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Generating functionals and Gaussian approximations for interruptible delay reactions
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We develop a generating functional description of the dynamics of non-Markovian individual-based systems
in which delay reactions can be terminated before completion. This generalizes previous work in which a
path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a
more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit
of large, but finite, population sizes. As an application of our theory we study predator-prey models with delay
dynamics due to gestation or lag periods to reach the reproductive age. In particular, we focus on the effects of
delay on noise-induced cycles.
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I. INTRODUCTION

In recent years there has been a growth in the understanding
of the importance of intrinsic noise in complex systems
composed of a finite number of interacting constituents. It
has been recognized that there are visible, macroscopic effects
due to the stochasticity inherent in the interactions in a variety
of systems, including, for example, metabolic pathways [1],
gene regulatory systems [2–5], predator-prey dynamics [6,7],
or models of disease spread [8,9]. This inherent stochasticity is
referred to as “intrinsic noise” or “demographic stochasticity”
[10]. Intrinsic noise can give rise to phenomena such as cyclic
dynamics [7,11], patterns and waves [12–16], and extinction
events [17–21]. These phenomena are not captured by more
traditional deterministic modeling approaches; instead, they
are purely noise induced.

Deterministic models are built on ordinary or partial differ-
ential equations. These equations are formally only valid in the
limit of an infinite system; that is, the number of interacting
constituents is so large that stochastic effects play no role
[22]. To take into account the intrinsic stochasticity of the
interactions a full probabilistic description is required. Widely
used modeling approaches are drawn from the theory of
stochastic processes, most notably the master equation [22,23],
describing the time evolution of the probability distribution
over the space of states. Formulating the master equation
approach relies on the Markov property of the underlying
dynamics: Transition rates from one state to another must
only depend on the target state and the present state of
the system, but not on the path the dynamics has taken
to arrive at the current state. This implies that the system
has no memory of previous interactions; all effects of an
interaction must be realized instantaneously. While this is a
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reasonable assumption for many processes in physics, this
is typically not the case in biological models. For example,
birth in a predator-prey system occurs after a period of
gestation, transcriptional and translational delays are relevant
in gene regulatory systems [24], and recovery occurs a certain
period of time after infection in models of disease spread
[25,26]. These processes can lead to situations in which
effects of an initial interaction (e.g., impregnation, initiation
of transcription, infection) materialize with a significant delay.
Such dynamics are then no longer Markovian because the
change of the state of the system at any one time t may
depend on what processes were set in motion in the past
and which complete at t . Of course, the modeling as a
delay system can often be avoided through the construction
of higher-dimensional models with intermediate states (e.g.,
staged models in epidemics [26]), but mathematically it is
often convenient to use delay models, as these are relatively
easy to set up for arbitrary delay distributions.

Traditionally, delay dynamics have been investigated based
on deterministic approaches [24,27–31]. These are subject to
the limitations outlined above in that they do not capture the ef-
fects of stochasticity. It is only recently that analytical (and also
numerical) techniques for individual-based models subject to
both intrinsic noise and delay have been developed [32–42].
In previous work we have derived Gaussian approximations of
such dynamics, and we have shown that these can capture the
effects of delay reactions [40,41]. This analysis is conveniently
carried out in terms of generating functionals [43,44], and the
equivalent of the linear-noise approximation (LNA) for delay
systems can be derived. An alternative, more informal method
to derive the same Gaussian approximations (bypassing the
exact description) was highlighted in [41].

In these existing approaches delay reactions fire at an initial
time with rates determined by the state of the system at that
time. The reaction may then have an immediate effect on
the composition of the system, and subsequently a second
effect materializes at a later time (after the delay). The delay is
either fixed, or it can be drawn from an underlying distribution
each time a delay reaction is initiated. Existing work is often
restricted to what we refer to as “definitive” completion
of the delay reaction. Once a delay reaction is initiated (it
“fires”) the delayed effect will occur, no matter what the
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trajectory of the system is between the time the reaction
fires and the designated completion time. This is an obvious
limitation of the modeling approach. Descriptions in which
delay reactions may fail to complete depending on events that
occur between initiation and designated completion provide a
much more realistic description of many real-world processes.
The gestation period in a predator-prey model presents perhaps
the most intuitive example of delay reactions which can be
interrupted. A pregnancy is initiated at a given time and the
birth event will occur at a designated later time. However,
birth is not certain, the mother might die during pregnancy.
Similarly, in a model of disease spread, an individual may
get infected with the disease and would then be scheduled to
recover at a later time. However, the individual may die in the
interim or be removed from the system in some other way, so
that the completion event (recovery) may not occur. The rate
with which such removal occurs may well depend on the state
of the system at the time of removal.

The purpose of the present paper is to extend existing
approaches to the modeling of stochastic dynamics with delay
to the case in which delay reactions may not complete. We
refer to such reactions as “interruptible delay reactions.” In this
setting delay reactions can be of several types. (i) The first type
comprises delay reactions which cannot be interrupted. This
is the case considered in [40]. (ii) The second type comprises
delay reactions which can be interrupted, but the probability
of interruption does not depend on the state of the system. An
example is death of the mother for internal reasons. Another
example comprises the “consuming reactions” in models of
gene expression studied in [45]. In this example, reactions
are linear, allowing the authors to exactly solve the generating
function of the process. A third example was also considered in
[40] in the context of the susceptible-infective-recovered (SIR)
model with birth and death, with a constant death rate. (iii) The
third type comprise delay reactions which can be interrupted
and the probability of interruption depends on the state of the
system at the time of interruption. Continuing the example of
a pregnant prey individual, the rate of predation depends on
the number of predators present in the system throughout the
pregnancy period. This case is not covered by [40].

In this paper we develop a systematic Gaussian approxima-
tion to models with interruptible delay reactions. Specifically,
we extend the generating functional method used in [40] to
include interruption effects so that all three cases above are
covered. As an application we consider the SIR model of
disease spread and two variants of a predator-prey model, one
with a delay period due to pregnancy and one with a delay
period due to the maturation of juveniles.

II. MODEL DEFINITIONS: INTERRUPTIBLE
DELAY REACTIONS

A. Model definition

We consider a finite population of interacting constituents,
each of which is of one of M different types, labeled
α = 1, . . . ,M . We refer to the constituents as “individu-
als” in the following. The state of the system at any one
time is then described by an M-dimensional vector, n(t) =
[n1(t), . . . ,nM (t)], where the non-negative integer nα(t) indi-
cates the number of individuals of type α at time t . We assume

a continuous-time evolution. The system is well mixed and
two individuals of the same type are indistinguishable. The
individuals interact through a set of R reactions; we label
these i = 1, . . . ,R. Each possible reaction i is associated with
an initiation rate Ti(n), indicating the rate with which reactions
of type i fire if the system is in state n. When such a reaction
fires an instantaneous change of the state of the system n(t)
occurs at the time of firing, described by the vector vi . That
is to say the state of the system changes from n to n + vi .
Subsequently, these reactions may also have a delayed effect.
This is implemented as follows: If a delay reaction fires at
time t an instantaneous change of the state of the system
occurs, as described above. In addition to this, a delay time
τ is drawn from an underlying delay distribution, Ki(τ ). This
distribution is specific to the reaction triggered, as indicated
by the subscript i. After the delay time has elapsed, a second
change in the state of the population may occur. This happens
at time t + τ , and we denote the delayed effect of the reaction
by wi . The key element of the dynamics that we add in the
present work is the possibility that a delay reaction may not
complete. We assume that a delay reaction of type i, triggered
at time t and due to complete at t + τ , can be interrupted at
any time between t and t + τ . The rate with which this occurs
is fi[n(t ′)], where t < t ′ < t + τ . The termination rate may
thus depend on the state of the system n(t ′). If this happens, the
delayed effect at time t + τ does not occur; instead, we assume
that the state of the system changes by ui at time t ′. For the time
being we only consider cases in which there is only one way in
which each delay reaction can be interrupted. A generalization
to models in which delay reactions can be interrupted in
multiple different ways is relatively straightforward, though
slightly more cumbersome; see Appendix C for details.

As is commonly done in the modeling of interacting particle
systems, we assume that all reaction rates Ti(n) scale with a
parameter �; that is to say Ti(n) = O(�). This parameter
can be seen as setting the scale of the size of the system
(the scale of the total number of individuals in the system,
or equivalently the volume of the system), and the scaling of
the rates reflects the fact that the total (average) number of
reactions in the system per unit time is proportional to its size.
For later purposes it is convenient to introduce the quantities
xα(t) = nα(t)/�. We refer to these as the “concentrations”
of particles of type α. We also introduce the intensive rates
ri[x(t)] = Ti[�x(t)]/�.

B. Discrete-time dynamics

As in [40], we proceed by discretizing time into steps of
duration �. The continuum limit is restored at the end. We
write xα,t for the concentration of individuals of type α at time
step t . In the discretized model, we assume that all reaction
rates remain constant between t and t + �. If the concentration
vector is xt at time t , then the number of newly triggered
reactions of type i during this time step is a Poissonian random
variable ki,t with parameter Ti(n)�. In the absence of delay
reactions the dynamics of the discrete-time model would hence
read

xα,t+� − xα,t = 1

�

∑
i

vi,αki,t . (1)

In models with delay reactions we have to extend this
expression to take into account (i) delay reactions completing
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at the designated time and (ii) delay reactions which terminate
before the designated completion time. We then have

xt+�,α − xt,α = 1

�

∑
i

∑
τ>0

[
vi,αkτ

i,t + wi,αmτ
i,t−τ

+
∑

0<s<τ

ui,α�
τ,s
i,t−s

]
. (2)

In this expression, kτ
i,t is the number of reactions of type i that

fire at time t and which have a delay period τ . The quantity
mτ

i,t−τ is the number of reactions of type i that fired at time
t − τ and successfully complete at time t . Finally, the quantity
�

τ,s
i,t−s is the number of reactions of type i that fired at time

t − s with a designated delay period τ (i.e., scheduled for
completion at t − s + τ ), but which are interrupted at time t

(0 < s < τ ). We note that nondelay reactions are included in
these descriptions; they would simply have wi = ui = 0.

Equation (2) defines the conditional probability

P (xt+�|{x,k,�,m}t ′�t )

=
∏
α

δ

(
xt+�,α − xt,α − 1

�

∑
i

∑
τ>0

×
[
vi,αkτ

i,t + wi,αmτ
i,t−τ +

∑
0<s<τ

ui,α�
τ,s
i,t−s

])
, (3)

where the notation {x,k,�,m}t ′�t indicates variables with
indices t ′ � t .

We have already described the Poissonian nature of the
variables ki,t = ∑

τ kτ
i,t , but it remains to define in more detail

how the kτ
i,t , mτ

i,t−τ , and �
τ,s
i,t−s are chosen. This is explained in

the following section.

C. Statistics of reaction numbers

We first discuss the statistics of the variables kτ
i,t , indicating

the number of reactions of type i triggered in the discrete-time
model at time step t and with completion due at time t + τ . As
discussed in [40], each kτ

i,t is a Poissonian random variable with
parameter �2Ki(τ )�ri(xt ). This is not affected by possible
interruptions of the delay reactions. At this point it is useful to
recall the definition ri(xt ) = Ti(�xt )/�. Broadly speaking,
�ri(xt ) reflects the rate with which reactions of type i are
initiated (with any delay). Once a reaction is initiated, a delay
period is drawn independently from a distribution Ki(τ ). In
the discrete-time model this is reflected in the factor �Ki(τ ).

Ultimately, we are interested in taking the continuous-time
limit for the dynamics. Anticipating this, we focus on the case
of small �, which simplifies the problem significantly. The
probability distribution of kτ

i,t is of the form

P
(
kτ
i,t = 1|xt

) = �2Ki(τ )�ri(xt ) + O(�4),

P
(
kτ
i,t = 0|xt

) = 1 − �2Ki(τ )�ri(xt ) + O(�4), (4)

P
(
kτ
i,t > 1|xt

) = O(�4).

Equation (4) indicates that the probability to observe two or
more initiation events of reactions of type i and with delay τ

in any one time interval � is at least of order �4. In the limit
of small � we can therefore restrict ourselves to kτ

i,t ∈ {0,1}.
If kτ

i,t = 0, then it is clear that �
τ,s
i,t = 0 for all s and also

mτ
i,t = 0; i.e., we have

P
(
�

τ,s
i,t = 0

∣∣kτ
i,t = 0

) = 1 ∀ 0 < s < τ,

P
(
mτ

i,t = 0
∣∣kτ

i,t = 0
) = 1. (5)

If kτ
i,t = 1, then only one out of the {�τ,s

i,t }0<s<τ and mτ
i,t can be

nonzero. If kτ
i,t = 1 and �

τ,σ
i,t = 1, then it follows that �

τ,s
i,t = 0

for all s �= σ , and mτ
i,t = 0. That is, we have

P
(
�

τ,s
i,t = 0

∣∣�τ,σ
i,t = 1,kτ

i,t = 1
) = 1 ∀ σ < s < τ,

P
(
mτ

i,t = 0
∣∣�τ,σ

i,t = 1,kτ
i,t = 1

) = 1. (6)

As explained above, interruption happens with probability
� × fi(xt+s) in the next time interval � if the system is in
state xt+s , and so

P
(
�

τ,s
i,t = 1

∣∣xt+s ,
{
�

τ,σ
i,t = 0

}
0<σ<s

,kτ
i,t = 1

) = �fi(xt+s),

P
(
�

τ,s
i,t = 0|xt+s ,

{
�

τ,σ
i,t = 0

}
0<σ<s

,kτ
i,t = 1

) = 1 − �fi(xt+s).

(7)

Finally, if the reaction has not been interrupted by time t + τ ,
then the reaction always completes,

P
(
mτ

i,t = 1
∣∣{�τ,σ

i,t = 0
}

0<σ<τ
,kτ

i,t = 1
) = 1. (8)

III. GENERATING FUNCTIONAL

In discrete time the generating function is

Z(ψ) = 〈e−�
∑

t ψ t ·xt 〉paths, (9)

where the average is performed over all possible paths. We
have introduced a source term ψ ; derivatives with respect to
it generate correlation functions [43,44]. The main task in the
calculation that follows is to compute the path average in the
above expression. This entails integrating and summing over
all random variables,

Z(ψ) =
∫ ∏

t

dxt

∑
k,�,m

[P(x,k,�,m)e−�
∑

t ψ t ·xt ], (10)

where P(x,k,�,m) is the joint probability distribution of all
xt,α , kτ

i,t , �
τ,s
i,t , and mτ

i,t , i.e., the probability of a path. Our
objective is to find an expression for the generating functional
after performing the sums over all k, �, and m and after
subsequently taking the continuous-time limit � → 0. The
algebra involved is somewhat lengthy, and so we do not
give full details here; they are relegated to Appendix A. The
calculation consists of carrying out the following main steps.
(i) The path probability P(x,k,�,m) is expressed as a product
of conditional probabilities using Eqs. (3)–(8). (ii) The δ func-
tions in Eq. (3) are converted into their Fourier representations
in the process introducing the conjugate variables pt . (iii)
Using Eqs. (4)–(8) the combinations of variables with nonzero
probability are identified, along with their statistical weight.
Knowing the weight of each combination enables us to average
over the k, �, and m. (iv) Finally, the continuous-time limit is
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restored. The resulting generating functional is

Z[ψ] =
∫

DxDpe−S[x,p]−∫ dtψ(t)·x(t), (11)

with the action

S[x,p]=−
∫

dt

[
p(t)· ẋ(t) −

∑
i

{
R

(1)
i (t) + R

(2)
i (t)

}]
. (12)

There are two contributions to the action from each type of
reaction: (i) a contribution from the reactions which are not
interrupted,

− R
(1)
i (t) =

∫ ∞

0
dτ
(
e− 1

�
[vi · p(t−τ )+wi · p(t)] − 1

)
× e− ∫ τ

0 dσfi [x(t−σ )]Ki(τ )�ri[x(t − τ )], (13)

and (ii) a contribution from the reactions which are interrupted,

− R
(2)
i (t) =

∫ ∞

0
ds
(
e− 1

�
[vi · p(t−s)+ui · p(t)] − 1

)
× fi[x(t)]e− ∫ s

0 dσfi [x(t−σ )]

×,

∫ ∞

s

dτKi(τ )�ri[x(t − s)]. (14)

These contributions are both functionals of the path of x
between the time at which reaction first fires and the time
it either completes successfully or is interrupted.

We notice the factor e− ∫ τ

0 dσfi [x(t−σ )] in Eq. (13). This
exponential is the probability that a delay reaction of type
i triggered at t − τ and with completion time t reaches
completion, given a path x between t − τ and t . Similarly,
the quantity fi[x(t)]e− ∫ s

0 dσfi [x(t−σ )]dt [cf. Eq. (14)] indicates
the probability that a delay reaction of type i triggered at time
t − s is interrupted in the time interval [t, t + dt), given a path
x between t − s and t .

If all delay reactions of type i complete with certainty (i.e.,
in absence of interruptions), one has fi(x) = 0. This implies
R

(2)
i = 0 [see Eq. (14)]. The quantity R

(1)
i (t) in Eq. (13) reduces

to the corresponding object in [40].

IV. APPLICATION TO THE SIR MODEL
WITH BIRTH AND DEATH

The SIR model with birth and death can be studied using
the approach developed in Sec. II. This model describes the
dynamics of an infectious disease in a population of individu-
als. Each individual can be in one of three states: susceptible,
infectious, or recovered. We consider an infection dynamics
with delayed recovery. Upon contact with an infectious
individual a susceptible member of the population may become
infectious (with rate β), and then they recover at a time τ after
infection. The delay time τ is drawn from a recovery-time
distribution K(τ ). We write this process as follows:

S + I
β−→ 2I ; I

K(τ )=⇒ R. (15)

The first arrow indicates the effect the reaction has at the time
it is initiated. The double arrow indicates the delayed effect
τ units of time after the reaction is triggered. In addition to
the recovery process, any individual may die, this occurs at
constant rate μ, independent of the infection status of the indi-
vidual. In order to keep the population size, N , constant, any

dying individual is immediately replaced with an individual of
type S. This leads to the following additional reactions:

I
μ−→ S,

R
μ−→ S. (16)

Crucially, an individual may die (and be replaced with an S)
after becoming infected, but before the scheduled recovery
time. This represents a delay reaction with possible interrup-
tion in the formalism described in the previous sections. In
this introductory example, however, the rate of interruption
does not depend on the state of the system and so this model
can be studied using the simpler method presented [40]. There
we mapped the above reaction scheme onto the model

R
μ−→ S,

S + I
χβ−→ 2I ; I

K̄(τ )=⇒ R, (17)

S + I
(1−χ)β−→ 2I ; I

Q̄(s)=⇒ S,

with

χ =
∫ ∞

0
dτK(τ )

∫ ∞

τ

dsμe−μs,

K̄(τ ) = χ−1K(τ )
∫ ∞

τ

dsμe−μs, (18)

Q̄(s) = (1 − χ )−1μe−μs

∫ ∞

s

dτK(τ ).

The first line in Eq. (17) describes the standard death and
replacement reaction R

μ−→ S. The second and third lines rep-
resent two reaction sequences which may be triggered when an
infection event occurs. Each sequence starts with an infection
event (occurring with rate βnInS/N). With probability χ the
newly infected individual is scheduled for recovery at a later
time; the time-to-recovery, τ , is drawn from the distribution
K̄(τ ). With complementary probability 1 − χ the newly
infected individual is scheduled for death (and replacement
with an individual of type S). The time to replacement, s, is
drawn from the distribution Q̄(s). This mapping is possible
because the interruption rate, μ, is independent of the state of
the system. Both distributions, K̄ and Q̄, are normalized.

The reaction scheme in Eq. (17) and the distributions in
Eq. (18) were formulated in [40], and from this scheme the
generating functional of the process was derived. Now that we
have put the more general formalism of the previous sections in
place we can recognize these existing results as a special case.
Inserting the model specifications into the general formalism
of the previous sections the action in Eq. (12) is indeed found as

S[x,p] =
∫

dt

{
pS(t)ẋS(t) + pI (t)ẋI (t)

+ (
e− 1

N
pS (t) − 1

)
N [1 − xS(t) − xI (t)]

+
∫ t

−∞
dt ′
(
e− 1

N
[pI (t ′)−pS (t ′)−pI (t)] − 1

)
× K̄(t − t ′)NχβxS(t ′)xI (t ′)

+
∫ t

−∞
dt ′
(
e− 1

N
[pI (t ′)−pS (t ′)−pI (t)+pS (t)] − 1

)
× Q̄(t − t ′)N (1 − χ )βxS(t ′)xI (t ′)

}
, (19)
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where we have used the definitions of χ , K̄(τ ), and Q̄(s)
as given in Eq. (18). The total size of the population,
N = nS + nI + nR , is constant in time, so there are only two
independent degrees of freedom. In formulating Eq. (19) we
have therefore eliminated species R via nR = N − nS − nI

(equivalently xR = 1 − xS − xI ). It is important to stress that
we have used � = N for simplicity, given the constant size
of the population. The result in Eq. (19), derived from the
general formalism of the previous sections, is the same action
as the one found in [40] using the mapping of Eq. (17).

V. APPROXIMATIONS TO THE GENERATING
FUNCTIONAL

A. Deterministic approximation

The exact generating functional can be approximated by
expanding the action in powers of the inverse system size;
the details are shown in Appendix B. To leading order in
�−1 the action in Eq. (12) is linear in p, and it describes the
deterministic dynamics

ẋ∞
α =

∑
i

vi,αri[x∞(t)] + F (1)
α [x∞](t) + F (2)

α [x∞](t), (20)

with the drift terms

F (1)
α [x∞](t) =

∑
i

{∫ ∞

0
dτ wi,αe− ∫ τ

0 dσfi [x∞(t−σ )]

× Ki(τ )ri[x∞(t − τ )]

}
, (21)

and

F (2)
α [x∞](t) =

∑
i

{∫ ∞

0
ds ui,αf [x∞(t)]e− ∫ s

0 dσfi [x∞(t−σ )]

×
∫ ∞

s

dτKi(τ )ri[x∞(t − s)]

}
, (22)

featuring due to the delay. The deterministic approximation is
valid for large (formally infinite) system sizes and neglects all
stochastic effects. We have denoted the dynamical variables in
the deterministic limit by x∞.

B. Linear-noise approximation

The LNA is used to study fluctuations about the solution
to the deterministic equations of motion, Eq. (20). We write
x = x∞ + �−1/2ξ and formulate the generating functional in
terms of the variable ξ .

The terms in the action are again expanded in powers of
�−1/2, and the expansion is curtailed after subleading order
[i.e., keeping terms O(�0) and above]. In order to illustrate
the procedure, we consider the case where the deterministic
dynamics are at a stable fixed point, x∞(t) = x∗. This is not
necessary for the LNA; however, it allows us to keep the
amount of algebra under control.

As with the deterministic approximation, we present the
details of the derivation in Appendix B.

The action is found to be quadratic in q and ξ , and it
describes a process with additive Gaussian colored noise
[44,46]. This process is described by a Langevin equation

of the form

ξ̇α(t) =
∑

β

∫
dt ′Aα,β[x∗](t,t ′)ξβ(t ′) + ηα(t), (23)

with Aα,β [x∗](t,t ′) = δẋ∞
α (t)

δx∞
β (t ′) |x∞=x∗

. In this expression ẋ∞
α

stands for the right-hand side of Eq. (20). The noise correlator
is 〈ηα(t)ηβ(t ′)〉 = Bα,β[x∗](t,t ′). The explicit expressions for
Aα,β [x∗](t,t ′) and Bα,β[x∗](t,t ′) are somewhat lengthy, and
before presenting them it is helpful to make a few simplifying
definitions.

C. Further simplifications

To simplify the above expressions further we define the
distributions

K̄i(τ ) = 1

χi(x∗)
e−fi (x∗)τKi(τ ),

Q̄i(s) = 1

1 − χi(x∗)
fi(x∗)e−fi (x∗)s

∫ ∞

s

dτKi(τ ), (24)

for τ,s > 0. We set K̄i(τ ) = 0 for τ � 0 and Q̄i(s) = 0
for s � 0, and we introduce χi(x∗) = ∫∞

0 dτe−fi (x∗)τKi(τ ).
Within the LNA and assuming that the deterministic dynamics
are at the fixed point x∗, this is the probability that a delay
reaction of type i, once triggered, completes. The function
K̄i(τ ) is the conditional time to completion. The quantity
1 − χi(x∗), on the other hand, is the probability that the
delay reaction is interrupted before completion, and Q̄i(τ )
describes the conditional distribution of times to interruption.
Both distributions K̄i(τ ) and Q̄i(τ ) are normalized. One
notices that the expressions in Eq. (18) are special cases of
Eq. (24), with fi(x∗) ≡ μ. We stress, though, that our analysis
below will explicitly account for (linear) fluctuations of the
interruption rate as the state of the system varies in time.
These fluctuations of the interruption rate are obviously not
present in the system with constant fi(x) = μ, considered
in [40].

Additionally, it is helpful to make the definition

Li,α(τ ) = χi(x∗)K̄i(τ )wi,α + [1 − χi(x∗)]Q̄i(τ )ui,α. (25)

This quantity can be interpreted as the weighted delay effects
(due to either successful completion or interruption) on species
α of reactions of type i a time period τ after such a reaction
was triggered.

Using these definitions we can write Aα,β [x∗](t,t ′) con-
cisely as

Aα,β[x∗](t,t ′) =
∑

i

{
vi,α

∂ri(x∗)

∂x∗
β

δ(t − t ′)

+ui,α[1 − χi(x∗)]
ri(x∗)

fi(x∗)

∂fi(x∗)

∂x∗
β

δ(t − t ′)

−
∫ ∞

t−t ′
dτLi,α(τ )

∂fi(x∗)

∂x∗
β

ri(x∗)�(t − t ′)

+Li,α(t − t ′)
∂ri(x∗)

∂x∗
β

}
. (26)
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Each of the four terms in the curly brackets has a clear
interpretation. As the system fluctuates around the fixed point,
the number of reactions triggered, interrupted, and completed
will fluctuate as well. The first term is the contribution to ξ̇α(t)
of initial effects of reactions (at the time of triggering) due to
fluctuations. The second term is the contribution of interruption
effects due to fluctuations at the time of interruption. The third
term is the contribution of delayed effects (either successful
completion or interruption) due to fluctuations between the
reaction firing and the delayed effects occurring. Finally,
the fourth term is the contribution of delayed effects due to
fluctuations at the time the reaction first fired.

If the rate of interruption, fi , is independent of the state of
the system for all i then only the first and last terms in Eq. (26)
are nonzero.

We now turn to the correlation Bα,β[x∗](t,t ′) of the Gaus-
sian noise variables in the LNA. Given that delay reactions can
have effects on the composition of the population at multiple
times, this noise is not white. Instead, one finds

Bα,β[x∗](t,t ′) =
∑

i

ri(x∗)({vi,αvi,β + wi,αwi,βχi(x∗)

+ui,αui,β[1 − χi(x∗)]}δ(t − t ′)

+vi,αLi,β(t ′ − t) + vi,βLi,α(t − t ′)). (27)

As Li,α(t) = 0 for t � 0, only one of the three terms in
Eq. (27) is nonzero for any pair of times t and t ′ and any given
reaction i.

D. Spectrum of fluctuations

The LNA can be used to calculate the Fourier spectrum
of fluctuations about the deterministic fixed point [7]. This is
particularly useful to study noise-induced quasicycles, as we
explain in further detail below. Fourier transforming Eq. (23)
gives

iωξ̃α(ω) =
∑
β,i

(
i

ω
{wi,αχi(x∗) − L̃i,α(ω) + ui,α[1 − χi(x∗)]}

× ∂fi(x∗)

∂x∗
β

ri(x∗) + [vi,α + L̃i,α(ω)]
∂ri(x∗)

∂x∗
β

+ui,α[1 − χi(x∗)]
ri(x∗)

fi(x∗)

∂fi(x∗)

∂x∗
β

)̃
ξβ(ω) + η̃α(ω).

(28)

This equation is linear in ξ̃ , and it can be written as
η̃(ω) = M(ω)̃ξ (ω), with a suitable matrix M(ω). The Fourier
transform of Eq. (27) (with respect to t − t ′) is

B̃α,β(ω) =
∑

i

ri(x∗){vi,αvi,β + wi,αwi,βχi(x∗)

+ui,αui,β[1−χi(x∗)]+vi,αL̃∗
i,β(ω) + vi,βL̃i,α(ω)}.

(29)

The spectrum of fluctuations about the deterministic fixed

point is then characterized by the matrix S(ω) = 〈̃ξ (ω)̃ξ
†
(ω)〉

and it can be found from (see [47])

S(ω) = M(ω)−1B(ω)[M†(ω)]−1. (30)

VI. APPLICATION TO A PREDATOR-PREY MODEL

A. Model definitions

As an application of the above formalism we now consider
stochastic effects in a predator-prey model with different types
of delay. Specifically, we write X to denote prey individuals
and Y for predators. We focus on the dynamics governed by
the following reactions:

X
b(1−x/k)−→ 2X,

Y + X
p−→ 2Y, (31)

Y
d−→ ∅.

We write nX and nY for the number of individuals of
each type, and x = nX/�, y = nY /�. As before, � is a
parameter, setting the scale of the population size. The first
reaction describes reproduction of prey at a logistic birth rate,
dependent on the concentration x. The constant k represents
a carrying capacity; more precisely, the system can contain
at most k� individuals of the prey type. The logistic birth
rate for prey distinguishes this model from other stochastic
predator-prey models [7]. Within our stylized approach we
assume that predation events result in the birth of a predator
(second reaction); the third reaction finally describes a death
process for predators.

This is obviously a minimalist model, but it is in line
with previous stylized modeling approaches for birth-death
processes [48], and it serves as a helpful test bed.

There are various ways in which delay processes can be
introduced into this model. One is to include gestation periods,
in which a prey enters a pregnant state before giving birth.
After the gestation period the pregnant individual returns to
the regular (nonpregnant) state and a new prey individual is
created. Another possibility is to assume that newly born prey
individuals are initially in a “juvenile” state and that they
cannot immediately reproduce. After a maturation period they
become full adult prey individuals and acquire the ability to
reproduce. We refer to the first modification as the “gestation
model” and the second modification as the “juvenile model.”
In both models there is an additional intermediary class
of individuals, denoted X′, pregnant prey in the gestation
model and juvenile prey in the juvenile model. The class X

corresponds to nonpregnant prey in the gestation model and
adult prey in the juvenile model. We write nX′ for the number
of individuals of type X′ and and x ′ = nX′/�. Of course, one
could introduce a similar state in the context of predators, but in
line with the above stylized approach we keep the complexity
of the model to a minimum.

For the gestation model the reactions are

X
b(1−xtot/k)−→ X′; X′ K(τ )=⇒ 2X,

Y + X
p−→ 2Y, Y

d−→ ∅. (32)

where we have introduced xtot = x + x ′, the total concentra-
tion of prey. In the first reaction, a nonpregnant individual
becomes pregnant with rate b(1 − xtot/k). They then give birth
after a delay drawn from K(τ ) to a nonpregnant individual and
return to the nonpregnant state.
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For the juvenile model we use

X
b(1−xtot/k)−→ X + X′; X′ K(τ )=⇒ X,

Y + X
p−→ 2Y, Y

d−→ ∅. (33)

In this model an adult prey gives birth to a juvenile individual
with rate b(1 − xtot/k). After a delay drawn from K(τ ) the
juvenile becomes an adult individual.

Additionally, in both models, the intermediary individuals,
X′, can be predated upon, via

Y + X′ p−→ 2Y. (34)

It is this predation reaction that leads to the possibility of
interrupting a delay reaction before its scheduled completion.
If a pregnant individual is eliminated in a predation event,
it will obviously not give birth at the designated time, and,
similarly, if a juvenile individual is removed during predation,
it will not reach its reproductive age. Crucially, the rate with
which such events happen depends on the state of the system
(e.g., on the number of predators in the population at that time).
The methods of [40] are hence not applicable, and we instead
use the extended and more general formalism developed earlier
in this paper.

Both models have the same reaction rates. The only
difference between the two models lies in the changes of nX

and nX′ when a delay reaction triggers and completes, i.e., in
the numerical values of the stoichiometric coefficients v1,x and
w1,x (we label the delay reaction with i = 1 in both models). It
is therefore convenient to carry out the analysis for both models
together, keeping v1,x and w1,x general. After performing the
calculations we substitute in for these parameters and compare
the two models.

Simulations of the models can be performed using the mod-
ified next reaction method (MNRM) [34,35]. The interruption
reaction shown in Eq. (34) fires like a conventional reaction
in the MNRM algorithm with rate f1[x(t)] × m1(t), where
m1(t) is the number of “active” delay reactions at time t , i.e.,
reactions of type i = 1 which have fired but for which the
delayed effects have not yet occurred. When the interruption
reaction occurs, an element of the list of queued delay reactions
is selected at random with uniform weights and removed from
the list. The effects of the interruption reaction are then applied
to the state of the system according to u1,α . Aside from this,
the MNRM is unchanged.

B. Deterministic dynamics

Both models describe three species, X, X′, and Y . The primary
reactions are listed in Eqs. (32) and (33), respectively. These
are labeled i = 1,2,3 from top to bottom. The reactions rates
for both systems are

r[x(t)] =

⎛⎜⎝x(t)h[xtot(t)]

px(t)y(t)

dy(t)

⎞⎟⎠, (35)

with h(xtot) = b(1 − xtot/k). The first reaction, i = 1, is the
only delay reaction. This reaction can be interrupted due to
predation on the intermediaries, with rate f1[x(t)] = py(t)
per intermediary [i.e., any instance of the delay reaction which

is active at time t is subject to interruption with rate py(t)].
The delay distribution is K(τ ). The stoichiometric coefficients,
vi,α , describing changes to the system when reactions trigger
can be summarized as follows,

v =

⎛⎜⎝ vx 1 0

−1 0 1

0 0 −1

⎞⎟⎠, (36)

where the rows each stand for one reaction (i = 1,2,3) and
the columns represent the three types of individuals (X, X′,
and Y ). The only nonzero stochiometric coefficients for
interruption events [see Eq. (34)] are u1,xtot = −1 and u1,y = 1.
The nonzero stochiometric coefficients for successful comple-
tion of delay reactions are w1,x = wx and w1,x ′ = −1. The
differences between the two models are in the numerical
values of v1,x = vx and w1,x = wx . For the juvenile model
we have vx = 0, wx = 1; for the gestation model we have
vx = −1, wx = 2.

The deterministic equations of motion are found as

ẋ∞(t) = vxx
∞(t)h

[
x∞

tot (t)
]− px∞(t)y∞(t)

+wx

∫ ∞

0
dτe− ∫ τ

0 dσpy∞(t−σ )

×K(τ )x∞(t − τ )h
[
x∞

tot (t − τ )
]
, (37)

ẏ∞(t) = px∞(t)y∞(t) − dy∞(t)

+
∫ ∞

0
dτpy∞(t)e− ∫ τ

0 dσpy∞(t−σ )

×
∫ ∞

τ

dsK(s)x∞(t − τ )h
[
x∞

tot (t − τ )
]
, (38)

with x∞
tot = x∞ + x ′∞. In principle, we can also write an

equation for ẋ ′∞; however, we know from the reactions that
the number of X′ at any one time t is equal to the total number
of X′ created up to that point (through birth) and which have
not been removed through maturation or predation. We find

x ′∞(t) =
∫ ∞

0
dτ

{
e− ∫ τ

0 dσpy∞(t−σ )

×
∫ ∞

τ

dsK(s)x∞(t − τ )h
[
x∞

tot (t − τ )
]}

. (39)

C. Fixed point analysis

At the fixed point the left-hand sides of Eqs. (37) and (38)
are zero; the concentration of intermediary individuals can be
found from Eq. (39). We obtain

0 = [wxχ (y∗) + vx]x∗h(x∗
tot) − px∗y∗, (40)

0 = px∗
toty

∗ − dy∗, (41)

0 = [1 − χ (y∗)]x∗h(x∗
tot) − px ′∗y∗, (42)

where the stars indicate the fixed-point values of the relevant
variables. We have also introduced the quantity χ (y∗) =∫∞

0 dτe−py∗τK(τ ), representing the probability for a delay
reaction to reach completion when the system is at the fixed
point. For the gestation model this is the fraction of pregnant
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individuals which successfully give birth; for the juvenile
model this is the fraction of juveniles which successfully
mature and reach the reproductive age.

There are three solutions to the above fixed point equations:
all extinct (x = xtot = y = x ′ = 0), only prey (x = xtot = k,
y = x ′ = 0), and coexistence. We focus on the coexistence
fixed point, and we simply refer to it as the fixed point. We see
that x∗

tot = d/p for both models and for any delay distribution.
The coexistence fixed point only exists if d/p < k. If d/p �
k, then h(d/p) = (1 − d

pk
) � 0 and Eqs. (40)–(42) have no

consistent solutions. If d/p < k we can rearrange Eqs. (40)–
(42) and find

y∗ = p−1[wxχ (y∗) + vx]h

(
d

p

)
, (43)

x∗ = φ−1[wxχ (y∗) + vx]
d

p
, (44)

x ′∗ = φ−1[1 − χ (y∗)]
d

p
, (45)

with φ = wxχ (y∗) + vx + 1 − χ (y∗). We now restrict the
further discussion to the case of constant delay τ̄ , i.e., K(τ ) =
δ(τ − τ̄ ). In this case we can proceed with the analysis and
find χ (y∗) = e−py∗ τ̄ . Equations (43)–(45) are a transcendental
set of equations for x∗, x ′∗, and y∗, which cannot easily be
simplified any further. However, we can reparametrize the
model and treat χ as a parameter in Eqs. (43)–(45). The delay
period, τ̄ , is then a function of the model parameters through
τ̄ = − ln(χ )/(py∗). After substituting in for y∗ we find

τ̄ = − ln(χ )

[
(wxχ + vx)h

(
d

p

)]−1

. (46)

If χ = 1 then there is no delay (τ̄ = 0) in either model.
Furthermore, χ decreases with increasing delay τ̄ . In the
gestation model χ → 0.5 as τ̄ → ∞, whereas χ → 0 in the
juvenile model, as shown in Fig. 1. We stress that we have not
formally established stability of the fixed point. However, for
the parameters used in Fig. 1 the fixed point has numerically
been seen to be stable up to at least τ̄ = 5.

In Fig. 1 we compare these theoretical predictions against
data from simulations of the microscopic dynamics in finite
populations (� = 1000). As seen in the figure, the above
deterministic analysis is in good agreement with stochastic
simulations of the microscopic process in a finite system,
� = 1000.

The concentration of predator and prey individuals x∗
and y∗, determined by Eqs. (43)–(45) decrease with the
delay period in both models, whereas the concentration of
intermediary individuals, x ′∗, naturally increases when the
delay period becomes longer. This is summarized in Fig. 2,
obtained as a parametric plot of Eqs. (43)–(45) and Eq. (46).
Comparison with exact stochastic simulations at finite � again
shows good agreement. We notice that the concentration of
predators is much more sensitive to the choice of model than
the concentration of prey for nonzero delay.

D. Linear-noise approximation

The above deterministic analysis is valid only in the limit of
infinite populations. We next study the effects of noise induced

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

χ

τ

FIG. 1. (Color online) Relationship between survival probability
at the fixed point, χ , and delay period, τ̄ . Lines are parametric plots
using Eq. (46). Blue lines and circles correspond to the gestation
model; yellow lines and triangles correspond to the juvenile model.
Parameters are b = p = k = 1 and d = 0.2. For the gestation model
the survival probability approaches 0.5, whereas for the juvenile
model it approaches 0. Symbols are the fraction of delay reactions
which completed in simulations using the MNRM, averaged over 100
realizations and with � = 1000.

by the stochastic dynamics when the number of individuals in
the system is finite. Representative trajectories generated from
stochastic simulations in Fig. 3 show that the effects of noise
can be quite profound. As seen in numerous Markovian sys-
tems [7,9,15,16,49], noise can generate sustained oscillations
in parameter regimes in which the purely deterministic system
approaches a stable fixed point. This effect has also been
observed in stochastic dynamics with fixed and distributed

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
τ

FIG. 2. (Color online) Relationship between fixed point location
and delay period, τ̄ . Lines are parametric plots using Eq. (46) and
Eqs. (43)–(45). Blue lines and circles correspond to the gestation
model; yellow lines and triangles correspond to the juvenile model.
Parameters are b = p = k = 1 and d = 0.2. The total prey concen-
tration, x∗

tot, is not affected by the delay (black line), and is the same
for both models. Symbols are from simulations using the MNRM
averaged over 100 realizations with � = 1000.
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FIG. 3. (Color online) Sample trajectories of x using the gesta-
tion model for τ̄ = 0 (top line) and τ̄ = 5 (bottom line). Parameters
are b = p = k = 1 and d = 0.2. Simulations performed using the
MNRM with � = 10 000. Both trajectories are observed to oscillate
about their respective deterministic fixed points. The oscillations for
τ̄ = 5 are much more defined, with a period T ∼ 50.

delay [32,39–41]; the time series shown in Fig. 3 show that
this phenomenon extends to delay dynamics with uncertain
completion of delay reactions.

The oscillations can be characterized by the power spectra
of fluctuations about the deterministic fixed point, more

precisely by the diagonal elements of S(ω) = 〈̃ξ (ω)̃ξ
†
(ω)〉,

introduced before Eq. (30). Figure 4 shows how the power
spectrum responds to an increase in the delay period. In both
models the effect of delay is to increase the period of the
quasicycles, as can be seen by a shift of the peak towards lower
frequencies with increasing delay. Delay also increases the
amplitude of the oscillations. For the gestation model the effect
is more pronounced; the amplitude is much more sensitive to
the delay.

To calculate the power spectrum of fluctuations analytically,
we start from the general expression for the Fourier transform
of the Langevin equation found in the linear-noise approxima-
tion, Eq. (28). For the predator-prey models we have

iωξ̃x(ω) =
[
h(x∗

tot) − bx∗

k
− py∗

]
[vx + L̃x(ω)]̃ξx(ω)

− bx∗

k
[vx + L̃x(ω)]̃ξx ′(ω)

− px∗[1 + h(x∗
tot)]Gx(ω)̃ξy(ω) + η̃x(ω), (47)

iωξ̃x ′ (ω) =
[
h(x∗

tot) − bx∗

k

]
[1 + L̃x ′(ω)]̃ξx(ω)

− bx∗

k
[1 + L̃x ′ (ω)]ξx ′(t)

− [px ′∗ + px∗h(x∗
tot)]Gx ′ (ω)ξy(t) + η̃x ′(ω),

(48)

iωξ̃y(ω) =
(

py∗ − bx∗

k

)
L̃y(ω)̃ξx(ω) − bx∗

k
L̃y(ω)̃ξx ′ (ω)

− px∗h(x∗
tot)Gy(ω)ξy(t) + η̃y(ω), (49)
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FIG. 4. (Color online) Variation of the power spectrum of x,
Sx(ω) with the delay period, τ̄ . The top panel corresponds to the
gestation model; the bottom panel corresponds to the juvenile model.
Dashed lines are theoretical predictions using Eq. (46); solid lines are
from simulations using the MNRM with � = 10 000. Parameters are
b = p = k = 1 and d = 0.2.

where L̃α(ω) = ∫∞
0 dτe−iωτLα(τ ) and Gα(ω) =

1
iω

∫∞
0 dτLα(τ ){1 − e−iωτ }. For these models the weighted

delay effects are L(τ ) = {wxK(τ ), − [K(τ ) + Q(τ )],Q(τ )}.
Equations (47)–(49) can be rewritten as a matrix equation

η̃(ω) = M(ω)̃ξ (ω). The noise correlation matrix has elements

B̃x,x(ω) = c
[
v2

x + χw2
x + wxχ + vx + 2vxwxReK̃(ω)

]
,

B̃x,x ′ (ω) = c{vx − χwx + wxK̃(ω) − vx[K̃∗(ω) + Q̃∗(ω)]},
B̃x,y(ω) = c[vxQ̃

∗(ω) − wxχ − vx],

B̃x ′,x ′ (ω) = 2c{1 − Re[K̃(ω) + Q̃(ω)]},
B̃x ′,y(ω) = c[Q̃∗(ω) − (1 − χ )],

B̃y,y(ω) = 2cφ, (50)

where c = x∗h(x∗
tot). The remaining elements follow from

the Hermitian property, B̃(ω) = B̃
†
(ω). The spectrum matrix

S(ω) can be found by inserting Eqs. (47)–(50) into Eq. (30).
Comparison of these theoretical predictions against data from
simulation shows good agreement (see Fig. 4) and confirms
the viability of the LNA for both models.
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If we return back to the definition of the models, the delay
reaction for the gestation model is

X
b(1−xtot/k)−→ X′; X′ K(τ )=⇒ 2X, (51)

whereas for the juvenile model it is

X
b(1−xtot/k)−→ X + X′; X′ K(τ )=⇒ X. (52)

The total effect of the delay reaction (i.e., of the initial effects
together with the delayed effects) is the same for both models:
The number of individuals of type X increases by one. The
difference between the models is in the intermediary changes.

To probe the effects of delay, let us compare the outcome of
the delay models (τ̄ > 0) with the corresponding Markovian
models (obtained in the limit τ̄ → 0). In this limit the reactions
in Eqs. (51) and (52) both reduce to

X
b(1−x/k)−→ 2X. (53)

The study of the fixed point behavior and of the power spectrum
of the models with delay shows that the location of the fixed
point and the peak of the power spectrum at any fixed τ̄ > 0 are
closer to the corresponding quantities at τ̄ = 0 in the juvenile
model than in the gestation model. This indicates that it is not
only the duration of the delay which determines whether or not
it can be neglected, but also the details of the delay reaction.
We note that the survival probability at the fixed point (shown
in Fig. 1) is more sensitive to the delay in the juvenile model
than in the gestation model.

VII. CONCLUSIONS

The main focus of this paper has been to extend the
generating-functional approach for stochastic interacting par-
ticle systems to dynamics in which delay reactions can be
interrupted. In particular, we consider cases in which the
interruption rate depends on the state of the system at the
time of interruption. The probability with which the delay
effects ultimately occur is then a functional of the path taken
by the system during the delay period. We successfully set up
a path-integral description of such systems.

The action of the generating functional for delay reactions
with interruption has a clear relationship with the actions
found previously in models in which the delay reactions
complete with certainty. The example in Sec. IV shows how our
extended theory includes results previously derived in simpler
cases where the interruption rate is constant and independent
of the state of the system at the time of interruption. The
generating functional provides a starting point for further
analytical calculations; specifically, we derive Gaussian and
LNAs from it to characterize noise-induced effects in finite
populations.

We apply these techniques to an example inspired by
predator-prey dynamics. We study two variants of the model,
one with gestation delay and one with maturation delay.
The deterministic approximation can be used to give a good
estimate of the probability that any given delay reaction
completes. In the gestation model this describes the probability
that a pregnant individual successfully gives birth, in the
juvenile model it is the probability that a newborn individual
successfully reaches adulthood. Starting from the LNA we

show how the formalism can be used to analytically study
persistent noisy cycles, induced by demographic stochasticity.

Finally, the overall effect of delay reactions is identical in
the gestation and in the juvenile predator-prey model, that is
to say the changes of delay reactions at the time they trigger
taken together with the effects at completion are the same
in both models. Our analysis shows that different quantities
(e.g., survival probability, fixed point location, peak of the
power spectrum) have different sensitivities to the delay in
the two models. For both the deterministic fixed point and
the characteristic frequency of noise-induced oscillations, the
duration of the delay period has a much stronger effect on
the outcome in the gestation model than in the juvenile
model. Conversely, the probability that the delayed effects
successfully occur decreases much faster with increasing delay
in the juvenile model than in the gestation model.

These observations have implications for the construction
of population models. Whether a delay can safely be neglected
depends not just on the duration of the delay period itself but
also on the details of the changes to the population at the start
and end of the delay period. This indicates that care must be
taken when approximating models with delay or intermediate
processes by effective Markovian dynamics.

In summary, our previous work [40], together with the
present paper, provides a systematic and coherent approach to
studying stochastic effects in a wide range of delay systems,
including those with distributed delay, delay reactions that
can fail to complete with path-dependent rates, and systems
with multiple possible interruption channels. The generating
functional is the natural mathematical entity which with to
address these systems and is the analog of the master equation
in the context of Markovian dynamics. We have here only
applied this method to a small set of examples, inspired by
ecological dynamics, but we anticipate that the formalism
that is now in place can be of value in the context of many
other applications, including those in epidemiology, metabolic
dynamics, gene expression, and other fields which delayed
dynamics.

ACKNOWLEDGMENT

T.B. would like to thank the Engineering and Physical
Sciences Research Council (UK) for support.

APPENDIX A: THE GENERATING FUNCTIONAL FOR
INTERRUPTIBLE DELAY

1. Conditional probabilities

To derive the generating functional we focus on the model
in discretized time. The continuous-time limit is taken at the
end of the calculation. We adopt the following notation: kt

denotes all kτ
i,t ′ for which t ′ = t , �t denotes all �

τ,s
i,t ′ for which

t ′ + s = t , and mt denotes all mτ
i,t ′ for which t ′ + τ = t .

Using this notation the equation of motion for xt,α can be
expressed in the form xt+�,α = xt,α + gα(kt ,�t ,mt ). The path
probability P (x,k,�,m) can be written as the product

P (x,k,�,m) =
∏

t

P (xt+�|{x,k,�,m}t ′�t )

×P (kt ,�t ,mt |xt ,{x,k,�,m}t ′<t ). (A1)
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For a particular t , all of the variables contained in {kt ,�t ,mt }
are independent of each other (conditioned on the history of
the system up to time t), so their joint probability distribution
factorizes

P (kt ,�t ,mt |xt ,{x,k,�,m}t ′<t )

=
∏

i

∏
τ>0

[
P
(
mτ

i,t−τ

∣∣xt ,{x,k,�,m}t ′<t

)
×

∏
0<s<τ

P
(
�

τ,s
i,t−s

∣∣xt ,{x,k,�,m}t ′<t

)
× P

(
kτ
i,t

∣∣xt ,{x,k,�,m}t ′<t

)]
. (A2)

All of these conditional probabilities are known from the
definition of the process. We have

P
(
mτ

i,t−τ

∣∣xt ,{x,k,�,m}t ′<t

)= P
(
mτ

i,t−τ

∣∣{�τ,σ
i,t−τ

}
0<σ<τ

,kτ
i,t−τ

)
,

P
(
�

τ,s
i,t−s

∣∣xt ,
{
x,k,�,m

}
t ′<t

)=P
(
�

τ,s
i,t−s

∣∣xt ,
{
�

τ,σ
i,t−s

}
0<σ<s

,kτ
i,t−s

)
,

P
(
kτ
i,t |xt ,{x,k,�,m}t ′<t

) = P
(
kτ
i,t

∣∣xt

)
. (A3)

The explicit expressions for the probabilities in terms of
fi(xt ), ri(xt ) and Ki(τ ) are given by Eqs. (4)–(8). The
probability distribution P (xt+�|{x,k,�,m}t ′�t ) is the product
of δ distributions given in Eq. (3), which for clarity we repeat
here,

P (xt+�|{x,k,�,m}t ′�t )

=
∏
α

δ[xt+�,α − xt,α − gα(kt ,�t ,mt )]. (A4)

We have

gα(kt ,�t ,mt )

= 1

�

∑
i

∑
τ>0

[
vi,αkτ

i,t + wi,αmτ
i,t−τ +

∑
0<s<τ

ui,α�
τ,s
i,t−s

]
.

(A5)

To make the expressions that follow more compact, we can
define the product

�i,t,τ = P
(
kτ
i,t |xt

)
P
(
mτ

i,t

∣∣{�τ,σ
i,t

}
0<σ<τ

,kτ
i,t

)
×

∏
0<s<τ

P
(
�

τ,s
i,t

∣∣xt+s ,
{
�

τ,σ
i,t

}
0<σ<s

,kτ
i,t

)
, (A6)

so that the path probability factorizes into

P (x,k,�,m) =
∏

t

P (xt+�|{x,k,�,m}t ′�t )
∏

τ>0,i,t

�i,t,τ . (A7)

We refer to �i,t,τ as the statistical weight associated with
the combination of random variables {kτ

i,t ,{�τ,σ
i,t }0<σ<τ ,m

τ
i,t }. It

is not itself a probability, as the probabilities which compose
it are conditioned on different random variables.

All of the conditional probabilities which make up
�i,t,τ in Eq. (A6) are only conditioned on variables
which are either (i) {xt ′ }t�t ′<t+τ or (ii) other members of
{kτ

i,t ,{�τ,σ
i,t }0<σ<τ ,m

τ
i,t }. The weight �i,t,τ is therefore only

a function of {kτ
i,t ,{�τ,σ

i,t }0<σ<τ ,m
τ
i,t } and {xt ′ }t�t ′<t+τ . To

simplify the notation, we suppress these arguments.
Later on this definition of �i,t,τ will allow us to factorize

the generating functional and perform the sums for each factor
separately.

Inspecting Eqs. (4)–(8) we can identify the only combina-
tions of values of kτ

i,t , �
τ,0<s<τ
i,t , and mτ

i,t , for which �i,t,τ is
nonzero. They are as follows.

(i) A reaction of type i with delay period τ does not fire at
time t . In this case we have

kτ
i,t = 0, �

τ,σ
i,t = 0 ∀ 0 < σ < τ, mτ

i,t = 0, (A8)

with

�i,t,τ = 1 − �2Ki(τ )�ri(xt ). (A9)

(ii) A reaction of type i with delay period τ fires at time
t and is interrupted at time t + s. The values of the random
variables for this case are

kτ
i,t = 1,

�
τ,σ
i,t = 0 ∀ 0 < σ < s,

�
τ,s
i,t = 1, (A10)

�
τ,σ
i,t = 0 ∀ s < σ < τ,

mτ
i,t = 0,

and

�i,t,τ = �fi(xt+s)
∏

0<σ<s

[1 − �fi(xt+σ )]�2Ki(τ )�ri(xt ).

(A11)

(iii) A reaction of type i with delay period τ fires at time t

and is not interrupted. The random variables take the values

kτ
i,t = 1, �

τ,σ
i,t = 0 ∀ 0 < σ < τ, mτ

i,t = 1, (A12)

with

�i,t,τ =
∏

0<σ<τ

[1 − �fi(xt+σ )]�2Ki(τ )�ri(xt ). (A13)

2. Generating functional

Inserting Eqs. (A7) and (A4) into the definition of the generating functional gives

Z[ψ] =
∫

Dx
∑

{k,�,m}

∏
t,α

δ

(
xt+�,α − xt,α − 1

�

∑
i

∑
τ>0

[
vi,αkτ

i,t + wi,αmτ
i,t−τ +

∑
0<s<τ

ui,α�
τ,s
i,t−s

])
e−∑

t,α �ψt,αxt,α ×
∏

τ>0,i,t

�i,t,τ ,

(A14)
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where we have introduced the short-hand
∫

Dx ≡ ∫ ∏
t dxt . Using the exponential representation of the δ function we can

write

Z[ψ] =
∫

DxD x̂
∑

{k,�,m}
exp

(
i
∑
t,α

x̂t,α

{
xt+�,α − xt,α − 1

�

∑
i

∑
τ>0

[
vi,αkτ

i,t +wi,αmτ
i,t−τ

+
∑

0<s<τ

ui,α�
τ,s
i,t−s

]}
−
∑
t,α

�ψt,αxt,α

) ∏
τ>0,i,t

�i,t,τ , (A15)

with
∫

D x̂ ≡ ∫ ∏
t

d x̂t

2π
. In what follows we make the transformation i x̂ → p. Equation (A15) can be factorized to give

Z[ψ] =
∫

DxDpe
∑

t,α [pt,α (xt+�,α−xt,α )−�ψt,αxt,α ] ×
∑

{k,�,m}

∏
τ>0,i,t

e− 1
�

∑
α [vi,αpt,αkτ

i,t+wi,αpt,αmτ
i,t ]e− 1

�

∑
α[
∑

0<s<τ ui,αpt+s,α�
τ,s
i,t ]�i,t,τ . (A16)

Before we take the average over the random variables k, l , and m it is useful to define

�i,t,τ =
∑
kτ
i,t

∑
mτ

i,t

∑
{�τ,s

i,t }0<s<τ

e− 1
�

∑
α [vi,αpt,αkτ

i,t+wi,αpt,αmτ
i,t ]e− 1

�

∑
α [
∑

0<s<τ ui,αpt+s,α�
τ,s
i,t ]�i,t,τ . (A17)

The quantity �i,t,τ is a function of {xt ′ }t�<t ′<t+τ ; for clarity we have suppressed these arguments. In defining �i,t,τ we have
collected all occurrences of the variables indicated in the summation, {kτ

i,t ,{�τ,σ
i,t }0<σ<τ ,m

τ
i,t }. As explained beneath Eq. (A7), �i,t,τ

is only a function of {kτ
i,t ,{�τ,σ

i,t }0<σ<τ ,m
τ
i,t } and of {xt ′ }t�<t ′<t+τ . This construction allows us to evaluate each �i,t,τ separately to

all other terms in the generating functional, which can be written as

Z[ψ] =
∫

DxDpe
∑

t,α [pt,α (xt+�,α−xt,α )−�ψt,αxt,α]
∏

τ>0,i,t

�i,t,τ . (A18)

Using Eqs. (A9), (A11), and (A13) we obtain

�i,t,τ =1 +
{ ∑

0<s<τ

e− 1
�

∑
α [vi,αpt,α+ui,αpt+s,α]�fi(xt+σ )

∏
0<σ<s

[1 − �fi(xt+σ )]

+ e− 1
�

∑
α [vi,αpt,α+wi,αpt,α ]

∏
0<σ<τ

[1 − �fi(xt+σ )] − 1

}
�2Ki(τ )�ri(xt ), (A19)

which for small � can also be written as an exponential; cf. 1 + �f = e�f + O(�2).
Repeating this procedure for all �i,t,τ leaves a generating functional for the discrete-time dynamics. We can then take the

continuous-time limit and arrive at

Z[ψ] =
∫

DxDxe−S[x,p]−∫ dt ψ(t)· x(t), (A20)

with the action

S[x,p] =
∫

dt

[
p(t) · ẋ(t) +

∑
i

{∫ ∞

0
dτ
(
e− 1

�
[vi · p(t−τ )+wi · p(t)] − 1

)
e− ∫ τ

0 dσfi [x(t−σ )]Ki(τ )�ri[x(t − τ )]

+
∫ ∞

0
ds
(
e− 1

�
[vi · p(t−s)+ui · p(t)] − 1

)
fi[x(t)]e− ∫ s

0 dσfi [x(t−σ )]
∫ ∞

s

dτKi(τ )�ri[x(t − s)]

}]
. (A21)
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APPENDIX B: DETAILS OF THE APPROXIMATIONS

1. Deterministic approximation

To leading order in �−1 the general action Eq. (A21)
reduces to

S[x,p] = −
∫

dt

[
p(t) · ẋ(t) −

∑
i

{
A

(1)
i (t) + A

(2)
i (t)

}]
,

(B1)

where

A
(1)
i (t) =

∫ ∞

0
dτ [vi · p(t − τ ) + wi · p(t)]

×e− ∫ τ

0 dσfi [x(t−σ )]Ki(τ )ri[x(t − τ )], (B2)

and

A
(2)
i (t) =

∫ ∞

0
ds[vi · p(t − s) + ui · p(t)]

× fi[x(t)]e− ∫ s

0 dσfi [x(t−σ )]

×
∫ ∞

s

dτKi(τ )ri[x(t − s)]. (B3)

As the action is linear in the conjugate variables p(t), the
dynamics can be described by a set of deterministic equations
of motion [43]. The deterministic equations equivalent to
Eq. (B1) are Eq. (20) found in the main text.

2. Linear-noise approximation

We write x = x∞ + �−1/2ξ and formulate the generating
functional in terms of the variable ξ . In doing this we
rescale the conjugate variables via p → √

�q. The resulting
generating functional is

Z[ψ]=
∫

DξDqe−S[x∞+�−1/2ξ ,
√

�q]e− ∫
dt ψ(t)·{x∞(t)+�−1/2ξ (t)}.

(B4)

Differentiating Eq. (B4) with respect to ψ(t) still gives the
moments and correlation functions of x(t). To find a generating
functional for ξ we divide Eq. (B4) by the factor e− ∫

dtψ(t)·x∞(t),
which is independent of ξ and q, and rescale the source term,
ψ → √

�φ. The generating functional for ξ is

Zξ [φ] =
∫

DξDqe−S[x∞+�−1/2ξ ,
√

�q]−∫ dtφ(t)·ξ (t). (B5)

The moments of ξ can now be found by differentiating Zξ [φ]
with respect to φ.

The terms in the action are expanded in powers
of �−1/2, and the expansion is curtailed after sub-
leading order [i.e., keeping terms O(�0) and above].
We consider the case where the deterministic dynamics
are at a stable fixed point, x∞(t) = x∗. The action is

S[x∗ + �−1/2ξ ,
√

�q] = SLNA[ξ ,q] + O(�−1/2), with

SLNA[ξ ,q]

= −
∫

dt
∑

α

qα(t)ξ̇α(t)

+
∫

dt

∫
dt ′
∑
α,β

qα(t)Aα,β[x∗](t,t ′)ξβ(t ′)

+ 1

2

∫
dt

∫
dt ′
∑
α,β

qα(t)Bα,β[x∗](t,t ′)qβ(t ′). (B6)

The explicit expressions for Aα,β [x∗](t,t ′) and Bα,β[x∗](t,t ′)
are given in Eqs. (26) and (27), respectively. The action
is quadratic in q and ξ and it describes a process with
additive Gaussian colored noise as found through use of
the Martin-Siggia-Rose-Jansen-de Dominicis generating func-
tional approach [44,46]. Such processes are equivalent to the
Langevin equation given in the main text, Eq. (23).

APPENDIX C: MULTIPLE INTERRUPTION REACTIONS

Although the notation involves a number of indices, it
is straightforward to see how the generating functional can
be extended to the case in which any delay reaction can be
interrupted in multiple different ways. If reaction i is a delay
reaction which can be interrupted in �i possible ways, indexed
by μ = 1, . . . ,�i , then by extension of Eq. (2),

xt+�,α − xt,α = 1

�

∑
i

∑
τ>0

[
vi,αkτ

i,t + wi,αmτ
i,t−τ

+
∑

0<s<τ,μ=1,...,�i

ui,μ,α�
τ,s
i,μ,t−s

⎤⎦. (C1)

We also have to modify the conditional probabilities of the
random variables to take into account the different interruption
reactions. If kτ

i,t = 0, then �
τ,s
i,μ,t = 0 for all s and μ; i.e.,

P
(
�

τ,s
i,μ,t = 0

∣∣kτ
i,t = 0

) = 1 ∀ 0 < s < τ, μ = 1, . . . ,�i.

(C2)

Similarly, if kτ
i,t = 1 and �

τ,σ
i,μ,t = 1, then necessarily �

τ,s>σ
i,ν,t = 0

and mτ
i,t = 0; i.e.,

P
(
�

τ,s
i,ν,t = 0

∣∣�τ,σ
i,μ,t = 1,kτ

i,t = 1
) = 1 ∀ σ < s < τ, ν ∈ �i,

P
(
mτ

i,t = 0
∣∣�τ,σ

i,μ,t = 1,kτ
i,t = 1

) = 1. (C3)

If the system is in state xt then interruption through channel
μ happens with rate �fi,μ(xt ),

P
(
�

τ,s
i,μ,t = 1

∣∣xt+s ,
{
�

τ,σ
i,ν,t = 0

}
0<σ<s, ν=1,...,�i

,kτ
i,t = 1

)
= �fi,μ(xt+s),

P
(
�

τ,s
i,μ,t = 0

∣∣xt+s ,
{
�

τ,σ
i,ν,t = 0

}
0<σ<s, ν∈�i

,kτ
i,t = 1

)
= 1 − �fi,μ(xt+s). (C4)

If the reaction has not been interrupted, then the reaction
always completes

P
(
mτ

i,t = 1
∣∣{�τ,σ

i,ν,t = 0
}

0<σ<τ, ν=1,...,�i
,kτ

i,t = 1
) = 1. (C5)
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As we are working with small �,

P
(
�

τ,s
i,μ,t = 1, �

τ,s
i,ν,t = 1

∣∣xt+s ,
{
�

τ,σ
i,λ,t = 0

}
0<σ<τ, λ=1,...,�i

,kτ
i,t = 1

) = δμ,ν . (C6)

The only nonzero combinations of these conditional probabilities are as follows.
(i) Reaction does not fire:

P
(
mτ

i,t = 0
∣∣kτ

i,t = 0
) ∏

0 < s < τ

μ = 1, . . . ,�i

P
(
�

τ,s
i,μ,t = 0

∣∣kτ
i,t = 0

)
P
(
kτ
i,t = 0

∣∣xt

) = 1 − �2Ki(τ )�ri(xt ). (C7)

(ii) Reaction fires and is interrupted at time t + s through channel μ:

P
(
mτ

i,t = 0
∣∣�τ,s

i,μ,t = 1,kτ
i,t = 1

) ∏
s < σ < τ

ν = 1, . . . ,�i

P
(
�

τ,s
i,ν,t = 0

∣∣�τ,s
i,μ,t = 1, kτ

i,t = 1
)
P
(
�

τ,s
i,μ,t = 1

∣∣xt+s ,
{
�

τ,σ
i,ν,t = 0

}
0<σ<s, ν=1,...,�i

, kτ
i,t = 1

)

×
∏

0 < σ < s

ν ∈ �i

P
(
�

τ,σ
i,ν,t = 0

∣∣xt+σ ,
{
�

τ,ρ

i,λ,t = 0
}

0<ρ<σ, λ=1,...,�i
, kτ

i,t = 1
)
P
(
kτ
i,t = 1|xt

)

= �fi,μ(xt+s)
∏

0 < σ < s

ν = 1, . . . ,�i

[1 − �fi,ν(xt+σ )]�2Ki(τ )�ri(xt ). (C8)

(iii) Reaction fires and is not interrupted:

P
(
mτ

i,t = 1
∣∣{�τ,σ

i,μ,t = 0
}

0<σ<τ, μ=1,...,�i
,kτ

i,t = 1
) ∏

0 < σ < τ

μ = 1, . . . ,�i

P
(
�

τ,σ
i,μ,t = 0

∣∣xt+σ ,
{
�

τ,ρ

i,ν,t = 0
}

0<ρ<σ, ν=1,...,�i
,kτ

i,t = 1
)
P
(
kτ
i,t = 1|xt

)

=
∏

0 < σ < τ

μ = 1, . . . ,�i

[1 − �fi,μ(xt+σ )]�2Ki(τ )�ri(xt ). (C9)

Following the same procedure as above and keeping track of the additional index μ, the generating functional is the same as
when there is only one interruption reaction, only with the action

S[x,p] =
∫

dt

⎡⎣ p(t) · ẋ(t) +
∑

i

⎧⎨⎩
∫ ∞

0
dτ
(
e− 1

�
[vi · p(t−τ )+wi · p(t)] − 1

)
e
−∑

μ=1,...,�i

∫ τ

0 dσfi,μ[x(t−σ )]
Ki(τ )�ri[x(t − τ )]

+
∑

μ=1,...,�i

∫ ∞

0
ds
(
e− 1

�
[vi · p(t−s)+ui · p(t)] − 1

)
fi,μ[x(t)]e−∑

ν=1,...,�i

∫ s

0 dσfi,ν [x(t−σ )]
∫ ∞

s

dτKi(τ )�ri[x(t − s)]

⎫⎬⎭
⎤⎦. (C10)
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