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Selective energy transport throughout a quantum network connected to more than one reaction center can
play an important role in many natural and technological considerations in photosystems. In this work, we
propose a method in which an excitation can be transported from the original site of the network to one of the
reaction centers arbitrarily using independent sources of dephasing noises. We demonstrate that in the absence of
dephasing noises, the coherent evolution of the system does not have any role in energy transport in the network.
Therefore, incoherent evolution via application of dephasing noises throughout a selected path of the network
leads to complete transferring of the excitation to a desired reaction center.
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I. INTRODUCTION

The efficient transport of optical excitation energy through a
network of coupled many-body quantum systems has recently
become the subject of extensive study in both natural and arti-
ficial systems [1–3]. A particular example is energy transport
in the molecular structure of biological systems ranging in
scale from a few atoms to large macromolecular structures,
such as light harvesting (photosynthetic) complexes [4–6]. In
general, the overall effect of environment on the quantum
transport process in a system is expected to be negative.
However, in a large variety of quantum systems, such as
chromophoric light-harvesting complexes, the interaction with
the environment can result in increased quantum transport ef-
ficiency. In fact, interplaying between coherent and incoherent
dynamics provides the optimal way for quantum transport in
many noisy systems [7–10]. Many efforts have been devoted
to study the ways in which quantum transport is optimally
affected by the interplay of coherent and incoherent dynamics
arising from environmental noises [11–23], a phenomenon
called environment-assisted quantum transport (ENAQT) or
dephasing-assisted quantum transport (DAQT).

On the other hand, there are quantum systems in which the
coherent evolution is completely suppressed due to destructive
interferences [7–9], and therefore the optimal dynamics of the
system is purely incoherent, which is the issue of interac-
tions between the system and its fluctuating environments.
Destructive interferences can be removed locally or globally
in the quantum system when it is affected by its fluctuating
environment [10]. Indeed, energy transport through pure
incoherent evolution in a quantum system can be regarded
as direct evidence for the remarkable existence of long-lived
quantum coherence and wavelike behavior, which plays an
important role in this way [4].

In this paper, we investigate selective quantum transport
of excitation energy throughout a regular network, such
as a two-dimensional hexagonal-like network of interacting
two-level chromophores or sites. As illustrated in the text,
there are a number of sinks considered as reaction centers
irreversibly attached to the network. The network structure
is considered in such way that the coherent part of the
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dynamics of an excitation created in one of the sites, such
as an initial site, is completely suppressed. Therefore, the
selective nature of the transport in the network is related to the
selective applications of local independent dephasing noises
along a path, such as a one-dimensional quantum transport
prototype, which connect the initial site to one of the sinks.
In fact, application of dephasing noises along a particular path
removes the destructive interferences throughout that path in
the network. In this way, the excitation energy is incoherently
transported from the initial site to the aforementioned sink.
This process can also be regarded to implement for the other
reaction centers. On the other hand, to evaluate the optimality
of transport in the network, we investigate the optimal effect
of dephasing noises on the efficiency of transport along the
one-dimensional prototype. Also, in this way, the effect of
energy mismatch between sites on the efficiency of transport
is highlighted. It is observed that the optimal transport is robust
with respect to the dephasing noises and energy mismatches.
Therefore, it is concluded that the optimal conditions for the
transport in a two-dimensional network lie within the optimal
conditions of the one-dimensional case.

This paper is organized as follows: In Sec. II, we demon-
strate one-dimensional incoherent quantum transport along
with an investigation of its optimality conditions, which, in
turn, make up the basic ingredients for quantum transport
in a two-dimensional hexagonal-like network. Section III
is devoted to explaining the transport of excitation energy
in the two-dimensional network incoherently, using local
independent dephasing noises. Finally, a brief conclusion is
presented in Sec. IV.

II. ONE-DIMENSIONAL QUANTUM TRANSPORT
PROTOTYPE

We consider a network such as that depicted in Fig. 1(a),
in which the vertices or sites are as two-level chromophoric
systems interacting with each other, corresponding to edges of
the network. The Hamiltonian for this system is considered as

H =
3N+1∑
j=1

�ωjσ
+
j σ−

j +
∑

{j,l}∈E

�νj,l(σ
−
j σ+

l + σ+
j σ−

l ), (1)

where σ+
j = |j 〉〈0| and σ−

j = |0〉〈j | are the raising and
lowering operators for a two-level system positioned at the
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(a)

(b)

FIG. 1. (Color online) (a) A network of two-level systems coupled to each other as ν3j−2,3j−1 = ν3j−2,3j = ν3j−1,3j+1 = −ν3j,3j+1 = J and
attached to independent dephasing noises. (b) The same network under the change of basis. Invariant subspaces are incoherently connected by
the dephasing noises.

j th vertex or site; the state |j 〉 denotes an excitation in site
j , and |0〉 indicates no excitation in that site. The energy of a
typical site j is �ωj , νj,l is the strength of coupling between
the j th and lth sites, denoting the hopping rate of an excitation
between them, and E is the set of edges of the network
depicted in Fig. 1(a), corresponding to the coupling between
the sites. In general, we have considered ν3j−2,3j−1 = ν3j−2,3j

and ν3j−1,3j+1 = −ν3j,3j+1 for the coupling strength, and
ω3j−1 = ω3j for site energies with j = 1,2,3, . . . ,N . We
introduce another set of basis in the single excitation subspace
in terms of a standard basis as

|sj 〉 := |3j − 2〉, |sj+1〉 := |3j + 1〉,
(2)

|s±
j 〉 := 1√

2
(|3j − 1〉 ± |3j 〉),

where j = 1,2,3, . . . ,N . The transformation that gives the
basis set (2) from the standard ones is as follows:

U =
N+1∑
j=1

|3j − 2〉〈3j − 2| + 1√
2

N∑
j=1

(|3j − 1〉〈3j − 1|

+ |3j − 1〉〈3j | + |3j 〉〈3j − 1| − |3j 〉〈3j |). (3)

U is clearly unitary, i.e., UU † = U †U = 1. Hence, by choos-
ing the basis set in (2), the Hamiltonian (1) is left with a direct
sum structure as [see Fig. 1(b)]

H =
N+1⊕
j=1

Hj, (4)

where

H1 = ω1|s1〉〈s1|+ω2|s+
1 〉〈s+

1 |+
√

2ν1,2(|s1〉〈s+
1 |+|s+

1 〉〈s1|),
Hj+1 = ω3j−1|s−

j 〉〈s−
j | + ω3j+1|sj+1〉〈sj+1| + ω3j+2|s+

j+1〉
× 〈s+

j+1| +
√

2ν3j−1,3j+1(|s−
j 〉〈sj+1| + |sj+1〉〈s−

j |)
+

√
2ν3j+1,3j+2(|sj+1〉〈s+

j+1| + |s+
j+1〉〈sj+1|), (5)

j = 1,2,3, . . . ,N − 1,

HN+1 = ω3N−1|s−
N 〉〈s−

N | + ω3N+1|sN+1〉〈s3N+1|
+

√
2ν3N−1,3N+1(|s−

N 〉〈sN+1| + |sN+1〉〈s−
N |),

and their respective invariant subspaces can be regarded as

H1 = span{|s1〉,|s+
1 〉},

Hj+1 = span{|s−
j 〉,|sj+1〉,|s+

j+1〉}, j = 1,2,3, . . . ,N − 1,

HN+1 = span{|s−
N 〉,|sN+1〉}. (6)

To give a clear physical picture for the basis introduced in
(2), we assume, without loss of generality, that ωj = ω and
ν3j−2,3j−1 = ν3j−2,3j = ν3j−1,3j+1 = −ν3j,3j+1 = J . By this
consideration, the Hamiltonian (1) becomes

H =
N∑

j=1

�J [σ−
3j−2(σ+

3j−1 + σ+
3j ) + σ+

3j−2(σ−
3j−1 + σ−

3j )

+ (σ−
3j−1 − σ−

3j )σ+
3j+1 + (σ+

3j−1 − σ+
3j )σ−

3j+1], (7)

where we have neglected the term responsible for the trivial
dynamics. It is assumed that, at t = 0, we have an excitation
in the initial site of the network (|S1〉 := |1〉). After time t , it
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is evolved by the Hamiltonian (7) as

e−iH t |S1〉 = cos(
√

2J t)|S1〉 − isin(
√

2J t)|S+
1 〉. (8)

As is observed, the excitation prepared at the initial site of
the network evolves to share itself between sites 2 and 3,
and therefore it constructs the entangled state |S+

1 〉 after time
t = π

2
√

2J
and ultimately oscillates between |S1〉 and |S+

1 〉. In
other words, as is clear from (8), the evolution of the excitation
prepared at the initial site is restricted to the subspace H1

and is governed by a (sub)Hamiltonian H1 = √
2J (|s1〉〈s+

1 | +
|s+

1 〉〈s1|) [24]. Now consider the case in which an excitation is
shared between two sites 3j − 1 and 3j , such that we have the
entangled state |S−

j 〉 (j = 1,2, . . . ,N − 1). Then the evolution
of this state is given by

e−iH t |S−
j 〉 = cos2(J t)|S−

j 〉 − i
√

2 sin(J t)cos(J t)|Sj+1〉
− sin2(J t)|S+

j+1〉. (9)

The state |S−
j 〉 evolves to |S+

j+1〉 after time t = π
2J

and vice
versa. This evolution relies in the subspace Hj+1 and is
governed by the (sub)Hamiltonian Hj+1 = √

2J (|s−
j 〉〈sj+1| +

|sj+1〉〈s−
j | + |sj+1〉〈s+

j+1| + |s+
j+1〉〈sj+1|) [24]. And finally, in

a similar way as (8), the evolution of excitation from the
entangled state |S−

N 〉 under Hamiltonian H in (7) only leads to
the state |SN+1〉 and vice versa. Therefore, the Hamiltonian H

only acts on the subspace HN+1, and its action is equivalent to
the action of (sub)Hamiltonian HN+1 = √

2J (|s−
N 〉〈sN+1| +

|sN+1〉〈s−
N |) on that subspace. Therefore, we see that the

basis introduced in (2) is obtained fundamentally from time
evolution processes of the system.

These arguments show that Hamiltonian (7) [and generally
Hamiltonian (1)] has a direct sum structure on the basis set
(2), which is suitable for our purposes. Therefore, in this way,
if we have an excitation localized in one of the subspaces
(6), its coherent evolution is also restricted to the respective
subspace. By this consideration, the evolution of excitation
cannot be performed in the whole network. In particular, if
we have an excitation in the initial site, it cannot be received
in the site 3N + 1 under only pure coherent evolution. This
partial evolution of the system indeed returns to the destructive
interferences in the network, which is a pure quantum effect.
Now we consider a case in which the site 3N + 1 of the
network is attached to a reaction center denoted as a sink
in such way that the dynamical evolution from the system to
the sink is irreversible. Therefore, the population of the sink is
always zero when the excitation at time t = 0 is in the initial
site of the network (|1〉).

For the aim of this paper, we consider that ν3j−2,3j−1 =
ν3j−2,3j = ν3j−1,3j+1 = −ν3j,3j+1 = J for j = 1,2,3, . . . ,N .
Now consider a situation in which each of the two-level
systems of the network is in contact with its fluctuating
environment. These interactions affect the dynamics of the
network in the form of dephasing noise (Fig. 1). Under these
considerations, the Lindblad-type master equation for the
density matrix of the system is written as

ρ̇ = i

�
[ρ,H ] + Ldeph(ρ) + Lsink(ρ), (10)

where Ldeph(ρ) is the Lindblad operator corresponding to the
action of the dephasing noises on the ρ given by

Ldeph(ρ) =
3N+1∑
j=1

[γj (2σ+
j σ−

j ρσ+
j σ−

j − {σ+
j σ−

j ,ρ}], (11)

where γ1 = γ2 = · · · = γ3N+1 = γ are the rates of dephasing
processes that randomize the corresponding phases of the
local excitations and excitations in the form |S+

j 〉 ∈ Hj , with
j = 1,2, . . . ,N , produced by the time-evolution processes.
Therefore, each of the randomized |S+

j 〉 has a nonzero over-
lap along the respective |S−

j 〉 ∈ Hj+1, with j = 1,2, . . . ,N .
Consequently, the evolution of an excitation from a particular
subspace to its neighbor subspace will be possible incoherently
[Fig. 1(b)]. On the other hand, the additional sink site is
populated by an irreversible decay process from a chosen
site (for this case site 3N + 1) as described by the Lindblad
operator

Lsink(ρ) = �(2σ+
3N+2σ

−
3N+1ρσ+

3N+1σ
−
3N+2

−{σ+
3N+1σ

−
3N+2σ

+
3N+2σ

−
3N+1,ρ}), (12)

where � = 2γ is the rate of dissipative process that reduces
the number of excitations in the system and traps it in the sink.
The sink population or efficiency of transport is given by

Psink(t) = 2�3N+2

∫ t

0
ρ3N+1,3N+1 (t ′)dt ′. (13)

It should be noted that the dynamics preserves the total
excitation number in the system, and for each N the coherent
part of the evolution of the system is completely suppressed.
The optimality of incoherent dynamics of the system is defined
by the best way to couple the system to its independent
environments, such that the sink site is populated in the
shortest possible time. To achieve the optimal conditions for
the transport, we consider three separate cases. For the first
case, it is assumed that all sites of the network with N = 4
interact, in an optimal way, with their respective dephasing
environments. Figure 2(a) shows the populations of site 1
and the sink versus time. The transfer time for the sink to
be completely populated is t = 505.89 in this case. The inset
in Fig. 2(a) gives the population of the sink, Psink, at a fixed
time of t = 505.89, as a function of γ .

In the second case, only the sites 3j − 1 and 3j , with
j = 1,2,3,4, are subjected to dephasing noises. In an optimal
way, the efficiency of transport is improved with respect to
the previous case (with transfer time t = 391.27), as shown in
Fig. 2(b). This shows that the effects of dephasing noises on the
sites 3j − 2 and 3j + 1 (j = 1,2,3,4) reduce the efficiency
of transport. In other words, the removal rate of destructive
interferences should not be smaller than the decay rate of phase
of the related wave function. For the third case, it is interesting
to note that the effect of noises on the only sites 3j − 1 (or 3j ),
with j = 1,2,3,4, improves the optimal transport better than
the previous cases (with transfer time t = 379.1) as depicted
in Fig. 2(c). In the next section, we show that when the
transport of excitation in a two-dimensional network through
a particular one-dimensional path is demanded, the conditions
in the second case are more effective than the others.

042103-3



NAGHI BEHZADI, BAHRAM AHANSAZ, AND HADI KASANI PHYSICAL REVIEW E 92, 042103 (2015)

FIG. 2. (Color online) Populations of site 1 (solid red line) and
the sink (dashed blue line) for N = 4 corresponding to Fig. 1, with
ω1 = ω2 = · · · = ω13 = 50. The network is affected by independent
dephasing noises in three different ways: (a) all sites are attached to
the noise with optimal rate γopt = 0.95, (b) the sites 3j − 1 and 3j

(j = 1,2,3,4) are attached with γopt = 1.22, and (c) the sites 3j − 1
(j = 1,2,3,4) are attached, with γopt = 2.44. Each inset shows the
dependence of Psink at a fixed time (the respective transfer time) as a
function of γ . The initially sharp rise is due to the increasing rapidity
of destruction of invariant subspaces, while the decreasing rate is due
to the quantum Zeno effects.

Before analyzing the transport process in the two-
dimensional case, let us consider the robustness of optimal
transport versus energy mismatch of sites for the second case.
First, we consider the energy of sites 3j − 2 with j = 1,3,5 as
�(ω − δ) and with j = 2,4 as �ω. As observed from Fig. 3(a),
the optimality of transport with respect to γ is robust due to
the mentioned energy disorders. Now, let us consider another
case in which for j = 1,3,5 the energy of sites is �(ω − δ)
and for j = 2,4 it is �(ω + δ), which is more disordered than
the first case. As is observed from Fig. 3(b), the robustness of
optimal transport with respect to this type of disorder is less
than the previous one.

III. TWO-DIMENSIONAL CASE

In this stage, we develop the process of excitation transport
across a two-dimensional multisink network, such that the
transport can take place in a completely selective way to each
reaction center. Since the evolution is purely incoherent in
the network, the transport of an excitation to a particular sink
needs to establish artificial couplings between the network
and independent fluctuating environments throughout a path
connecting the initial site to that sink. Toward that end, let us
introduce the following Hamiltonian as a building block for
constructing the network, corresponding to Fig. 4, as follows:

Hμ =
3∑

j=0

�ωμj
σ+

μj
σ−

μj
+

6∑
j=1

�ωμ0j
σ+

μ0j
σ−

μ0j

+
6∑

j=1

�νμ0,μ0j

(
σ+

μ0
σ−

μ0j
+ σ−

μ0
σ+

μ0j

)

+
2∑

j=1

�
[
νμ1,μ0j

(
σ+

μ1
σ−

μ0j
+ σ−

μ1
σ+

μ0j

)

+ νμ2,μ0j+2

(
σ+

μ2
σ−

μ0j+2
+ σ−

μ2
σ+

μ0j+2

)
+ νμ3,μ0j+4

(
σ+

μ3
σ−

μ0j+4
+ σ−

μ3
σ+

μ0j+4

)]
. (14)

In general, we assume that νμ0,μ01 = νμ0,μ02 , νμ0,μ03 = νμ0,μ04 ,
νμ0,μ05 = νμ0,μ06 , νμ1,μ01 = −νμ1,μ02 , νμ2,μ03 = −νμ2,μ04 , and
νμ3,μ05 = −νμ3,μ06 , as well as ωμ01 = ωμ02 , ωμ03 = ωμ04 ,
and ωμ05 = ωμ06 . However, for the purpose of this paper,
it is enough to rewrite the assumptions as νμ0,μ0j

= J ,
ωμi

= ωμ0j
= ω (i = 0,1,2,4 and j = 1,2, . . . ,6),

and νμ1,μ01 = −νμ1,μ02 = νμ2,μ03 = −νμ2,μ04 = νμ3,μ05 =
−νμ3,μ06 = J . Now, we introduce a new basis set as follows:

|μj 〉, j = 0,1,2,3,

|μ±
1 〉 = 1√

2
(|μ01〉 ± |μ02〉), |μ±

2 〉= 1√
2

(|μ03〉±|μ04〉),

|μ±
3 〉 = 1√

2
(|μ05〉 ± |μ06〉). (15)

Under these considerations, we find that the Hamiltonian Hμ,
in the new basis, takes a direct sum structure as

Hμ =
3⊕

j=0

Hμj
, (16)
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FIG. 3. (Color online) Robustness of Psink around the optimal value of dephasing noise due to energy mismatch between sites. (a) The
energies of sites 3j − 2 with j = 1,3,5 are �(ω − δ) and those with j = 2,4 are �ω. (b) The energies of sites 3j − 2 with j = 1,3,5 are
�(ω − δ) and those with j = 2,4 are �(ω + δ). For both cases, the sites 3j − 1 and 3j are attached to dephasing noises.

where their corresponding representative subspaces are

Hμ0 = span{|μ0〉,|μ+
1 〉,|μ+

2 〉,|μ+
3 〉},

(17)
Hμj

= span{|μj 〉,|μ−
j 〉}, j = 1,2,3.

As the one-dimensional quantum transport prototype, the
evolution of the closed system described by the Hamiltonian

Hμ is governed by one of the (sub)Hamiltonians of Eq. (16)
and contained in one of the respective invariant subspaces
of Eq. (17) (depending on the position of the initial state).
If excitation is prepared at site μ1 as an initial state, then
it cannot be transferred either to site μ2 or to μ3, because
they lie in different invariant subspaces. However, if some

FIG. 4. (Color online) Selective incoherent quantum transport building block in two dimensions. (a) Incoherent transport from site μ1 to
site μ2 and (b) incoherent transport from site μ1 to site μ3. Parts (c) and (d) show invariant subspaces structure of (a) and (b), respectively, and
incoherent connection between them through the noises.
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FIG. 5. (Color online) A network with three sinks. Energy exci-
tation can be transferred from site 1 to one of the sinks arbitrarily.

of these invariant subspaces are tailored to each other by
some processes, such as interacting the network at sites, for
example, μ0j with j = 1,2,3,4 (j = 1,2,5,6) with fluctuating
environments, then the quantum transport of excitation can be
possible from μ1 to μ2 (μ3), as seen in Fig. 4.

Now, using the previous discussion and Fig. 4 as a
building block, a two-dimensional quantum network can
be constructed, whereby the energy of excitation can be
transferred from an initial site to one of the reaction centers
attached to the network. Consider, for example, a network
with three identical sinks as reaction centers corresponding to
Fig. 5, in which the complete transport of excitation prepared
in site 1 arbitrarily to one of the reaction centers is required.
The Hamiltonian of the system is given as

H =
∑

μ

Hμ, (18)

where Hμ is as in Eq. (14). It is clear that the Hamiltonian
of the network has also a direct sum structure, and therefore
the evolution of the system is restricted to one of the related
invariant subspaces. The direct sum structure of H is as

H = Hμ1 ⊕ Hλ2 ⊕ Hν3 ,

⊕Hμ0 ⊕ Hλ0 ⊕ Hν0 ,

⊕Hμ,λ ⊕ Hμ,ν ⊕ Hλ,ν, (19)

and their corresponding invariant subspaces are

Ha = span{|a〉,|a−〉}, a = μ1,λ2,ν3,

Hb0 = span{|b0〉,|b+
1 〉,|b+

2 〉,|b+
3 〉}, b = μ,λ,ν,

Hμ,λ = span{|μ−
2 〉,|μ2(λ1)〉,|λ−

1 〉},

FIG. 6. (Color online) Complete transfer of excitation from site 1
(solid red line) selectively to (a) sink 1 (dashed blue line), (b) sink 2
(dashed green line), and (c) sink 3 (dashed pink line).

Hμ,ν = span{|μ−
3 〉,|μ3(ν1)〉,|ν−

1 〉},
Hλ,ν = span{|λ−

3 〉,|λ3(ν2)〉,|ν−
2 〉}. (20)

As discussed previously, the evolution of an excitation pre-
pared at site 1 is only restricted within the invariant subspace
Hμ1 (Fig. 5). Consider that the sinks are attached to the sites λ2,
λ3 (or ν2), and ν3 with equal strength of coupling as � = 2γ ,
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FIG. 7. (Color online) Extended network with more than three
sinks.

where γ is the rate of dephasing noise on a typical site. The
populations of the sinks are

Psink 1(t) = 2�

∫ t

0
ρ

λ2 ,λ2
(t ′)dt ′,

Psink 2(t) = 2�

∫ t

0
ρ

λ3 ,λ3
(t ′)dt ′, (21)

Psink 3(t) = 2�

∫ t

0
ρ

ν3 ,ν3
(t ′)dt ′.

Now consider the effect of dephasing noises with equal rate
γ on the sites μ01, μ02, μ03, μ04, λ01, λ02, λ03, and λ04. We see
that the excitation is optimally transferred from site 1 (or μ1)
to the sink 1, completely without any penetration to the other
sinks, as shown in Fig. 6(a). On the other hand, the excitation
is completely transferred to the sink 2 if the dephasing noises
affect the sites μ01, μ02, μ03, μ04, λ01, λ02, λ05, and λ06, as is
obvious from Fig. 6(b). And in a similar way, if the sites μ01,
μ02, μ05, μ06, ν01, ν02, ν05, and ν06 are affected by dephasing
noises, only sink 3 is populated [Fig. 6(c)]. Hence, transport of
excitation to one of the reaction centers is only possible through

incoherent coupling of the network to dephasing environments,
which in turn tailor a number of invariant subspaces throughout
the path connecting the site 1 to the desired reaction center.
The transport process discussed here for each sink through a
particular one-dimensional path is optimal and similar to the
conditions of the second case of a one-dimensional prototype,
as discussed in the previous section.

The discussed scheme for selective transport of energy can
be easily extended to other larger networks (Fig. 7). In general,
the conditions for the respective optimal transport will be
different.

IV. CONCLUSIONS

In this work, we presented a method for energy transport
in a two-dimensional network in a selective way. In this
approach, the coherent part of the evolution is an unwanted
process for selective transfer of excitation energy. Therefore,
the network is designed in such a way that the coherent
evolution is completely suppressed by itself. So the evolution
of the system, whose existence depends on the existence of in-
teractions between the system and independent environmental
fluctuating noises, is completely incoherent. If the interactions
are established throughout a particular path of the network, the
evolution takes place along that path incoherently. In particular,
the path can be considered as a connection link between the
site 1 (the excitation was prepared initially in this site) and one
of the sinks or reaction centers, so in this way the excitation
can be completely transferred to the respective reaction center.
On the other hand, it was observed that the optimal transport
throughout a particular path in the two-dimensional network
is not similar to the optimality of quantum transport for a
one-dimensional prototype. It is interesting to note that since
the evolution takes place in a particular path rather than in the
whole network, from the dissipation and losing point of view
(which can occur in chromophores or sites), quantum transport
can be performed in a more efficient way. This may lead to
further investigations in the future.

An additional point of view is the effect of reorganization
energy shift for each site, which interacts with the related
environment. Since all of the interacting sites with the
environments are identical (as are the environments), they
all experience an identical energy shift. The optimality of
transport under this kind of energy shift, for Markovian and
non-Markovian environments, can also be investigated in the
future.
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