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In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the
behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a
Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic
interpretation. The resulting master equation, which describes a simple one-step process on an enormously large
state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially
in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in
one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but
the total (integrated) entropy production is finite and grows logarithmically with the number of computational
steps.
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I. INTRODUCTION

Computers are physical systems and information has to
be stored and transmitted using physical devices. This trivial-
sounding statement leads to very important insights as soon as
one starts to ask for the fundamental physical limits of com-
putation. The most known statement is probably Landauer’s
principle: Erasing a data set with information content (i.e.,
entropy) H causes a minimum heat dissipation of β−1H if β

is the inverse temperature of the surrounding environment.
This was first formulated by Landauer in 1961 [1]. More
generally, it was argued by Bennett [2–4] and others [5–9]
that each logically irreversible operation (as, e.g., information
erasure) must be accompanied with a corresponding heat
dissipation, whereas each logically reversible operation can
be implemented—at least in principle—in an energetically
neutral way. The heat flow of such computers, if operated
slowly enough, is then equal to the change in their Shannon
entropy (times β−1), demonstrating the usefulness of the
Shannon entropy to describe thermodynamic processes.

Although the question about the relation between logical
and thermodynamical reversibility sounds like a purely aca-
demic question, it is indeed of practical importance because
one of the limitations of today’s computers lies in the heat
which they produce during computation and which is hard to
be drained off quickly enough. In addition, it is well known
that the thermodynamics of computation can be successfully
applied to resolve the famous Maxwell demon paradox [3,4,9].

Today, it seems that most physicists accept the thermody-
namics of computation as a well-established field and also
Feynman notes (page 160 in Ref. [8]): “I see nothing wrong
with his [Bennett’s] arguments. [...] I concluded that there was
no minimum energy [consumption of computers].” Indeed,
however, criticism was raised against Bennett’s exorcism of
Maxwell’s demon and the thermodynamics of computation
some time ago [10–12], which was subsequently defended by
Bub and Bennett again [13,14], but criticism and controversies
still prevail for different reasons, mainly (but not only) on the
philosophical side [15–26].

An important class of physical models used to illustrate the
thermodynamics of computation are inspired by biochemical
processes as, e.g., DNA replication [2,3,7,8]. Indeed, copying

a DNA strand can be regarded as a simple computational task
where the DNA strand represents a certain input signal, which
is manipulated by enzymes to produce an identical copy of
the input. Energetic barriers in the computational path, i.e.,
barriers between two logical states of the computation, can
be overcome by the random thermal motion of the molecules
involved and a bias in chemical potentials can be used to drive
the computation in a desired direction. For a small-enough
chemical bias the average dissipation of energy per step can
be made arbitrarily small and, thus, one usually concludes
that computation can be carried out thermodynamically
reversibly.

In a more general frame, systems which use the random
thermal motion of its components to perform a computation
are usually called Brownian computers. However, in addition
to the arguments presented above, a detailed and general
mathematical treatment of such computers seems to be missing
in the literature. Indeed, the authors of Refs. [2,3,7,8] based
their reasoning largely on ingenious arguments instead of
detailed calculations. If one finds more detailed (yet not
very general calculations) in the literature [21,26], then they
seem to contradict the statement that Brownian computers are
thermodynamically reversible.

In the present contribution we will therefore treat the subject
of Brownian computers in general, i.e., without having any
specific computational task or physical problem in mind. We
will start by considering an arbitrary Turing machine (TM),
which is known to be a model for a general-purpose computer.
This means that for each computable function (or algorithm)
there exists a TM which can implement it. Moreover, it is even
possible to construct a special TM, called a universal TM,
which is able to simulate any other TM and, hence, TMs are
said to be computationally universal (an introduction to TMs
can be found in Refs. [8,27]). Based on the ideas of Bennett,
we will then show how to construct a logically reversible
TM and in addition, we show how to model this TM by use
of a continuous-time Markov process, i.e., by a Markovian
master equation (ME). The resulting model is then able to
compute in a stationary regime where it transforms a string
of incoming symbols (the inputs of the computation) into a
corresponding string of outgoing symbols (simply called the
outputs).
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The big advantage of a description in terms of a ME is
that its thermodynamic behavior has been well understood
for many years [28,29], and their stochastic behavior can be
treated within a consistent thermodynamic formalism, which
is known as stochastic thermodynamics [30]. Indeed, there
has been much recent interest in using small autonomous
machines describable by, e.g., a Markovian ME, to address
questions of information processing as, e.g., sensing, feedback,
or adaptation, in a thermodynamic context. Such machines
were studied for abstract models [31–36], more general
settings [37–41], in a biochemical context [42–46], or in
the field of artificial nanostructures [47,48]. Furthermore, we
have reached the realm where experiments are performed
at the Landauer limit [49–53]. However, to the best of our
knowledge, there is no reference which has treated the question
of how to describe a general computer within a ME framework
and which has worked out its thermodynamic consequences
in detail. We will find out that the entropy production
rate of a Brownian computer can be made arbitrarily small
while the total entropy production grows logarithmically
with the number of computational steps, thereby resolving
a part of the controversy among Bennett, Norton, and
others.

Because the treatment of TMs is no standard subject taught
in physics, we will give an introduction to it in Sec. II to make
the paper as self-contained as possible. Then, in Sec. III, we
will first show how to build a TM in a logically reversible way
before we demonstrate how to map it to a ME. Because the
details of a logical reversible TM are a bit technical but not
of major importance for a general understanding of the rest of
the paper, we will shift them to Appendix. Finally, after we
have discussed the structure of the ME in Sec. III, we discuss
the thermodynamics of Brownian computation in Sec. IV. A
last section is then devoted to a summary of our results and an
outlook on interesting future work.

II. TURING MACHINES

A TM T is an idealized machine to model or simulate
problems in computer science (see Fig. 1). In the standard
treatment T has two parts: First, we have the machine itself,
which can be in some state q ∈ Q, where Q denotes the finite
set of internal machine states. Second, the machine has access
to an external storage medium (usually called the tape), which
is divided into equal squares and each square contains either
a special symbol s ∈ S (where S is again a finite set) or it

FIG. 1. Simple sketch of a TM: The machine, specified by a state
q, has access to an infinite tape, which is divided into equal squares.
The machine scans with its head always only on one square on the
tape, on which it finds a symbol s (which might be also the blank
symbol b) written.

contains a blank b. The machine has a head with which it is
coupled to one and only one square of the tape at each point
of time.

At each time step, the machine in state q reads the symbol
s written on the square and subsequently it changes its own
state to q ′, writes a new symbol s ′ on the square (which can
be the same as the old one) and either shifts the tape one
square to the left or to the right or stays where it is. Mathe-
matically, these rules can be defined by three functions F , G,
and H :

q ′ = F (q,s),

s ′ = G(q,s),

d ′ = H (q,s),

(1)

where d ′ ∈ {−1,0, + 1} encodes the direction of movement of
the tape with −1,0, + 1 denoting to move the tape right, do
not move it, or move it left. These three maps (together with an
agreement about the initial state, see below) completely define
the action of T . Often one writes these maps in terms of a
so-called quintuple,

[q,s,F (q,s),G(q,s),H (q,s)] = (q,s,q ′,s ′,d ′), (2)

or simply as

(q,s) → (q ′,s ′,d ′). (3)

A computation of T is then defined as follows: The machine
starts initially in a special state R ∈ Q (we use R for “ready”)
and scans by convention the first blank symbol to the left of
a finite number of input symbols sin ≡ (s1,s2, . . . ,sM ) written
on the tape. Note that we demand that there is no blank symbol
in between the input symbols and that the input string is finite.
Then T starts to move right and reads the first input symbol
s1. It then proceeds according to the rules above [Eq. (1)].
After some time the TM might be done with the computation.
We then assume that it shifts to the first blank symbol to the
right of the remaining string of symbols sout ≡ (s1,s2, . . . ,sM ′)
written on the tape and then changes to a special final state H
(H for “halt”). The string sout is called the output or the result
of the computation, which is again finite but not necessarily
of the same length as the input (i.e., M ′ �= M is possible). In
short, we will also write a computation as T : sin → sout or
T (sin) = sout.

Hence, we see that the idea of a TM is very simple: given
(T ,s), i.e., a TM T with input s in standard format as above, it
follows the rules (1) until it is done with the computation. In
particular, we note that there is only a finite set of quintuples
or rules (1) because Q and S were assumed to be finite sets.
Introducing NQ ≡ #Q and NS ≡ #S (with “#” denoting the
cardinality of a set), we see that any TM is completely specified
by NQ(NS + 1) many quintuples. Note that we also need a rule
for the machine if it scans a blank symbol, hence the factor
NS + 1 = #(S ∪ {b}).

In view of these facts it seems very remarkable that, first,
TMs are capable of universal computation and, second, that
they can show an incredibly complex behavior. The first
property is related to the Church-Turing thesis—which has
to be taken for granted though—which states that every
intuitively computable function can be computed by a TM.
The second property is reflected, for instance, in the fact
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that it is impossible to design a TM TH which tells us for
an arbitrary given TM T and input s whether (T ,s) will halt
or not. This is the famous halting problem. Thus, it might be
that the computation defined above never reaches the state H
and goes on forever. In this case, the computation simply has
no result. Thus, the incredible power of TMs (namely their
computational universality) has a serious drawback (namely
their in general unpredictable behavior). A much more detailed
account of TMs can be found in Refs. [8,27].

III. STOCHASTIC TURING MACHINES

A. Setup and idea

Examining the thermodynamics of computation can be
done in many different ways. Here, as stressed in the
Introduction, we want to capture three main features: first,
we want to look at a general computational problem and
not one specific task; second, we are interested in a logi-
cally reversible computer; and, third, we want to model the
computation stochastically, i.e., as a Brownian computer. The
general thermodynamic picture is hence as sketched in Fig. 2.
Some machine (with a very complex interior in general, see
below) is coupled to a thermal reservoir at inverse temperature
β and a work reservoir. The work reservoir can be used
to drive the computation in a certain direction, whereas the
thermal reservoir is equipped with a well-defined notion of
heat and entropy. The task of our machine is to compute. It
therefore receives input signals and transforms them to output
signals corresponding to the result of the computation. Logical
reversibility demands that we use two separate tapes for the
inputs and outputs (henceforth called the input and output
tapes, respectively). In fact, if we do not keep the initial inputs
but simply overwrite them with the output (as the TM from
Sec. II would do), our machine will be, in general, irreversible
[54].

FIG. 2. Sketch of the general setup, which allows us to analyze
any abstract computational process in terms of thermodynamic
quantities. The upper tape corresponds to the output tape, which
is initially blank, and the lower tape corresponds to the input tape.
Note that we will always assume that blank tapes are for free, i.e.,
the machine can have as many blank space on which it can write as it
requires. Furthermore, the machine itself has access to two additional
internal tapes (not sketched), see Sec. III B.

More specifically, a logically reversible computer is in
principle able to unambiguously retrace its computational path
(i.e., the sequence of logical states visited so far) back to
the initial state. In fact, most TMs as introduced in Sec. II
are logically irreversible, for instance, due to the fact that
the machines usually do not remember from which direction
they were coming. But even if it would remember this (for
instance, by writing the direction d on an additional tape),
the machine might still be logically irreversible. Consider,
for example, that there exists a pair of states and symbols
(q1,s1) and (q2,s2) such that q ′ = F (q1,s1) = F (q2,s2), s ′ =
G(q1,s1) = G(q2,s2), and d ′ = H (q1,s1) = H (q2,s2). Then,
given the state (q ′,s ′) [or even (q ′,s ′,d ′)], the machine has two
possible predecessor states and it cannot know from which it
was coming. Hence, it is logically irreversible. This situation
is sometimes called the merging of two computational paths,
see Fig. 3.

FIG. 3. (Color online) A computational path is defined by the
way the machine proceeds from state to state through a high-
dimensional state space (each state of the machine including the
tapes is symbolized by a black circle). Here we sketched two different
paths (solid red and dashed blue lines). For standard machines (which
compute only from left to right) each path is uniquely determined by
the input signal string and the initial machine state. For a logically
irreversible machine, however, it might happen that two different
paths merge at some point (as shown on top), making it impossible
to find the inverse of a state in general (that is to say, there is a
unique way to go from left to right in the diagram but not from
right to left). In contrast, this cannot happen for logically reversible
machines (as shown in the middle), but this feature comes at the
cost of introducing additional states and tapes making the state space
even larger. Finally, whereas the standard logically reversible TM still
proceeds deterministically from left to right, a stochastic TM jumps
randomly according to some rates [e.g., Wn+1,n and Wn,n+1 as used in
Eqs. (6) and (8)] and, hence, it can move both ways (bottom).
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However, even a logically reversible computer still pro-
ceeds deterministically step by step along its computational
path. This deterministic behavior unambigously defines a
computational direction, see Fig. 3 again (we remark that the
computational direction does not necessarily coincide with
the “physical” direction of the movement of the tape, which
can—as we have seen—be shifted either way). In contrast,
we also want to look at a stochastic machine, which makes
random transitions in both directions, i.e., it is also allowed to
jump back to a previous computational state. In order to assure
that we can control the direction of computation on average,
we demand that we can change the potential energy externally,
for instance, by using a work source or by adjusting chemical
potentials appropriately.

In the next section we will present the main ideas of how
to obtain a logically reversible TM from an irreversible TM
as discussed in Sec. II sparing the mathematical details to the
appendix. Then, given that we have a logically reversible TM,
we will show how to associate a ME to it in Sec. III C.

B. Logically reversible Turing machine

The procedure to make a computation of a TM logically
reversible was explained in detail in a famous publication by
Bennett [2]. He explicitly showed—given an arbitrary TM
T as described by Eq. (1)—how to construct a machine R

which is computationally equivalent to T but always logically
reversible. To accomplish this, Bennett introduced a finite
number of new machine states and two additional tapes, which
record the previous computational steps taken. Furthermore,
the computation is broken up into three stages (each stage in
general consists of many single computational steps) and, in
total, the logically reversible TM needs approximately 4 times
as many steps as the irreversible one [2]. Before we proceed,
we remark that the construction given by Bennett is, of course,
not unique (as he discusses as well) but seems to be very
convenient. It is also noteworthy that TMs acting on n tapes
are not more powerful (in terms of what they can compute)
than a TM described by Eq. (1) because one can be mapped
onto the other [27].

In addition to the treatment of Bennett, who considered
only a single computation T : sin → sout, we want to construct
a machine which continuously processes a stream of incoming
input strings of the form (. . . b,s′

in,b, . . . ,b,sin,b, . . . ). Thus,
we imagine an infinite input tape with different input strings
sin,s′

in, . . . separated by blank symbols to mark the beginning
and the end of each single input string. The output tape then
contains the results of the different computations, i.e., it looks
like [. . . ,b,s′

out = T (s′
in),b, . . . ,b,sout = T (sin),b . . . ]. In this

picture our machine resembles the devices from Refs. [32–
34,37,40,48] in which also an external tape is manipulated but
mainly to extract work and not for computational purposes
though.

Our logically reversible TM thus will have in total four
tapes and one computational cycle proceeds in five stages. The
four tapes are called the input, working, history, and output.
Whereas the input and output tapes are supplied externally (see
Fig. 2), the working and history tapes belong to the machine
itself. By this we especially want to emphasize that we require
them to be blank at the end of the computation such that
they are ready for usage again [55]. More specifically, one
computational cycle consists of the following five stages (also
see Table I):

(1) Copy input onto working tape: A new input arrives at
the machine on the input tape and the machine copies this input
onto its working tape, leaving it there in standard format at the
end of the first stage.

(2) Compute: In this stage the actual computation is
performed which finally maps the input to the output. Fur-
thermore, a history tape keeps track of the intermediate steps
such that the computer would be able to retrace each step.

(3) Copy output to output tape: If the computation halts,
then the output on the working tape is copied to the output
tape and the working tape is reset to its position as at the end
of stage 2.

(4) Retrace computation: The computer retraces all its
computation such that the output on the working tape becomes
the input and the history is blank again. This stage is the inverse
of stage 2.

TABLE I. One computational cycle consists of five stages where each stage can consist of many steps. The first line shows the initial
situation of the tapes. After the first stage, the tapes are shown as in the second line, which serves as the initial state for the second stage and so
on. The underbar denotes the current position of the machine head on the respective tapes. Note that at each stage the machine works with two
tapes only, whereas the other two remain unchanged. Furthermore, in the very last line we used a � to mark the input the computer has already
processed, see Appendix for details.

Stage Input tape Working tape History tape Output tape Short form, see Eq. (4)

input T5T4T3T2T1(sin,b,b,b)
(1) Copy input onto working tape

input input T5T4T3T2(sin,sin,b,b)
(2) Compute

input output history T5T4T3(sin,sout,h,b)
(3) Copy output to output tape

input output history output T5T4(sin,sout,h,sout)
(4) Retrace computation

input input output T5(sin,sin,b,sout)
(5) Erase working tape

input� output (sin � ,b,b,sout)
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(5) Erase working tape: We erase the working tape with the
help of the input tape such that the working tape is blank again.
Note that this erasure step is logically reversible because we
have an identical copy of the input on the input tape. Finally, we
use an additional symbol (�) to mark that we already performed
a computation for the current input and the machine moves on
to the next input on the input string.

Stages 2, 3, and 4 were already treated by Bennett in
Ref. [2]. In addition, we require stages 1 and 5 because we want
that our machine works continuously and not only once. The
reader who is curious about the details of each step is referred
to Appendix. Otherwise, instead of one big machine T doing
a computation in five stages, it might also help to imagine five
small machines T1, . . . ,T5. Our big machine T is then nothing
but a composition or concatenation of these small machines,
i.e., T = T5 ◦ T4 ◦ T3 ◦ T2 ◦ T1 ≡ T5T4T3T2T1 (similarly to
the composition of different functions). The action of T

on the state of the four tapes (in the order of the input,
working, history, and output tapes, respectively) can be
written as

(1) T5T4T3T2T1(sin,b,b,b) = T5T4T3T2(sin,sin,b,b),

(2) T5T4T3T2(sin,sin,b,b) = T5T4T3(sin,sout,h,b),

(3) T5T4T3(sin,sout,h,b) = T5T4(sin,sout,h,sout),

(4) T5T4(sin,sout,h,sout) = T5(sin,sin,b,sout),

(5) T5(sin,sout,b,sout) = (sin � ,b,b,sout).

(4)

Equation (4) can be regarded as a short form of Table I. Here b
denotes a blank tape and h denotes the history tape at the end
of stage 2. Clearly, if all the machines T1, . . . ,T5 are logically
reversible, then T is as well.

C. Stochastic Turing machine

In this section we will show how to use a continuous-time
Markov process to model any logically reversible TM, which
we will simply call a stochastic TM. We start, however, by
repeating what a ME is and what we need for a consistent
thermodynamic interpretation.

A continuous-time Markov process describing the dynam-
ics of a system X corresponds to a set of states X and an
associated probability px to be in a state x ∈ X , which changes
according to a Markovian first-order differential equation
called the ME [29]:

d

dt
px(t) =

∑
x ′

Wx,x ′px ′ (t). (5)

Here the rate matrix Wx,x ′ has real-valued entries and fulfills∑
x Wx,x ′ = 0 for all x ′ ∈ X . This guarantees that probability

is conserved throughout the evolution, i.e., d
dt

∑
x px(t) = 0

for all t . If we want to equip the ME (5) with a thermodynamic
interpretation [28], we have to associate to each state x

an energy Ex ∈ R and the rate matrix has to additionally
fulfill a property called local detailed balance, which states
that ln[Wx,x ′/Wx ′,x] = −β(Ex − Ex ′ ) where β is the inverse
temperature of the environment to which the system X has
contact. Note that this automatically implies that if Wx,x ′ �= 0,
then also Wx ′,x �= 0, i.e., for each transition x ′ → x the
reversed one x → x ′ must also exist. This framework can

also be extended to more general situations involving, e.g.,
multiple environments at different temperatures [28], but we
do not need more than the things just mentioned.

Now, associating a ME to a logically reversible determinis-
tic TM is in fact very easy. All we have to do is to change the
(unidirectional) deterministic updating rules from Appendix
into (bidirectional) probabilistic transition rules, i.e., we allow
for transitions in the computational forward direction as well
as transitions which just undo the last computational step
(backward direction).

It is worth pointing out that the underlying state space X
of the ME is in general infinite, but this is not necessarily
related to the size of the input tape. Remember that—due to
the halting problem—a computation might go on forever even
if it only received a finite input. In fact, even if the computation
halts, there is no general way to give a reasonable estimate of
the size of X in advance [27]. However, on the other hand,
the structure of the ME is very simple and this is related to
the fact that we build the machine in a logically reversible
way. In fact, each state x ∈ X has only two adjacent states,
namely its logical predecessor and its logical successor state.
Hence, our ME describes a simple one-step or birth-and-death
process [29] or, equivalently, according to Schnakenberg [28],
we could say that the topology of the underlying network
is trivial. In fact, if there were any branchings or loops in
the underlying network, the computation would no longer be
logically reversible because then a state could have multiple
predecessors or successors. Hence, quite generally we can put
the final ME into the form

d

dt
pn(t) = −(Wn+1,n + Wn−1,n)pn(t)

+Wn,n+1pn+1(t) + Wn,n−1pn−1(t). (6)

Here, of course, n ∈ Z is a multi-index denoting the entire
machine and tape configuration.

Let us discuss the general structure of the ME a little further.
First, it is important to note that only the current squares of
the tapes can change stochastically, whereas the rest of the
tapes, which are not coupled to the machine, remain fixed. In
fact, although there is an infinite number of possible different
states, not all states x ∈ X are coupled with each other. Which
states are coupled to each other is determined by the rules from
Appendix and by the input strings sin because they single out
a unique computational path through the “labyrinth” of states
in X .

In addition, the number of transition rules is always finite
and fixed as expressed in Appendix. This is true independently
of the number of computations or the lengths of the input
strings. Although there seem to be quite a lot of rules, note that
they suffice to build a universal logically reversible computer.
Of course, things become much easier if we relax some of the
requirements. Hence, in a more pictorial language we could
say that the hardware (i.e., the set of transitions rules with
the associated rates) of our machine remains fixed, but the
software (i.e., the inputs determining the computational path)
can change.

Thus, if we focus only on the computation for one input
string, i.e., on the stages 2 to 4, the full rate matrix W in
Eq. (5) decomposes into blocks for each input string s, i.e., it
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has the form

W =

⎛
⎜⎜⎜⎜⎝

W (s1)

W (s2)

W (s3)
. . .

⎞
⎟⎟⎟⎟⎠ (7)

and no transition between different blocks is allowed. Here
we labeled the different input strings s1,s2,s3, . . . in some
canonical way and note that each block can be infinitely
large if the computation does not halt. For each si the ME
describes a simple one-step process and by rearranging the
states appropriately we can write each block as a tridiagonal
matrix

W (si) =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
−Wn,n−1 − Wn−2,n−1 Wn−1,n 0

Wn,n−1 −Wn+1,n − Wn−1,n Wn,n+1

0 Wn+1,n −Wn+2,n+1 − Wn,n+1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

where Wn+1,n (Wn−1,n) denotes the forward (backward) rate
at step n in the ME (6). Hence, to conclude, although the
state space X is extremely large, the rate matrix is also
extremely sparse, i.e., it contains only a small number of
nonzero elements (in relation to the total number of elements).

Finally, we would need to associate a consistent energy
landscape to our system and the rate of forward and backward
transitions would then need to obey local detailed balance,
which fixes the temperature of the environment. We will
discuss this issue in the next section.

IV. THERMODYNAMICS OF BROWNIAN COMPUTATION

A. Energy landscapes

So far we have shown that a stochastic, logically reversible
TM can be modeled by a simple one-step process as given by
the ME (6). To interpret it thermodynamically we still need to
associate a consistent energy landscape to it, which we could
control externally via a work source or, alternatively, a bias
in chemical potentials as it would be the case for biochemical
processes.

For the sake of simplicity, we will choose below a linear
energy landscape along the computational path, i.e., the
difference in energy between a logical state and its successor
state is taken to be the constant ε (i.e., for ε > 0 the
computation proceeds on average in the forward direction
along a chain of states with decreasing energies). This choice
is in agreement with the one usually appearing in the literature
[2,3,8,21]. Before we proceed, however, we discuss and justify
this choice in more detail.

First, in Sec. IV B we will actually discuss the thermody-
namics of our model on a coarse-grained level of description.
That is to say, we will be interested in the regime where the
computer was already running for a long time such that the
variance 〈n2〉 − 〈n〉2 of the number of computational steps is
large compared to unity where we defined 〈n�〉 ≡ ∑

n n�pn(t).
In this picture, ε might denote just an average slope in
the energy landscape, i.e., we explicitly allow for spatial
irregularities in the energy landscape as long as they are not
too large. More specifially, if En denotes the energy of state n

according to the ME (6), then we demand that

ε
!= 1

2N

N−1∑
n=−N

(En − En+1) (9)

holds for all n and for N of the order of the variance 〈n2〉 −
〈n〉2 such that the energy landscape looks linear at the coarse-
grained level.

Second, it is worth pointing out that in fact—except for the
spatially allowed irregularities—no other energy landscape
seems to be feasible for a general purpose computer. The
reason for this is twofold: First, we are interested in a
steady-state regime, i.e., the average dissipation per step
should be independent of the number of computational
steps performed so far. This demand rules out quadratic or
exponential energy landscape. Second, we are also still faced
with the halting problem. This implies that we cannot know
in advance the number of computational steps we need for
one computational cycle. Thus, associating any particularly
shaped energy landscapes like a sine or a hill (as in Ref. [26])
is unfeasible because we do not know, for instance, how to
choose a period for the sine.

Hence, we conclude that the only feasible energy landscape
with which we can ensure control of the speed and direction of
computation independently of the number of computational
steps (which we cannot know in advance) and which is
translationally invariant on the state space n ∈ Z of the ME (6)
is an, on average, linear landscape.

B. Effective Fokker-Planck equation

Having agreed on the (on average) linear energy landscape,
we will choose the transition rates in Eq. (6) as follows:

Wn,n+1 = �e−βε/2, Wn+1,n = �eβε/2. (10)

Here � is some rate setting the overall time scale of our
problem and we see that the rates fulfill local detailed
balance, i.e., ln[Wn,n+1/Wn+1,n] = −β(En − En+1) = −βε,
where βε > 0 favors a computation in the forward direction.
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In the limit where the mean 〈n〉 and variance 〈n2〉 − 〈n〉2

are large compared to 1, we can approximate derivatives by

∂

∂n
pn(t) ≈ pn+1(t) − pn−1(t)

2
,

∂2

∂n2
pn(t) ≈ pn+1(t) − 2pn(t) + pn−1(t).

(11)

Then the Fokker-Planck equation (FPE) corresponding to the
ME (6) reads

1

�

∂

∂t
pn(t) = ∂

∂n

(
−2 sinh

βε

2
+ cosh

βε

2

∂

∂n

)
pn(t). (12)

This FPE describes the movement of an overdamped Brownian
particle in a constant force field and with a constant diffusion
coefficient with n ∈ R denoting the position of the particle. It
even admits an explicit solution: Assuming that the machine
has started initially at some fixed state n = 0, i.e., pn(t = 0) =
δ(n), we obtain

pn(t) = 1√
4π� cosh(βε/2)t

× exp

{
− [n − 2� sinh(βε/2)t]2

4� cosh(βε/2)t

}
. (13)

C. Thermodynamic discussion

Discussing the thermodynamic behavior of Eq. (12) can
be done using standard methods, see, e.g., Ref. [56]. We first
compute the mean number of computational steps, which is

〈n〉(t) = 2�t sinh
βε

2
, (14)

and, hence, the speed of computation becomes

v ≡ d

dt
〈n〉(t) = 2� sinh

βε

2
, (15)

which—as expected—can be controlled by ε. In particular, we
see that we have v > 0 for ε > 0 and vice versa.

The variance of the distribution is

〈n2〉(t) − 〈n〉2(t) = 2�t cosh
βε

2
(16)

and grows linearly with time. Based on this we might
ask the following question: When does the computation
become approximately deterministic, i.e., when does the mean
dominate the standard deviation? Calculating their ratio yields

〈n〉(t)√
〈n2〉(t) − 〈n〉2(t)

=
√

2�t tanh
βε

2
sinh

βε

2
. (17)

If we want this quantity to be much larger than 1, then we
obtain a condition for the minimum amount of time we have
to wait until our machine computes almost in a deterministic
fashion:

t 
(

2� tanh
βε

2
sinh

βε

2

)−1

≈ 2

�β2ε2
. (18)

Here we performed an expansion in βε � 1 at the end. Thus,
the closer we get to the reversible limit, i.e., the smaller βε (see
below), the longer we have to wait until the computer starts to
work reliably.

Furthermore, we can explicitly calculate the Shannon
entropy of our distribution, which is

H (t) ≡ −
∫

dnpn(t) ln pn(t) = 1

2
ln

(
4πe�t cosh

βε

2

)
.

(19)

Using Eq. (14) we can also write the Shannon entropy as

H (t) = 1

2
ln

[
2πe coth

(
βε

2

)
〈n〉(t)

]
, (20)

i.e., the Shannon entropy scales with the average number 〈n〉
of computational steps as S(t) ∼ ln 〈n〉.

The rate at which entropy is produced is given by the change
in Shannon entropy plus β times the heat flow dissipated into
the environment [56]. Since the latter is simply εv, we can
write for the entropy production rate

Ṡi(t) = d

dt
H (t) + βεv

= 1

2t
+ 2�βε sinh

βε

2
� 0. (21)

We now note that for ε → 0 the last term vanishes quadrat-
ically, i.e., the heat dissipated can be made arbitrarily small
in this limit. The first term, however, is independent of ε but
vanishes for t → ∞. Hence, we have

lim
t→∞ lim

ε→0
Ṡi(t) = 0. (22)

Thus, a Brownian computer can work thermodynamically
reversibly (i.e., with zero entropy production rate) in the
steady-state regime if the bias ε is small enough. This would
confirm the conclusions from Refs. [2,3,8].

However, we can also confirm Norton’s perspective on the
matter [21,26]. Starting initially at t = 0 we see that the total
amount of entropy produced up to time t is


iS(t) =
∫ t

0
dt ′Ṡi(t

′) = H (t) + βε〈n〉(t) � 0. (23)

Thus, even for ε = 0 the Shannon entropy still grows loga-
rithmically with the number of computational steps because
the probability distribution of the machine spreads over the
available phase space similarly to the free expansion of a
one-molecule gas, which is a thermodynamically irreversible
process. If we think in terms of thermodynamic cycles instead
of a thermodynamic machine, which works in the stationary
regime, we would have to dissipate an amount of entropy
proportional to ln 〈n〉 to reset the Brownian computer to its
initial zero entropy state. However, again, compared to the
number of computational steps 〈n〉 taken, the ratio ln(〈n〉)/〈n〉
becomes arbitrarily small for a large number of steps, i.e., for
a long computation.

Finally, we remark that a full treatment in terms of the
ME (6) instead of the FPE (12) would provide very similar
results. In fact, the first two cumulants (mean and variance)
can be shown to coincide.

V. SUMMARY AND OUTLOOK

Let us summarize our main findings and discuss possible
interesting open questions based on our findings.
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We have started with an arbitrary TM as a model for
a general-purpose computer, which is, however, in general
logically irreversible and free from any thermodynamic
interpretation. We then discussed how a computation can
be regarded as a thermodynamic process and we decided
to investigate the thermodynamics of a logically reversible
stochastic computer, which simulates the TM considered
at the beginning. We explained in detail how to obtain a
logically reversible computer from an irreversible one and
then used bidirectional probabilistic transition rules instead of
unidirectional deterministic rules to model the stochastic or
random motion of our computer.

Although the problem seems to be very complex, we have
seen that the resulting ME has the very simple structure of a
one-step process, which describes how the computer follows a
well-defined path in a large state space and eventually maps the
input signals to output signals (the results of the computation).
We have argued that the only feasible energy landscape for
such a computer is an approximately linear one, which not only
simplified the thermodynamic discussion but also allowed us
to solve a corresponding FPE describing the drift and diffusion
of the computer exactly.

We have then seen that our stochastic computer can
work thermodynamically reversibly, i.e., in a dissipation-free
fashion, in a steady-state regime and in this respect Feynman
was indeed right with his initially quoted statement. However,
just because the entropy production rate can become arbitrary
small, this does not imply that the overall integrated entropy
production is zero. In particular, if we think in terms of a
computational cycle, in which we want to reset the computer
to its initial state at the end, then there is an unavoidable
cost due to the increasing Shannon entropy of the probability
distribution during the computation. In fact, this additional
cost is not independent of the number of computational steps
but scales logarithmically with it and it seems that this effect
has been recognized only by Norton so far [21]. Here we
have verified this result in a conceptually clean and general
framework.

Furthermore, it is worth emphasizing that our computer
works error-free at a finite entropy production. In fact, by
construction our model allows only for temporary errors in
the computation (due to the fact that our stochastic machine
can randomly hop back to its previous state), but in the long
run each temporary error is corrected by the next step in the
computational forward direction and there are no other sources
of errors allowed. Including errors (for instance, random bit
flips or—to avoid the halting problem and an infinitely long
computation—one could decide to terminate the computation
after a fixed number Nmax of steps) in our scheme and
investigating the thermodynamic cost to correct them might
be an interesting project for the future.

Another interesting question is whether we can assign a
notion of efficiency to our computer. From a purely physical
point of view the machine we have considered is actually
senseless because it describes only a simple (and never-ending)
relaxation process. However, the machine is indeed “working,”
i.e., doing something “useful” for us, because it tells us the
answer to many questions. But how can we quantify the
usefulness of our machine? Having a rigorous notion of a
thermodynamic efficiency for a computer would allow us to

study question of, e.g., efficiency at maximum power, which
is an important question for the design of realistic machines,
see, e.g., Refs. [57–61]. In this context, one can also ask
the question whether a logically reversible computer is really
desirable or whether a logically irreversible computer might
indeed be able to work at a fundamentally better efficiency. At
the end, it seems that biochemical processes in our body work
very efficiently, but not necessarily in a logically reversible
way.

Finally, let us say a few words about the relation between
the present work and the devices investigated in Refs. [32–
34,37,40,48] (also see Feynman for a simple example of such
a device who called them information-driven engines [8]).
Indeed, as in our case, these information-driven engines are
coupled to an external tape or “information reservoir.” This
additional reservoir then can be used to extract work from a
single heat bath while simultaneously writing information on
the tape (i.e., increasing its Shannon entropy). This picture,
however, does not carry over to our situation. In fact, the
Shannon entropies of the incoming and outgoing tapes are
equal because the input tape gets mapped to itself and the
output tape is uniquely determined by the input. For a logically
irreversible computer this does not need to be true as it can be
already seen from the devices in Refs. [32–34,37,40,48] where
it was also shown that they can be used as an information eraser.
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APPENDIX: LOGICAL REVERSIBLE TURING MACHINE

We here provide the detailed rules for the machine behavior
at each stage of the computation. These rules are, of course,
not unique. However, because we are not primarily interested
in the speed or efficiency of our machine, but only in what
it can do, possibly different implementations are unimportant
for the present context. Furthermore, note that at each stage
the machine is only manipulating two tapes, whereas the other
two tapes remain fixed (see Table I). We will therefore use the
notation [q(i),sm,tn], where q(i) denotes the internal machine
state at stage i, sm the symbol s printed on square m of the
first tape of interest, and tn the symbol t printed on square n

of the second tape of interest. What are the tapes of interest
will become clear in the treatment of each stage. Note that the
notation differs from the one used by Bennett [2].

1. Stage 1: Copy input onto working tape

We want to copy the input on the input tape (first tape of
interest) to the working tape (second tape of interest). The
input is given in the form sin = (s1, . . . ,sM ) and we assume
that the machine scans initially the symbol at the far right (i.e.,
sM ) (see also Table I). Furthermore, the working tape is by
construction initially completely blank (that this is so can only
be seen after the completion of all five stages, of course). The
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copy stage then proceeds as follows:
[
q

(1)
0 ,(sM )m,bn

] →[
q

(1)
1 ,(sM )m,(sM )n

]
→[

q
(1)
0 ,(sM−1)m−1,bn−1

]
→[

q
(1)
1 ,(sM−1)m−1,(sM−1)n−1

]
...

→[
q

(1)
1 ,(s1)m−(M−1),(s1)n−(M−1)

]
→[

q
(1)
0 ,bm−M,bn−M

]
→[R(2),bm−M,bn−M ].

(A1)

Hence, we see that during the copy operation the machine
changes between the two states q

(1)
0 and q

(1)
1 where the first

is responsible for copying the symbol on the input tape to
the working tape and the second is responsible for a shift of
both tapes. This procedure goes on until it hits the first blank
symbol to the left of the input string. The machine then changes
to the “ready” state R(2), which is the special initial state for
the second stage. Note that—due to the fact that the copying
procedure is unidirectional, i.e., the machine moves the tape
always in the same direction—each map has a clear logical
inverse. Furthermore, the positions m and n of the squares are
in general arbitrary and can be chosen initially at will.

2. Stage 2: Compute

This is the central stage of our computational cycle. If we
did not bother with logical reversibility, then this would be the
only stage to execute. We thus have to explicitly think about
how to make map (1) logically reversible. The idea is the
following [2]: First, because each standard (i.e., irreversible)
TM is defined by its NQ(NS + 1) many quintuples, we
introduce a set Q̃ with #Q̃ = NQ(NS + 1) of additional
machine states q̃ ∈ Q̃. Then, to each map (q,s) → (q ′,s ′,d ′)
we can associate a special state q̃qs , which uniquely labels
each quintuple. Second, we will make use of an additional tape,
called the history tape, which remembers the past q̃qs such that
the machine is able to uniquely retrace its computational path.

Stage 2 is thus a bit more complicated. The corresponding
maps are

[R(2),bn−M,bm] → [
q̃

(2)
R(2)b

,bn−M,bm+1
]

→ [
q1,(s1)n−M+1,(q̃R(2)b)m+1

]
...

step �

⎧⎪⎪⎨
⎪⎪⎩

→ [
q

(2)
� ,(s�)n′ ,(q̃

q
(2)
�−1s�−1

)m+�

]
→ [

q̃
(2)

q
(2)
� s�

,(s ′
�)n′ ,bm+�+1

]
→ [

q
′(2)
� ,(s�+1)n′+d ′ ,(q̃

q
(2)
� s�

)m+�+1
]

...

step ν → [
q̃

(2)

q
(2)
ν sν

,(s ′
ν)n′′−1,bm+ν+1

]
→ [

H(2),bn′′ ,(q̃
q

(2)
ν sν

)m+ν+1
]
.

(A2)

The most important step to understand is the one in the
middle, which corresponds to the �th computational step of the

ordinary irreversible TM defined by (1). Initially, the machine
is in state q

(2)
� and scans the symbol s� on the square n′ of

the working tape. The history tape contains the state q̃
(2)

q
(2)
�−1s�−1

,

which uniquely labels the previous computational step. Then
the machine changes its state to q̃

(2)

q
(2)
� s�

, writes the symbol s ′
� on

the square according to the function s ′
� = G(q(2)

� ,s�), and shifts
the history tape one square to the left, which contains a blank
symbol. Finally, we write q̃

q
(2)
� s�

to the history tape and change

the machine state to q
′(2)
� = F (q(2)

� ,s�). Furthermore, we shift
the working tape one square according to d ′ = H (q(2)

� ,s�) such
that the machine now scans the new symbol s�+1. Then the
whole procedure can start again where—in order that we are
able to apply map (1)—we identify q

′(2)
� ≡ q

(2)
�+1 because the

final state of the machine at the end of step � is the initial state
for step � + 1.

The first and last two lines of Eq. (A2) then simply describe
the initial and final steps of the computation. Initially, the
machines starts in R(2) and then shifts the working tape to
the left such that it reads the first symbol s1 and starts in the
state q

(2)
1 . Finally, if the machine halts, it reaches the state H

and stops at the first blank to the right of the output of the
computation.

3. Stage 3: Copy output to output tape

We now want to copy the output sout = (s1, . . . ,sM ′) of the
computation from stage 2 from the working tape (first tape of
interest) to the output tape (second tape of interest). This goes
as follows:

[
H(2),bn′′ ,bm

] →[
q

(3)
0 ,bn′′ ,bm

]
→[

q
(3)
1 ,(sM ′)n′′−1,bm−1

]
→[

q
(3)
0 ,(sM ′)n′′−1,(sM ′)m−1

]
...

→[
q

(3)
0 ,(s1)n′′−M ′ ,(s1)m−M ′

]
→[

q
(3)
1 ,bn′′−M ′−1,bm−M ′−1

]

(A3)

and is very similar to (A2). Finally, however, to prepare the
machine for the next stage, we want that it scans the output
on the working tape at the very right again (at the moment it
scans the blank on the working tape to the left of the output).
To accomplish this we use two more machine states:

[
q

(3)
1 ,bn′′−M ′−1,bm−M ′−1

]
→ [

q
(3)
2 ,bn′′−M ′−1,bm−M ′−1

]
→ [

q
(3)
3 ,(s1)n′′−M ′ ,bm−M ′−2

]
→ [

q
(3)
3 ,(s2)n′′−M ′+1,bm−M ′−3

]
...

→ [
q

(3)
3 ,(sM ′)n′′−1,bm−2M ′

]
→ [

q
(3)
3 ,bn′′ ,bm−2M ′−1

]
.

(A4)
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Here q
(3)
2 is an intermediate state and its sole purpose is to

indicate that the copying procedure is over and the machine
starts now only to shift the working tape without changing it.
The state q

(3)
3 then actually accomplishes this task by shifting

the working tape one step to the left while simultaneously
shifting the output tape one step to the right until it reaches
the first blank symbol to the right of the output on the working
tape, which will indicate the start of stage 4.

4. Stage 4: Retrace computation

In this stage we will basically apply the inverse of stage 2
such that at the end the working tape contains the input again
and the history tape is returned to its initial blank state. This
goes as follows:[

q
(3)
3 ,bn′′ ,

(
q̃

q
(2)
ν sν

)
m+ν

]
→ [

H(4),bn′′ ,
(
q̃

q
(2)
ν sν

)
m+ν

]
→ [

q̃
(4)

q
(2)
ν sν

,(s ′
ν)n′′−1,bm+ν

]
→ [

q(4)
ν ,(s ′

ν−1)n′′−1,
(
q̃

q
(2)
ν−1sν−1

)
m+ν−1

]
...

→ [
q

′(4)
� ,(s�+1)n′+d ′ ,

(
q̃

q
(2)
� s�

)
m+�+1

]
→ [

q̃
(4)

q
(2)
� s�

,(s ′
�)n′ ,bm+�+1

]

→ [
q

(4)
� ,(s�)n′ ,

(
q̃

q
(2)
�−1s�−1

)
m+�

]
...

→ [
q

(4)
1 ,(s1)n−M+1,(q̃R(2)b)m+1

]
→ [

q̃
(4)
R(2)b

,bn−M,bm+1
]

→ [
R(4),bn−M,bm

]
.

(A5)

Note that we are using the superscript (4) on the internal
machine states to explicitly distinguish them from the states
of stage 2 indicating that we are truly in a different stage here.

5. Stage 5: Erase the working tape

The last step consists in erasing the content on the working
tape such that it is blank again and ready for the next
computation. Note that the “erasure” of the working tape does
not actually erase any information because the working tape
contains the same input sin = (s1, . . . ,sM ) as the input tape. As
in stage 1, we choose the first tape of interest to be the input
tape and the second tape of interest is the working tape. Then
we actually only have to apply the inverse of stage 1, i.e.,[

R(4),bm−M,bn−M

] → [
q

(5)
0 ,bm−M,bn−M

]
→ [

q
(5)
1 ,(s1)m−(M−1),(s1)n−(M−1)

]
→ [

q
(5)
0 ,(s1)m−(M−1),bn−(M−1)

]
...

→ [
q

(5)
1 ,(sM )m,(sM )n

]

→ [
q

(5)
0 ,(sM )m,bn

]
→ [

q
(5)
1 ,bm+1,bn+1

]
. (A6)

If we would postulate the final transition rule
[q(5)

1 ,bm+1,bn+1] → [q(1)
0 ,(sM )m,bn] we would be exactly

back at the initial state of stage 1 and the only change would
be that we have printed the result of the computation on the
output tape. However, if this were true, we would be doomed
to repeat the same computation again, while in fact we want to
compute with the next input s′

in on the input string. To achieve
this we add the following rules:

[
q

(5)
1 ,bm+1,bn+1

] →[
q

(5)
2 , �m+1 ,bn+1

]
→[

q
(5)
2 ,(sM )m,bn+2

]
→[

q
(5)
2 ,(sM−1)m−1,bn+3

]
...

→[
q

(5)
2 ,(s1)m−M,bn+M+1

]
→[

q
(5)
2 ,bm−M−1,bn+M+2

]
→[

q
(5)
3 ,bm−M−1,bn+M+2

]
...

→[
q

(5)
3 ,(s ′

M ′)m′ ,bn̂

]
→[

q
(1)
0 ,(s ′

M ′)m′ ,bn̂

]
.

(A7)

Here we first marked the input sin with a � to indicate that
we already have done a computation for that input. We then
used an additional state q

(5)
2 , which simply traverses the input

string sin until it hits a blank symbol. The machine then
changes to the state q

(5)
3 and goes further to the left until

it hits the next nonblank symbol on the input string. This
symbol then indicates the beginning of the next input s′

in such
that—starting from stage 1 again—we can readily execute the
next computational cycle.

6. Summary

Suppose that the irreversible TM from Sec. II has NQ many
internal states, NS + 1 many different symbols (including the
blank) on the tape, and, hence, it has NQ̃ ≡ NQ(NS + 1)
many quintuples. Furthermore, suppose it was given an input
of length M and produced an output of length M ′ after ν

computational steps in total.
Then, our reversible machine has 2 + (NQ + NQ̃) + 4 +

(NQ + NQ̃) + 4 states from the first, second,. . . , fifth stages
of the computation, i.e., in total, 2(NQ + NQ̃) + 10 states. Fur-
thermore, it needs 2M + 2ν + (2M ′ + 1) + 2ν + (2M + 2 +
x) = 4ν + 4M + 2M ′ + 3 + x many computational steps.
Here the x denotes the number of unknown blank symbols
separating the current input from the next input on the input
tape (see stage 5). Note that we need x � 2 such that there is
enough space for the symbol � and to guarantee that all input
strings (including potentially the symbol �) are separated by
at least one blank symbol from each other.
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demonstration of information to energy conversion in a quantum
system at the Landauer Limit, arXiv:1412.6490 (2014).

[53] A. Bérut, A. Petrosyan, and S. Ciliberto, Information and ther-
modynamics: Experimental verification of Landauer’s erasure
principle, arXiv:1503.06537 (2015).

[54] For instance, imagine that our machine is designed to add two
numbers, a and b, which are given as their binary equivalent
on the input string. Clearly, knowing only the result c of the
computation, i.e., c = a + b, does not allow us to infer the

values of a and b and, hence, our machine would be logically
irreversible.

[55] If we do not return the internal tapes of the machine back to their
initial blank state, then we would have to erase them at some
point, which dissipates additional heat according to Landauer’s
principle and this needs to be avoided.

[56] K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics,
Vol. 799 (Springer, Berlin Heidelberg, 2010).

[57] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at
maximum power output, Am. J. Phys. 43, 22 (1975).

[58] C. Van den Broeck, Thermodynamic Efficiency at Maximum
Power, Phys. Rev. Lett. 95, 190602 (2005).

[59] T. Schmiedl and U. Seifert, Efficiency at maximum power:
An analytically solvable model for stochastic heat engines,
Europhys. Lett. 81, 20003 (2008).

[60] M. Esposito, K. Lindenberg, and C. Van den Broeck, Univer-
sality of efficiency at maximum power, Phys. Rev. Lett. 102,
130602 (2009).

[61] M. Esposito, K. Lindenberg, and C. Van den Broeck, Ther-
moelectric efficiency at maximum power in a quantum dot,
Europhys. Lett. 85, 60010 (2009).

042104-12

http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1103/PhysRevLett.113.190601
http://dx.doi.org/10.1103/PhysRevLett.113.190601
http://dx.doi.org/10.1103/PhysRevLett.113.190601
http://dx.doi.org/10.1103/PhysRevLett.113.190601
http://arxiv.org/abs/arXiv:1411.6730
http://arxiv.org/abs/arXiv:1412.6490
http://arxiv.org/abs/arXiv:1503.06537
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1103/PhysRevLett.95.190602
http://dx.doi.org/10.1103/PhysRevLett.95.190602
http://dx.doi.org/10.1103/PhysRevLett.95.190602
http://dx.doi.org/10.1103/PhysRevLett.95.190602
http://dx.doi.org/10.1209/0295-5075/81/20003
http://dx.doi.org/10.1209/0295-5075/81/20003
http://dx.doi.org/10.1209/0295-5075/81/20003
http://dx.doi.org/10.1209/0295-5075/81/20003
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010



