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Classical-to-quantum crossover in the critical behavior of the transverse-field
Sherrington-Kirkpatrick spin glass model
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We study the critical behavior of the Sherrington-Kirkpatrick model in transverse field (at finite temperature)
using Monte Carlo simulation and exact diagonalization (at zero temperature). We determine the phase diagram
of the model by estimating the Binder cumulant. We also determine the correlation length exponent from the
collapse of the scaled data. Our numerical studies here indicate that critical Binder cumulant (indicating the
universality class of the transition behavior) and the correlation length exponent cross over from their “classical”
to “quantum” values at a finite temperature (unlike the cases of pure systems, where such crossovers occur at zero
temperature). We propose a qualitative argument supporting such an observation, employing a simple tunneling
picture.
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I. INTRODUCTION

The motivation of this work is to study the phase diagram
and critical behavior of the Sherrington-Kirkpatrick (SK) spin
glass model [1] in transverse field [2] using Monte Carlo and
exact diagonalization techniques at finite and zero temperature,
respectively, and investigate the crossover behavior from
classical to quantum fluctuation dominated phase transitions.
Several approximate theoretical and numerical studies (see
Refs. [3–9]) have already been made on SK model to get some
isolated features of the quantum phase transition of this model.
We report here a detailed numerical study. Using both Monte
Carlo and exact diagonalization we determine the critical
Binder cumulant [10], which is an indicator of the nature of
critical fluctuation. It also provides critical transverse field
or temperature. We study the scaling behavior of the Binder
cumulants with respect to the system sizes and the scaling fit
gives the value(s) of the correlation length exponent. We find
critical Binder cumulant and correlation length exponent cross
over from a “classical” value (corresponding to the classical
SK model) for high temperature and low transverse field, to a
“quantum” value for low temperature and high transverse field
at a finite temperature.

II. MODEL

The Hamiltonian of quantum SK model of N spins is given
by

H = H0 + HI ; H0 = −
∑
i<j

Jij σ
z
i σ z

j ; HI = −�

N∑
i=1

σx
i , (1)

where σ z
i , σx

i are the z and x components of Pauli spin
matrices, respectively, and � is the transverse field. For
� = 0 the Hamiltonian in Eq. (1) reduces to the classical
SK spin glass Hamiltonian (H0). In this model spin-spin
interactions (Jij ) are distributed following Gaussian
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distribution ρ(Jij ) = ( N
2πJ 2 )

1
2 exp (

−NJ 2
ij

2J
). The mean of

Gaussian distribution is zero and the variance is J/
√

N .
We work with J = 1. The effective classical Hamiltonian
Heff of the Hamiltonian in Eq. (1) can be obtained by using
Suzuki-Trotter formalism (see, e.g., Ref. [2]):

Heff = −
M∑

n=1

∑
i<j

Jij

M
σn

i σ n
j −

N∑
i=1

M∑
n=1

1

2β
log coth

β�

M
σn

i σ n+1
i ,

(2)

where σn
i = ±1 is the classical Ising spin and β is the inverse

of temperature T . The additional dimension appears in
Eq. (2), is often called Trotter direction; M → ∞ as T → 0.

III. MONTE CARLO RESULTS

We accomplish Monte Carlo simulation using Hamiltonian
in Eq. (2) to find the critical transverse field for a fixed tempera-
ture. We also perform Monte Carlo simulation on Hamiltonian
H0 to extract the critical behavior of the classical SK model.
We take t0 Monte Carlo steps to equilibrate the system and
make Monte Carlo averaging over next t1 steps. To study the
critical behavior of the model, we take replica overlap q(t),
which is defined as q(t) = 1

NM

∑N
i=1

∑M
n=1[σn

i (t)]φ[σn
i (t)]θ ,

where (σn
i )φ and (σn

i )θ are the spins of two different replicas
φ and θ corresponding to the same realization of disorder. We
study the variation of average Binder cumulant (g) with �

and T for different system sizes. For our study we define the
average Binder cumulant [11,12] given by

g = 1

2

[
3 −

( 〈q4〉
(〈q2〉)2

)]
; 〈qn〉 = 1

t1

t0+t1∑
t=t0

qn(t), (3)

where 〈.〉 and overhead bar indicate thermal and configuration
averages, respectively. It may be noted that with another defini-

tion for disorder averaging [11] g = 1
2 [3 − 〈q4〉

(〈q2〉)2
] one obtains

huge fluctuation and bad statistics (see, e.g., Ref. [11]). We
therefore work with the above definition of g [Eq. (3)] to make
a consistent study throughout the entire range of temperature.
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FIG. 1. (Color online) Monte Carlo results for the Binder cumulant (g) plotted as function of temperature T and transverse field � are
shown: (a) for classical SK model (at � = 0) and (c) and (e) for T = 0.65 and 0.60, respectively. The crossing points give the estimate for
Tc or �c. The statistical errors are indicated by the symbol sizes. Figures (b), (d), and (f) show the collapses of g curves of (a), (c), and (e),
respectively, when the variations of g are plotted against [T − Tc]NxT or [� − �c]Nx� [see Eq. (4)]. The scaling collapses give the values xT

or x� = 0.31 ± 0.02.

Near critical point g scales as g = g(L/ξ,M/Lz) [11],
where L denotes the linear size of the system and M is
the Trotter size. The dynamical exponent is symbolized by
z. ξ represents the correlation length, which scales as ξ ∼
(T − Tc)−νT or (� − �c)−ν� with correlation exponents νT or
ν� . Hence, close to critical region we can write

g ∼ g[(T − Tc)NxT ,M/Nz/dc ] or

g[(� − �c)Nx� ,M/Nz/dc ], (4)

where xT = 1/νT dc and x� = 1/ν�dc with L = N1/dc . The
critical transverse field or temperature are denoted by �c or
Tc, respectively. Here dc denotes the effective dimension of the
system, which helps to extract the linear size L (∼N1/dc ) and
Trotter size M (∼Lz ∼ Nz/dc ) for a N spin system, thereby
allowing the scaling properties of g = g(N1/dc/ξ,M/Nz/dc )
with the correlation length ξ . The intersection of the g versus
� curves for different system sizes (keeping M/Lz fixed) gives
the estimate of values of �c and critical Binder cumulant gc. We
try to collapse the g curves by following Eq. (4). Such collapses
of the g curves are made by suitably scaling the tuning
parameters with chosen values of the exponents xT and x� .

To simulate Heff we take system sizes N = 20, 60, 180.
We work with dc = 6 and z = 4 [13] (these values are
associated with classical SK model). To keep M/Lz fixed,
we start with M = 10 for the system size N = 20 and take
M = 21,43 for system sizes N = 60, 180, respectively. Due
to the absence of any additional dimension (Trotter dimension)
in the Hamiltonian H0, we are able to take larger system
sizes N = 60, 180, 540 in the Monte Carlo simulation of the
classical SK model. The equilibrium time of the system is
t0 = 75 000 and we take 25 000 (t1) Monte Carlo steps for
thermal averaging. We averaged 1000 samples to get the
configuration average. We notice that in the range starting

from the classical SK model at � = 0 to almost T � 0.50
(� � 1.30), the gc takes a constant value 0.22 ± 0.02 [see
Figs. 1(a), 1(c), and 1(e)] and we find good data collapse of g

curves [to Eq. (4)] for xT = x� = 0.31 ± 0.02 [see Figs. 1(b),
1(d), and 1(f)]. This result (xT = x� or νT = ν�) is also
consistent with analytic nature of the T −� phase boundary of
the model (see Sec. V). In the range T = 0.30 (� � 1.50) to
T = 0.20 (� � 1.54), we observe that the value of gc is nearly
equal to zero but in this range we do not get decent collapses
of g curves for any one chosen value of x� . We repeat our
simulation in this range with dc = 8 and z = 2 [14,15] (these
values correspond to quantum SK model). With these values
of dc and z we take Trotter sizes M = 10, 13, 17 for the system
sizes N = 20, 60, 180, respectively, to keep M/Lz constant.
Again we find vanishingly small value of gc [see Figs. 2(a)
and 2(c)]. This time we get good data collapse of g curves
[see Figs. 2(b) and 2(d)] for x� = 0.50 ± 0.02. However, we
are not able to get good collapse of the g curves in the entire
range of classical critical behavior for (� = 0, T � 1.0) to
(� � 1.30, T � 0.50). As we observe a change in the value of
x� at low temperature, we also evaluate the variation of g with
T keeping � fixed at 1.5. This variation is shown in Fig. 3(a)
and corresponding collapse of g curves [see Fig. 3(b)] provides
xT = 0.49 which confirms xT � x� � 0.50. Such a crossover
in gc or the exponent value x� (=xT ) with � (or T ) values
within this range (0.5 < T < 0.35, 1.30 < � < 1.45) may be
abrupt. From our numerical studies here it is not possible to
rule out that this crossover is gradual and not abrupt. It requires
further studies.

IV. ZERO-TEMPERATURE DIAGONALIZATION RESULTS

We explore the pure quantum critical behavior of the
spin glass (i.e., the system at temperature T = 0) through
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FIG. 2. (Color online) Monte Carlo results for the Binder cumulant (g) plots with transverse field � at temperatures 0.30 and 0.25 are
shown in (a) and (c), respectively. The statistical errors are of the order of the symbol sizes. Figures (b) and (d) show the collapses of g curves
in (a) and (c), respectively. Again the variations of g are plotted according to the scaling relation Eq. (4) and the collapses give the value
x� = 0.50 ± 0.02.

the Binder cumulant analysis of the system using an exact
diagonalization technique. We have performed exact diagonal-
ization of the Hamiltonian for rather small system sizes (up to
N = 22) using Lanczos algorithm [16]. Here, we are interested
to show the continuity of our Monte Carlo result of nearly zero
value of critical Binder cumulant even at zero temperature. We
construct the Hamiltonian of Eq. (1) in spin basis states, i.e.,
the eigenstates of the spin operators (σ z

i , i = 1, . . . ,N) for
performing the diagonalization. Then the nth eigenstate of the
Hamiltonian in Eq. (1) is represented as |ψn〉 = ∑2N−1

α=0 an
α|ϕα〉,

where |ϕα〉 are the eigenstates of the Hamiltonian H0 and an
α =

〈ϕα|ψn〉. As we are interested in the zero temperature analysis,
our main focus is confined on the ground state (|ψ0〉) averaging

of different quantities. In this case the order parameter of the
system can be defined as Q = (1/N)

∑
i 〈ψ0|σ z

i |ψ0〉2. The
configuration average is again indicated by the overhead bar.
To calculate Binder cumulant, the various moments can be
calculated using Refs. [1,18],

Qk = 1

Nk

N∑
i1

. . .

N∑
ik

〈ψ0|σ z
i1

. . . σ z
ik
|ψ0〉2. (5)

Here Qks are actually k-spin correlation functions for a
particular disorder configuration. One can easily realize that
order parameter Q = Q1. If we know the ground state at
different parameter values of the Hamiltonian the various
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FIG. 3. (Color online) (a) The plot shows the Monte Carlo results for the variation of Binder cumulant (g) as a function of temperature T

at the transverse field � = 1.5. (b) The plot shows collapse of g curves in (a) with xT = 0.49. The statistical errors of the data points are of
the order of the symbol sizes.
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FIG. 4. (Color online) The plot (a) shows the variation of Binder
cumulant g as a function of � for different system sizes for quantum
SK model at T = 0 (exact diagonalization results). The larger system
sizes intersect at higher values of � signifying finite-size effect of the
system. (b) The Binder cumulant curves for different system sizes
(N ) collapse following the scaling fit [to Eq. (4) for M = 0] with an
estimated �e

c = 1.62 and exponent x� = 0.5.

moments can be determined using Eq. (5). In this context

the average Binder cumulant is defined as g = 1
2 [3 − ( Q4

(Q2)2 )]
[note the difference with the Eq. (3)].

The variations of g as a function of � is shown in Fig. 4(a)
for different system sizes. To study the finite-size effects,
we consider a pair of two different system sizes N and N ′
and evaluate the values of �c(N,N ′) and gc(N,N ′) from the
intersection of the g versus � curves for these two system sizes.
Accounting every possible pair, we extrapolate �c(N,N ′) with
(NN ′)−x�/2 to get �c for infinite system size. In the absence
of an established finite-size scaling behavior of g, we fit its
finite-size variations of gc(N,N ′) to 1/

√
NN ′ to evaluate gc in

the thermodynamic limit. The extrapolated value of �c(N,N ′)
is 1.62 ± 0.03 in the limit of N,N ′ → ∞, which is indicated
in Fig. 5(a). Here the best fit value of the scaling exponent x�

for getting the extrapolated value of �c(N,N ′) is 0.51, which
is consistent with that obtained from collapse of g curves for
different system sizes [see Fig. 4(b)]. One can also see that the
extrapolated value of �c(N,N ′) is nearly equal to the estimated
value �e

c = 1.62, which is required for getting a good collapse
of Binder cumulant curves for different system sizes [see
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FIG. 5. The plot shows critical transverse field [�c(N,N ′)] and
critical Binder cumulant [gc(N,N ′)] as a function of (NN ′)−x�/2

and 1/
√

NN ′, respectively, where N and N ′ are two system sizes,
obtained from exact diagonalization: (a) The extrapolated value of �c

is found to be 1.62 and (b) gc tends to a null value for a infinite size
system. For these two plots best fit line is also shown.

Fig. 5(b)]. On the other hand, gc takes nearly a zero value in the
limit of N,N ′ → ∞ [see Fig. 5(b)], and this is consistent with
our Monte Carlo results at the low temperatures. These indicate
that starting from around T = 0.35 to T = 0 the values of gc

as well as of x� remain practically unchanged at its quantum
fluctuation dominated value (gc � 0, x� � 0.50).

V. SUMMARY AND DISCUSSIONS

In summary, we estimate the entire phase diagram (see
Fig. 6) of the quantum SK spin glass using Monte Carlo
simulation and exact diagonalization results to determine
the Binder cumulants g, which allows accurate estimate of
the phase diagram and extraction of the correlation length
exponent value. We use system sizes N = 20, 60, 180 with
moderately chosen M values (to keep M/Lz constant) for
Monte Carlo simulation, whereas for exact diagonalization
the maximum system size limit is N = 22. The estimated
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FIG. 6. (Color online) Consolidated phase diagram of the SK
spin glass model in transverse field, obtained from the Monte
Carlo simulation and exact diagonalization. The statistical errors are
indicated if they are more than the symbol sizes. Here SG and PM
denote, respectively, the spin glass and paramagnetic phases. The
points at T = 0 and � = 0 correspond to purely quantum and classical
cases, respectively. The obtained critical behaviors are indicated
(gc � 0, ν � 1/4 for low T -high � region, and gc � 0.22, ν � 1/2
for high T -low � region). The crossover point is around T � 0.45
and � � 1.33.
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phase diagram compares well with some earlier estimates for
isolated parts (Refs. [6,7]), which fall in the high-temperature
(classical) critical-behavior region of the of SK model. The
earlier studies, therefore, could not address the classical-
quantum crossover phenomena observed here.

During the exploration of phase diagram by varying T or �,
we find that gc remains fairly constant (at value 0.22 ± 0.02)
from classical transition point (� = 0, T � 1.0) to almost
� = 1.33, T = 0.45 and assumes a very low value (less than
0.03; see Fig. 3), or vanishes (with Gaussian fluctuations)
beyond this point and remains the same up to � � 1.62,
T = 0 (see also Ref. [17]). It may be mentioned that even
with nontrivial (non-Gaussian) fluctuations, the critical Binder
cumulant value can effectively vanish for fluctuation induced
discontinuous transitions (see, e.g., Binder et al. [19]). The
scaling fits to Eq. (4) give xT or x� = 0.31 ± 0.02 for high
T and low � values, while xT = x� = 0.50 ± 0.02 for low T

and high � values. We should mention that we performed
the same Monte Carlo simulations on infinite range pure
ferromagnetic system. In this case, gc and x� values remain
almost the same for any finite temperature we considered (up
to T = 0.1), indicating that the crossover to quantum behavior
occurs only at zero temperature, as theoretical analysis for
such pure systems clearly suggests (see, e.g., Ref. [2]).

We believe these two values of gc indicate two different
universality classes and our observation indicates that the
universality class of classical fluctuation dominated transitions
(at low � and high T ) is quite different from that for the
quantum fluctuation-dominated transitions (for high � and
T ). Existence of such distinct universality classes appears
more reasonable when compared with the observation that
the correlation length exponent ν also has two different
values in these two parts of the phase boundary (having
two different values of gc). If we take effective dimension
dc = 6 [13] and xT = x� = 1/3 for entire classical fluctuation-
dominated transitions, then using the relation x� = xT =
1/dcν (Eq. (4); see also Refs. [14,18]) we get ν = 1/2, which
is consistent with the earlier estimate [13]. Similarly, for

quantum fluctuation dominated transitions we find ν = 1/4
for x� = 1/2 (considering dc = 8 [14,15]), which agrees
with earlier estimates [14,15]. As mentioned already, any
other combinations of dc and x� values did not give good
collapse for g. Such changes in the values of gc and ν for
the different regions of the phase diagram (Fig. 6) clearly
indicate that, in contrast to the pure case, the crossover between
classical and quantum fluctuation-dominated critical behaviors
for the transverse Ising SK model occurs at a nonvanishing
temperature.

Due to random and competing spin-spin interactions, the
free-energy landscape of SK spin glass is highly rugged.
Such uneven free-energy landscape contains high ([O(N )]
free-energy barriers, which separate several local free-energy
minima. For low T , unlike in the pure case (where the land-
scape is inclined smoothly toward the minima), the thermal
fluctuations become ineffective in helping such systems to
cross tall barriers to reach the paramagnetic state by flipping
finite fractions of N spins. On the other hand, due to the
presence of high �, tunneling through such tall but narrow
barriers becomes highly probable [20,21]. Quantum fluctu-
ations, therefore, induce the phase transition and determine
the transition behavior. Such effectiveness of quantum (over
thermal) fluctuations at low T in such frustrated systems might,
therefore, be responsible for a classical-quantum crossover at
a finite (but low) temperature (and large transverse field) in
the quantum SK model. In fact, our study establishes that the
critical value of the Binder cumulant (with associated scaling
exponents) and its crossover behavior gives a quantitative
measure of the relative importance of classical versus quantum
fluctuations in determining the nature of the phases in such
frustrated systems.
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