (A,t) corresponding to the longest time reached in the
simulation (t = 2048 for L = 160, not shown, and t = 16384
for L = 640) with the power law cdA

−ν , in the range of areas
[102, 103] for L = 160 and [102, 104] for L = 640. We found
cd = 0.0207 ± 0.0001 and ν = 1.972 ± 0.005 in the case
L = 160, and cd = 0.0220 ± 0.0001 and ν = 1.980 ± 0.001
for L = 640.

The value of the exponent ν increases very weakly with
L and should be larger than 2 in the infinite-size limit
to ensure that the average area of nonpercolating domains,
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FIG. 13. (Color online) Number density of domain areas multi-
plied by Aν against the rescaled area A/tα for L = 640. The exponent
ν takes the same values as in Fig. 12: ν � 1.98. The value of α

that yields the best time scaling is α � 1.19. A fit to the function
f (u) = c ua of the data at t = 64 over the interval [1,100] yields
a ≈ 0.26. The red dashed line was added to better visualise this
power-law behavior. Inset: The same scaling plot for the 2dIM after
a quench to T = 0, at five short times given in the key. The plateau is
at 2cd � 0.044 as explained in Ref. [21]. The power law shown with
a dashed line was drawn with the same value of the exponent a as for
the voter model.

∫
dA A nd (A,t), is a finite quantity. However, the approach to

the asymptotic limit is so slow that it is very hard to get closer
to it numerically. This particular feature of the dynamics was
also observed in Ref. [11] for the voter model and we stress
that, in the 2dIM, the expected value ν = 2.05 is found only
for a very careful choice of the areas to fit.

The value taken by the constant cd is very relevant to our
discussion. Indeed, it was used in Refs. [21,22] to distinguish
the criticality of large-scale domains in zero-temperature
quenches of the 2dIM from equilibrium at T0 → ∞ and T0 =
Tc. More precisely, the area distribution of clusters of occupied
sites at critical site percolation and, say, domains of positive
spins at the critical Ising point are given by nd (A) � 2C/Aτ cp

and nd (A,0) � C/Aτci

, respectively, with 2C � 0.023, and
τ cp = 1 + d/D

cp
A and τ ci = 1 + d/Dci

A the Fisher exponents
related to the fractal dimensions of the domain areas under
the two critical conditions. Cardy and Ziff [47] obtained these
universal constants analytically for the number density of hull-
enclosed areas instead of domain areas using a Coulomb gas
approach. Arguments presented in Ref. [22] suggest that very
close values should apply to domain areas as well. Numerical
simulations on the square and triangular lattice confirmed the
value obtained with field-theoretic methods for hull-enclosed
and domain areas [22,24,47]. After a zero-temperature quench
of the 2dIM with initial states drawn from infinite-temperature
and critical-temperature conditions, the evolving large-scale
areas are distributed algebraically and the number densities
have Fisher exponents and constants in the numerator that are
the ones cited above for critical site percolation (see the inset
to Fig. 13) and critical Ising conditions, though both multiplied
by a factor of 2 when clusters of both (up and down) species
are counted [22].
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FIG. 14. (Color online) (a) Log-linear plot of the space-time correlation function along a principal direction of the lattice, i.e., C(x,t) =
〈sxei

(t)s0(t)〉, at different times for a system with linear size L = 640. (b) The same data as in panel (a) multiplied by ln t and plotted against
the scaled distance x/

√
t in linear-log scale. See the main text for a discussion.

In the voter model with random initial conditions we
find cd � 0.022 that is consistent with cd = 2C (within
numerical accuracy), see Fig. 11, and with critical Ising initial
configurations we find a constant taking the value cd/2 = C

(not shown). This result confirms the reduction of the number
density of finite areas by two for initial conditions with
long-range correlations with respect to the ones with only
short-range correlations.

In Fig. 13 we show Aν nd (A,t) against the rescaled area
A/tα for systems with L = 640. The value of α that allowed us
to obtain the best collapse was found to be approximately equal
to 1.19. This value is in good agreement with the prediction
�

DA

P (t) � tDA/αP = t1.90/1.67 = t1.14. In the inset we perform
the same analysis on the 2dIM quenched to T = 0, by focusing
on the very short time dynamics such that t � tP . In agreement
with the proposal, the curves collapse if one uses A/tDA/αP =
A/t (187/96)/0.5 = A/t3.9.

Apart from deviations caused by the appearance of wrap-
ping domains in the bump, for large values of t all curves seem
to have the same behavior, namely two distinct regimes: For
A/tα � 0.1 there is a nearly flat region, which would mean
that �(u) ∼ const and thus nd (A,t) ∼ A−ν , i.e., the statistics of
domain areas is independent of time; for A/tα � 0.1 instead,
the scaling function seems to behave as an increasing power
law �(u) ∼ c ua , with a self-similar statistics of domain areas
in the sense that it depends only on A/tα . A fit of the
data for the shortest time in Fig. 13 on the interval [1,100]
of the scaling variable u = A/tα , yields c = 0.034 ± 0.001
and a = 0.257 ± 0.001. Analogously, for the case L = 160
we obtained c = 0.032 ± 0.001 and a = 0.264 ± 0.001 (not
shown). The existence of two distinct regimes for small and
large values of A/tα is also observed in the Ising model as
shown in the inset of Fig. 13. Moreover, for large values of
A/tα we also observe an increasing power law (also shown in
the inset) with a very similar power, i.e., c = 0.024 ± 0.001
and a = 0.262 ± 0.001 for L = 640.

Coming back to the domain area statistics, as one can
see from the plots, the flat region for A/tα � 0.1 becomes

larger as time increases, while the complementary region of
larger domains shrinks, until disappearing. Note that as time
increases the percolating (wrapping) domains become more
and more predominant and eventually the number domain
density converges to the absorbing state form which is just
a δ function centered at A = L2. Even though this fact does
not rule out the possibility of a transient regime in which
more than one stable percolating clusters coexist, similarly to
what happens in the zero-temperature 2dIM on a finite lattice,
we found that it establishes during a very short time period
(compared to the whole duration of the dynamics) before the
consensus state is reached, so it is somehow difficult to “catch”
it in the domain area statistics.

I. Space-time correlation function

Having established the existence of two dynamic growing
lengths in a finite-size system, we now put the scaling form
of the space-time correlation, Eq. (2.18), to the numerical
test. Figure 14(a) shows data for C(r,t) on a lattice of linear
size L = 640. The correlation function was calculated only
along a principal direction of the lattice (e.g., the horizontal
direction), as C(x,t) should be isotropic and depend on |x|
only at distances much longer than the lattice spacing. In
Fig. 14(b) the correlation function multiplied by ln t is plotted
against the scaled distance x/

√
t . The curves at different times

tend to collapse even though they deviate for large values of
x/

√
t . These deviations are due to finite-size effects: Since

we have taken periodic conditions at the boundaries, the
data at distances of the order of the lattice size, specifically
x � L/2, are much affected by the boundaries. One reckons
that, consistently, the deviation from the scaling law for large
x/

√
t occurs at smaller values of the scaling variable at longer

times.
However, from the analysis of the clusters we now known

that in the dynamic regime in which percolating clusters
develop there is another characteristic length in the prob-
lem, �P (t). Accordingly, the scaling form of the correlation
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FIG. 15. (Color online) C(x,t) ln t against scaled distance x/t1/zd with zd = 2 the dynamical exponent in a linear-log plot. In panel (a)
data are for L = 80 at different times given in the key. Panel (b) reports data for different Li and the corresponding times ti such that L

αP

i /ti
is held constant. αP ≈ 1.667 is the exponent in the relation tP ∼ LαP , with tP the time needed for stable percolating domains to establish (see
Sec. III F for more details on tP ).

function has to be modified to capture the dynamics in
both dynamic regimes (see Ref. [24] for this analysis in the
2dIM). We therefore introduce a new two-variable scaling
function g(u,v),

C(x,t ; L) = 1

ln (t/τ )
g

[ |x|
�G(t/τ )

,
�P (t/τ )

L

]
, (3.10)

such that for t � tP � LαP , the new scaling variable is close
to 1, �P (t)/L � 1, and one recovers the infinite-size limit.
This suggests that the data for C(x,t ; L) at different times
ti and sizes Li , chosen in a such a way that the ratio
χ = �P (ti)/Li is kept constant, should collapse when plotted
against the scaled distance x/�G(t) � x/

√
t , since zd = 2 in

the voter model. In order to put this proposal to the test we
computed the correlation function on square lattices with sizes
Li = 2iL0 for L0 = 80 and i = 0 - 4 and times ti = 2 i αP t0,
with t0 = 256, such that χ = t

1/αP

0 /L0. As far as the exponent
αP is concerned, we estimated it from the analysis of the largest
cluster obtaining αP ≈ 1.667, see Sec. III F, and we confirmed
its value with the study of the time evolution of the number of
percolating domains, see Sec. III E.

Figures 15(a) and 15(b) present the scaling forms in
Eqs. (2.18) and (3.10), respectively. It is clear that the
introduction of an extra scaling variable with the dependence
on the new length scale allows us to achieve a much better data
collapse.

IV. CONCLUSIONS

The main goal of this work was to improve the under-
standing of coarsening in models with microscopic dynamics
that are not driven by the minimisation of a thermodynamic
potential and do not satisfy detailed balance. More precisely,
we focused on a Z2-symmetric lattice model with pairwise
interactions driven by interfacial noise, viz. the 2d linear voter
model on a square lattice.

We showed that the dynamic evolution of the bidimensional
voter model on a square lattice proceeds in two distinct
dynamic regimes. In the first one, the model approaches critical
site percolation. The time needed to reach one such typical state
diverges with the size of the system algebraically, tP � L1/αP ,
with the exponent αP � 1.667 that is much larger than the one
previously evaluated in the 2dIM quenched to T = 0 [23].
Next, the model evolves following a different mechanism in
which consensus is progressively attained. The characteristic
growing length for this process is also algebraic, �(t) � t1/zd ,
though with a different dynamic exponent, zd = 2. In the
social dynamics context, the first process can have important
consequences.

We based the conclusions above on the careful use of
numerical methods. We first tested this approach against the
theoretical predictions that were already available for the
infinite-size voter model. Most of the computed quantities,
such as the fraction of active interfaces, the autocorrelation
function, and the persistence, were found to be in very
good agreement with the analytic predictions for infinite-
size systems. In particular, the peculiar logarithmic decay
of the magnitude of the two-body correlation function and
of the fraction of active interfaces was recovered, even
though these results could be improved by simulating larger
systems on very long times. We then focused on the spin
configurations and from the analysis of their statistical and
geometric properties we uncovered the approach to critical
site percolation. Once the new growing length scale identified,
we used it to improve the scaling of the space-time correlation
function for finite-size systems.

In a series of papers, the role played by the approach to
critical percolation in spin models with Ising [21–24,48,49]
or Potts [50,51] variables in two or three dimensions [52] was
studied. In all these cases the dynamics satisfy detailed balance
and eventually take a finite-size system to thermal equilibrium.
In this paper we explored a different kind of microscopic
dynamics that does not satisfy detailed balance and approaches
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an absorbing state asymptotically. We still found a similar
approach to critical percolation as in the “equilibrium” cases
albeit with a much slower growing length.

In Ref. [24] we observed that for the Ising model with mi-
croscopic dynamics satisfying detailed balance the exponent
αP coincided with the ratio between the dynamic exponent for
the late stage growth, zd , and the lattice regular or averaged
coordination number, nc, i.e., αP = zd/nc. In the voter model
the dynamic exponent is zd = 2 (on top, dynamic scaling for
infinite-size systems suffers from logarithmic corrections) and,
though a coordination number cannot be really identified, we
can claim that an effective one is somehow larger than 1. With
this identification, the value of αP found numerically has the
good trend, in the sense that the coordination number is smaller
than in Ising and this leads to a larger αP .

This works opens several lines for future research. On the
one hand, it would be interesting to extend this analysis to
different types of lattices, variants of the update rule (with,
e.g., noise [12], local conservation laws [53], memory [54],
or inhomogeneities in the form of zealots [55]) and upgrading
the voters to have many opinions (see Ref. [56] and references
therein). On the other hand, it should be possible to extract the
growing length �P (t) analytically by taking into account the
finite-size effects in the approach explained in Sec. II.
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