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Fractal energy carpets in non-Hermitian Hofstadter quantum mechanics
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We study the non-Hermitian Hofstadter dynamics of a quantum particle with biased motion on a square lattice
in the background of a magnetic field. We show that in quasimomentum space, the energy spectrum is an overlap
of infinitely many inequivalent fractals. The energy levels in each fractal are space-filling curves with Hausdorff
dimension 2. The band structure of the spectrum is similar to a fractal spider web in contrast to the Hofstadter
butterfly for unbiased motion.
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I. INTRODUCTION

It is well known that the energy spectrum of an electrically
charged particle moving in the background of an external
magnetic magnetic field on a two-dimensional infinite square
lattice has a beautiful fractal structure known as the Hofstadter
butterfly [1]. The energy bands plotted against the magnetic
flux reveal a complex pattern that resembles a butterfly,
hence the name. The fractality of the Hofstadter butterfly is
revealed in the fact that small regions of the energy spectrum
contain a distorted copy of a larger region, thus exhibiting
the self-similarity property at all scales. This property is a
characteristic feature of a fractal [2].

The Hofstadter spectrum was originally obtained in a tight-
binding model that describes the motion on a square lattice of
a (spinless) charged particle hopping from one site to one of
the nearest sites in the presence of an external magnetic field
perpendicular to the lattice plane.

In this paper, we address the problem of a biased quantum
motion where the motion is constrained—“biased”—by the
condition that the hopping of the particle to the left is now
forbidden, while it can still freely hop to the other nearest
sites (right, up, and down) as indicated in Fig. 1. The particle
is electrically charged so that its motion is affected by the
presence of the magnetic field. Its dynamic is described by a
truncated non-Hermitian Hofstadter Hamiltonian.

This quantum system was introduced in Ref. [3], where
its relation with biased classical random walks—i.e., random
walks on a square lattice conditioned to move horizontally
only to the right, never to the left [4]—was studied. Explicit
trace identities relating, on the one hand, the generating
functions of the algebraic area probability distribution of
biased random walks to, on the other hand, the traces of
powers of the quantum truncated Hamiltonian, were proposed
in the so-called commensurate case in which the (normalized)
magnetic flux per unit cell is a rational number. An exact
solution for the quantum spectrum was derived. It turns out
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that the energy levels depend on two quantum numbers kx and
ky . The quasimomentum ky takes continuous values in [−π,π ]
and corresponds to the plane-wave Bloch states propagating
along the vertical axis, while the other quantum number kx

takes discrete values in the same interval [−π,π ] and fixes the
boundary condition on the horizontal axis.

Following the approach of Ref. [1], where the fractal
structure of the Hofstadter band spectrum is revealed when it is
plotted as a function of the external magnetic flux, we are going
to show below that the energy bands of the biased quantum
model also exhibit, not surprisingly, a self-similar structure in
the same “energy-flux” plane. In addition, we will also argue
that energy levels for different magnetic fluxes reveal—when
they are plotted as a function of ky—unusual fractal patterns
(“fractal carpets”) in the “energy-quasimomentum” plane.

The paper is organized as follows: In Sec. II we consider
the non-Hermitian Hofstadter model and its real-valued energy
spectrum. In Sec. III we argue visually and numerically that
the spectrum possesses a fractal structure not only for the
energy bands plotted against the magnetic flux but also for
the energy levels plotted against the quasimomentum ky . An
analytical argument based on Chebyshev nesting is presented
in Sec. IV. It is followed by yet another analytical argument for
the flattened energy bands in Sec. V. Complex-valued branches
of the energy spectrum are briefly discussed in Sec. VI. The
final section is devoted to our conclusions.

II. THE MODEL AND ITS SPECTRUM

A. The biased quantum model

The biased quantum non-Hermitian Hamiltonian is

Hβ = Tx + Ty + T −1
y , (1)

where the operators Tx and Ty describe the hopping of the
particle along (the positive directions of) the axes x and y,
respectively. Quantum mechanically, the hopping operators
act on a state �m,n at lattice site (m,n) as [8]

Tx�m,n = �m+1,n,
(2)

Ty�m,n = ei2πmβ�m,n+1,
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FIG. 1. (Color online) Biased motion in a magnetic field.

where1

β = �

�0
(3)

is the flux � piercing an elementary plaquette of the square
lattice counted in units of the elementary flux quantum �0 =
hc/e. The hopping operators obey the commutation relation

TxTy = e−2πiβTyTx. (4)

The absence of the T −1
x operator in Eq. (1)—corresponding

to the absence of the hops to the left according to Fig. 1—
makes the Hamiltonian Hβ non-Hermitian because T

†
i ≡ T −1

i

for i = x,y and, consequently, H
†
β �= Hβ .

The normalized magnetic flux β enters only via Eqs. (2)
and (4). Thus, the energy spectrum is periodic with respect to
the integer shifts, β → β + 1. By periodicity, we take β in the
interval [0,1].

B. The energy spectrum

1. General solution

In Ref. [3], the spectrum of the Hamiltonian (1) was derived
in the commensurate case where the magnetic flux (3) is a
rational number,

β = p

q
, (5)

with p and q naturally relative prime integers, so that their
greatest common divisor is equal to unity,

gcd(p,q) = 1. (6)

The spectrum is obtained by solving

Pp,q (E,ky) = eiqkx , (7)

where

Pp,q (E,ky) =
q∏

r=1

[
E − 2 cos

(
ky + 2π

p

q
r

)]
(8)

is a degree q polynomial of the energy E. Solutions of
Eqs. (7) and (8) determine the possible energies where the
continuous variables kx ∈ [−π,π ] and ky ∈ [−π,π ] play the
role of quasimomenta, and the magnetic flux β enters in Eq. (5)
via the integers p and q, which label distinct energy branches.

1Here we use the notations of Ref. [1]. In the notations of Ref. [3],
γ = 2πβ has been used instead.

The spectrum consists of the q eigenenergies

Eq,r (ky) = 2 cos

[
1

q

(
arccos

[
cos(qky) + eiqkx

2

]
+ 2πr

)]
,

(9)

where r = 1,2, . . . ,q maps different branches of the solutions.
It includes, in general, complex valued energies that corre-
spond either to formal instabilities or to a dissipative motion
of the particle. It turns out that the spectrum is real for at least
certain intervals of the quasimomentum ky if and only if kx is
such that

eiqkx = ±1, (10)

which corresponds to periodic eiqkx = 1 (antiperiodic eiqkx =
−1) boundary conditions along the q-site-long lattice cell in
the x direction. Below, we restrict ourselves to periodic and
antiperiodic boundary conditions for which real eigenenergies
do exist.

An interesting feature of the spectrum is that it is inde-
pendent of the integer p provided p and q are relative prime
integers as specified in Eq. (6).

2. Examples and symmetries of the spectrum

In Fig. 2 (top and bottom) for q = 7 and 8, respectively,
the real energy levels are plotted as a function of ky both for
periodic (antiperiodic) boundary conditions [solid (dashed)
lines]. One sees that the q real branches labeled by r =
1,2, . . . ,q in Eq. (9) do materialize for particular intervals
of ky .

Since the features of Fig. 2 are generic for odd and even q,
we describe them in detail below.

For odd q, the highest (lowest) real energy level is a con-
tinuous curve [solid (dashed)] for the whole quasimomentum
interval ky ∈ [−π,π ]. The other q − 1 branches are real only
in q distinct ky intervals (here we use the fact that the spectrum
lies on a circle, thus the quasimomenta ky = −π and π are
identified). These q − 1 energy branches are grouped pairwise
to form (q − 1)/2 distorted ovals in each of these intervals.
Thus, both in the periodic and antiperiodic cases, one has
one continuous energy band and q(q − 1)/2 distorted energy
ovals [see in Fig. 2 (top) the 21 energy dashed (solid) ovals for
q = 7].

The odd-q energy spectrum has a number of symmetries
that are manifest in Fig. 2 (top):

E(±)
q,r (ky)

∣∣∣∣
q∈odd

= E(±)
q,r (−ky) = E(±)

q,r

(
ky + 2πn

q

)

= −E(∓)
q,r

(
ky + (2n + 1)π

q

)
, (11)

with n ∈ Z. Indeed, the spectrum is symmetric under both
mirroring in the quasimomentum direction, ky → −ky , and
the discrete shifts ky → ky + 2πn/q. Moreover, for odd q,
the periodic and antiperiodic spectra are related to each
other by the mirroring transformation in the energy direction
E → −E and a simultaneous shift along the quasimomentum
direction, ky → ky + π (2n + 1)/q (here we use again that in
the quasimomentum space ky and ky + 2π are identified).
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FIG. 2. (Color online) The energy spectrum Eq for odd q = 7
(top) and even q = 8 (bottom) as functions of the quasimomentum
ky for periodic (solid lines) and antiperiodic (dashed lines) boundary
conditions on the x axis. The q energy branches are marked by
different colors.

For even q, in the periodic case, both the highest and the
lowest real energy levels are continuous curves for the whole
interval ky ∈ [−π,π ]. The other q − 2 branches are real only
in q distinct ky intervals. The q − 2 energy branches are
grouped pairwise to form (q − 2)/2 distorted ovals in each
of these intervals. Thus one has two continuous energy bands
and q(q − 2)/2 distorted energy ovals [see in Fig. 2 (bottom)
the 24 solid ovals for q = 8]. The antiperiodic case is a bit
simpler since the q energy branches are grouped pairwise to
make q/2 separate energy ovals in the q bands. Thus one has
q2/2 distorted energy ovals [see Fig. 2 (bottom), the 32 dashed
ovals for q = 8].

The symmetries of the even-q spectrum are simpler:

E(±)
q,r (ky)

∣∣∣∣
q∈even

= E(±)
q,r (−ky) = −E(±)

q,r (ky)

= E(±)
q,r

(
ky + 2πn

q

)
, (12)

with n ∈ Z. The spectrum is symmetric with respect to
mirroring of both energy E → −E and quasimomentum
ky → −ky . The spectrum is also invariant under the discrete
shifts of the momenta, ky → ky + 2πn/q. Contrary to q odd,

FIG. 3. (Color online) The band energy spectrum (the horizontal
axis) with respect to the minimal value of the normalized magnetic
flux β = 1/q ∈ [0,1] with q = 1,2, . . . ,100 (the vertical axis) for
periodic boundary conditions.

for q even the energy spectra for periodic and antiperiodic
boundary conditions are not simply related.

Finally, due to the independence of the spectrum on the
numerator p of the (normalized) rational magnetic flux β in
(3), the spectra in Fig. 2 (top) (bottom) are realized, in fact, for
six different values of β = p/7 with p = 1, . . . ,6.

As can be clearly seen in Fig. 2, the real spectrum occupies
the domain [−π,π ] ⊗ [−2,2] with energy bands depending on
the magnetic flux β. Following Ref. [3], we plot in Fig. 3 the
energy bands as a function of β = 1/q for q = 1,2, . . . ,100.
Notice that the band spectrum does not carry any information
on the actual quasimomentum dependence since it is obtained
by a one-dimensional (1D) projection of the spectrum on the
vertical (energy) axis. In the next section, we are going to show
that not only the β dependence of the band spectrum but also
the quasimomentum ky dependence of the energy spectrum (9)
have fractal self-similar patterns.

III. STRUCTURE OF ENERGY LEVELS

A. Structure of energy bands

It is well known that the Hofstadter band spectrum2 E ∈
[−4,4] reveals a fascinating fractal structure—the Hofstadter
butterfly—when it is plotted on the horizontal axis against
the normalized magnetic flux β ∈ [0,1] on the vertical axis.
Likewise, in the biased quantum model, a fractal structure
should also materialize when the energy bands are plotted
against β.

In Fig. 4, the band spectrum is plotted against β with all
values p/q ∈ [0,1] (and not only the minimal values 1/q as
in Fig. 3) for q = 1, . . . ,70, both for periodic and antiperiodic
boundary conditions. Here q plays the role of a “resolution”
parameter that determines the thinness of the chosen grid of
possible β values.

2Notice that in the biased quantum model, the real-valued band
spectrum lies in the narrower interval E ∈ [−3,3].
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FIG. 4. (Color online) The band energy spectrum (the horizontal
axis) with respect to the value of the normalized magnetic flux
β = p/q ∈ [0,1] with q = 1,2, . . . ,70 and p = 1, . . . ,q (the vertical
axis) for the periodic (the red lines) and antiperiodic (the blue lines)
boundary conditions. The darkness (lightness) of the lines visualize
high (low) values of the density of states (13).

In Fig. 4, the variations of lightness in each energy band
correspond to the variations of the (normalized) density of
states at a given energy,

1

2π

dky

dE
, (13)

such that the higher (lower) the density of states is, the
darker (lighter) is the band. As an illustration, in Fig. 5 (top
and bottom) we display the density of states (13) and the
corresponding energy levels for q = 2,4,8, respectively.

At a fixed resolution q, the (normalized) magnetic flux runs
over the values

β = 0,
1

q
,
2

q
, . . . ,

q − 1

q
, (14)

where β = 0 corresponds to p = q. The energy levels are
defined by Eqs. (7) and (8), i.e.,

q∏
r=1

[E − 2 cos(ky + 2πβr)] = eiqkx . (15)

Evidently, some of the instances of p and q in Eq. (14)
correspond to mutually reducible integers so that their greatest
common divisor gcd(p,q) �= 1. In this case, one can use the
property of the energy polynomial (8) that appears on the
left-hand side of Eq. (15),

q∏
r=1

[E − 2 cos(ky + 2πβr)]

∣∣∣∣
β= p

q

= Q
gcd(p,q)
q/gcd(p,q)(E,ky), (16)

�2 �1 0 1 2
0.0

0.5

1.0

1.5

E

D
.O
.S
.

�3 �2 �1 0 1 2 3

�2

�1

0

1

2

ky

E

FIG. 5. (Color online) Top: the density of states (13) as a function
of the energy E for q = 2 (the blue solid line), q = 4 (the orange
long-dashed line), and q = 8 (the violet short-dashed line) levels.
Bottom: the energy levels as a function of the quasimomentum ky .

where

Qq(E,ky) = 2[Tq(E/2) − cos(qky)], (17)

and Tq(x) is a Chebyshev polynomial of the first kind.3

Substituting Eq. (16) into Eq. (15), we get for the energy
levels

Q
gcd(p,q)
q/gcd(p,q)(E,ky) = eiqkx , (18)

which can be simplified as

Qqp
(E,ky) = eiqpkx , (19)

where the integer qp is

qp = q

gcd(p,q)
. (20)

We come to some trivial conclusions for the spectrum in the
case of the rational (normalized) magnetic flux (5):

3We use the standard notation Tn for the Chebyshev polynomial of
the first kind determined by the equation Tn(cos ϕ) = cos(nϕ).
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(i) If p and q are mutual prime integers as in (6), then the
energy spectrum is determined by

Qq(E,ky) = eiqkx , (21)

because q1 ≡ q.
(ii) If p and q are not mutual primes [gcd(p,q) �= 1], then

the energy spectrum is determined by

Qqp
(E,ky) = eiqkx , (22)

with qp given in Eq. (20).
(iii) In the special case p = q, in which the magnetic field

is absent, β = 0, we get the simple q-independent solution

E1,1(ky) = 2

[
cos(ky) + eikx

2

]
, (23)

which is Eq. (9) for q = 1 and thus r = 1.
For p = 1,2, . . . ,q − 1 the integer qp runs over all possible

divisors of the natural number q. Therefore, the nontrivial
energy levels at resolution q are determined by Eq. (22),
where the qp’s are taken from the set of all nonequal divisors
of q.

For example, the scan of nonzero possible normalized
magnetic fluxes with resolution q = 6 includes the series
β = 1/6, . . . ,5/6. According to our discussion, the mutually
prime numbers in β = 1/6, 5/6 share the common spectrum
corresponding to β = 1/6, while β = 2/6 and 4/6 correspond
to the spectrum of β = 1/3 and β = 3/6 corresponds to
the spectrum of β = 1/2. Therefore, the magnetic fluxes
at resolution q = 6 should include the solutions at β =
1/2,1/3,1/6 [plus, of course, the trivial solution (23)]. In other
words, the solutions are given by Eq. (9) with q = 1,2,3,6.

As yet another example, consider the magnetic fluxes with
resolution q = 16, given by β = 1/16, . . . ,15/16, which can
be divided into four different groups. The first group with the
mutually prime numbers, β = (2n + 1)/16, n = 0,1, . . . ,7,
has a spectrum corresponding to the minimal representative
β = 1/16. The second group, given by β = 2(2n + 1)/16
with n = 0, . . . ,3, corresponds to the mutually prime numbers
β = (2n + 1)/8 with the minimal representative β = 1/8. The
third group is β = 4/16,12/16, which has the same spectrum
as β = 1/4. Finally, the last group includes only β = 8/16 =
1/2. Thus, the magnetic fluxes at resolution q = 16 should
include the solutions corresponding to β = 1/2,1/4,1/8,1/16
and (23). In other words, the solutions are given by Eq. (9)
in which q = 1,2,4,8,16 runs over the set of all divisors
of 16.

Both examples illustrate that the energy levels with resolu-
tion q are given by the energy solutions (9) in which qp runs
over all possible divisors of the original resolution factor q

[including, of course, the trivial energy level Eq. (23)]. The
energy bands are plotted in Fig. 4: they have a characteristic
pattern that no longer resembles a butterfly but rather a spider
web.

B. Fractal energy levels in quasimomentum space

1. Self-similarity

To address the fractal structure of the eigenenergies of
the non-Hermitian Hofstadter Hamiltonian (1) plotted as a
function of the quasimomentum ky , one has to consider curves

made of all the disjoints energy ovals lying in the planar domain
[−π,π ] ⊗ [−3,3].

Let us focus on the series q = mn where the base m includes
any integer 2,3,5,6,7,10, . . . that is not a member of another
series with a smaller base (i.e., m �= m

n1
1 for any integers m1 >

1 and n1 > 1). For example, Fig. 2 (top) for q = 7 is the
starting plot of the series q = 7n with base m = 7, whereas
Fig. 2 (bottom) for q = 8 belongs to the m = 2 series q =
2 → 4 → 8 → 16 → 32 → · · · . We are going to argue that
for a given base m in the limit n → ∞, the curve made of
the reunion of all the disjoint ovals in each of the q = mn

members of the series constitutes a fractal area-filling curve
with Hausdorff dimension 2, as is the case for well-known area-
filling curves such as, for example, the Peano, Wunderlich, or
Hilbert curves [2].

The curves for the series q = mn with m = 2,3,5 are shown
in Fig. 6. Note that they are not per se strictly self-similar
because of the distortion of the ovals near the upper and lower
energies E = ±2. Leaving aside these spurious boundary
effects, the overall pattern is that of a fractal that remains
unchanged by an increasingly accurate zooming. In the sequel,
we concentrate on the central part of the energy plot, say
E ∈ [−1,1], where boundary effects become negligible and
the self-similar structure of the oval patterns is manifest. As an
example, the self-similarity of the energy levels in the q = 2n

series is explicitly illustrated in Fig. 7. It is clear that in the
central region (far from the distorted boundaries), the q = 2n+1

energy levels are self-similar to a zoomed version of the q = 2n

levels for any power n. This self-similarity depends on the base
number m of the q = mn series. Thus, in the limit n → ∞, we
have not one but rather an infinite number of fractals labeled
by the base m that one considers.

2. Energy levels as space-filling curves

There are several ways to determine the fractal structure
of a 2D curve. One way is to consider a curve that, by
successive iterations, would have a diverging length yet the
area in which it is contained remains finite (typical examples
of such curves are the Koch and Peano curves [2]). The
scaling of the length of the curve with the length’s resolution
should give us the Hausdorff—fractal—dimension of the
curve. Let us first address this question numerically, and then,
in the next section, consider some more precise analytical
arguments.

As we have already seen, at resolution q the number of
energy ovals is q(q − 2)/2 for an even q and q(q − 1)/2 for
an odd q. As a simple example, let us again consider the q = 7
and 8 curves of Fig. 2. Since the energy pattern repeats itself
horizontally q times, it is sufficient to consider the part of the
curve made of the ovals contained in a given ky interval (a given
column). Numerical estimates for q = 2n,q = 3n,q = 5n, and
large n (typically the maximal power is n = 24 for base m = 2)
give for the perimeter length Lcol and the area enclosed Acol,
respectively,

Lcol = 7.347 71, Acol = 7.748 80

q
. (24)
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FIG. 6. (Color online) The energy spectra (9) are shown as
functions of the quasi-momentum ky at (normalized) magnetic fields
β = 1/q for q = mn series with (a) m = 2, n = 1, . . . ,6; (b) m = 3,
n = 1, . . . ,4; (c) m = 5, n = 1, . . . ,3.

As for the total perimeter length Ltot and the total area Atot

of the entire curve made of all the disjoint ovals, the scalings4

4Note that the area enclosed by the ovals is contained in a rectangle
of area 2π × 4 	 25.1327 whereas the “available” surface inside the
rectangle, i.e., after removing the gaps between the bands, is [3] in
the large q limit 2π × 8/3 = 16.7552.

FIG. 7. (Color online) Zooming into the fractal structure of the
energy levels of the non-Hermitian Hofstadter model for (normalized)
magnetic fields β = 1/q with q = 2n and increasing n.

are, respectively,

Ltot 	 7.347 71 × q, Atot 	 7.748 80. (25)

The scaling (25)—a diverging length for a curve that
nevertheless encloses a finite area—is typical of a fractal
area-filling curve. The Hausdorff dimension D of the curve and
the resolution of the curve’s details 1/q—so that the bigger
the resolution q, the smaller the scale at which one looks
at the curve (as already mentioned, 1/q corresponds to the
minimal possible nonzero value of the normalized magnetic
flux β)—should be related by

Ltot = γ

(
1

q

)1−D

, Atot = const. (26)

A comparison of Eq. (25) with Eq. (26) gives a Hausdorff
dimension D = 2, which corresponds to an area-filling curve.

Another way to show that the Hausdorff dimension is 2
consists in rephrasing the scaling argument above in terms
of iterative patterns, which are clearly visible in Fig. 7 for
base m = 2: each time the resolution is doubled, i.e., 1/q is
divided by 2, the number of ovals is multiplied by 4. This
property is again characteristic of a fractal with Hausdorff
dimension D = ln 4/ ln 2 = 2. In general for base m, iterating
means dividing 1/q by m with a number of ovals multiplied
by m2, so again a Hausdorff dimension D = ln m2/ ln m = 2.

IV. CHEBYSHEV NESTING AND FRACTALS

The energy spectrum of the non-Hermitian Hamiltonian
(1) is determined by Eqs. (17), (21), or (22), which involve
Chebyshev polynomials of the first kind. The fractal structure
of the q = mn series can surprisingly be understood in terms
of the so-called “Chebyshev nesting,” which is a composition
identity for Chebyshev polynomials,

Tm[Tn(x)] = Tmn(x). (27)

We can use three different approaches to discuss the relation
of Chebyshev nesting (27) to the fractal self-similarity of the
energy curves.
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First, let us consider the horizontal scaling of the energy
solutions of Eq. (21). As we have already noticed in Figs. 2
and 6, the undistorted self-similar pattern of the energy levels
is manifest in the vicinity of the E = 0 horizontal axis. The
same self-similarity should be seen in particular in the scaling
behavior of the zero-energy solutions that occur for a set of
specific quasimomenta ky . In other words, if, for the series
q = mn, the energy curves exhibit a self-similarity as the
power n increases, then one might expect that the discrete
quasimomenta ky for which the energy lines cross the hori-
zontal axis will also exhibit a self-similar scaling. According
to Eqs. (17) and (21) for periodic boundary conditions—where
indeed energy lines do cross the horizontal axis for both even
and odd q—these zero-energy quasimomenta are given by

Tmn(0) = cos(mnky) + 1
2 . (28)

Using the Chebyshev nesting (27) as well as

Tq(0) = cos
πq

2
≡

⎧⎪⎨
⎪⎩

0 for odd q;

+1 for even q, even q/2;

−1 for even q, odd q/2

(29)

and

Tq(+1) = +1, Tq(−1) = (−1)q, (30)

one arrives at

Tmn(0)

∣∣∣∣
n≥2

≡ Tm(Tm( · · · Tm(0)))︸ ︷︷ ︸
n ≥ 2 times

= f +
m , (31)

where

f ±
m = 1 ± (−1)m

2
≡

{
1 even (odd) m,

0 otherwise. (32)

The important consequence of (27) is that, according to
Eq. (31), Tmn(0) does not depend on n for n ≥ 2. Then, in the
periodic case at hand, the zero-energy quasimomenta solutions
of Eq. (28) are

k(m,n,l)
y (E = 0) = π

6

1

mn
[3 − (−1)m + 12l], (33)

where l ∈ Z labels the possible independent solutions con-
tained in the interval [−π,π ].

According to Eq. (33), for any two fixed powers n and
n + p with p ∈ Z, the zero-energy quasimomenta are related
by

k(m,n+p,l)
y (E = 0) = 1

mp
k(m,n,l)
y (E = 0). (34)

This implies that the zero-energy quasimomenta for q = mn+1

can be obtained by a rescaling of the q = mn quasimomenta by
a factor 1/m. In other words, the width of the ovals diminishes
by 1/m with each step n → n + 1.

Secondly, let us consider the vertical scaling of the energy
ovals for periodic boundary conditions. This scaling can be
determined in a similar way using a simple argument based
on the Taylor expansion of Chebyshev polynomials. Indeed,

let us determine from Eqs. (17) and (21) the spectrum in the
region close to the E = 0 axis where the energy spectrum is
undistorted. For a given q = mn, the Chebyshev polynomial
in Eq. (17) can be expanded in power series as

Tmn (x) = gm,n(mnx) + O
(
x3

)
, (35)

where

gm,n(y) = f +
m + f −

m

[
f +

m−1
2

+ (−1)nf −
m−1

2

]
y − f +

m

2
y2. (36)

The first two terms in the small-x expansion (35) depend
solely on mnx. The next-order term x3 in Eq. (35) does not
share the same scaling, but in the small energy region (or,
equivalently, small x) it can be neglected, as can the higher-
order terms. These facts play an important role for the fractal
properties of the energy spectrum: indeed, keeping only these
lowest-order terms, gm,n is invariant with respect to the shift
n → n + 2,

gm,n+2(y) = gm,n(y). (37)

One can then distinguish two sectors according to the parity
of n,

geven
m (y) ≡ gm,n(y)

∣∣
n∈even = f +

m + f −
m y − f +

m

2
y2, (38)

godd
m (y) ≡ gm,n(y)

∣∣
n∈odd = f +

m + y sin
πm

2
− f +

m

2
y2, (39)

where �n = even (odd) for even (odd) n, respectively. For a
given �n, g�n

m is independent of n.
Clearly, for q = mn with periodic boundary conditions, the

energy close to the horizontal axis is determined by

g�n

m

(
mnE

2

)
= cos(mnky) + 1

2
. (40)

Due to the independence on n on the left-hand side of Eq. (40),
once the parity �n is fixed, the energy solutions for q = mn+2p

and q = mn are related by

E(m,n+2p)(ky) = m−2pE(m,n)(m2pky), (41)

where p ∈ N is an arbitrary natural number. The self-similar
scaling property (41) is consistent with the zero-energy
quasimomenta scaling (34).

The explicit solutions of Eqs. (38), (39), and (40),

E(m,n) =
⎧⎨
⎩

±
√

1−2 cos (mnky)
mn even m,

1+2 cos (mnky)
mn (−1)

(m−1)n
2 odd m,

(42)

are low-energy solutions valid in the region mn|E| � π . They
highlight the self-similarity properties (34) and (41) of the
energy spectrum as n increases.

Thirdly, there is a slightly more elegant and general way
to show the fractal self-similarity of the spectrum both for
periodic and antiperiodic boundary conditions by using yet
another property of the Chebyshev polynomials,

lim
n→∞[(−1)mnTmn(m−nx)] =

{
cos x, even m,

sin x, odd m.
(43)
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For practical purposes, it is convenient to use an approxi-
mate formula based on (43),

Tmn (m−nx) → T
(0)
mn (m−nx) = f +

m cos x + (−1)mnf −
m sin x,

(44)

where f ±
m is given in Eq. (32). The approximation made

in (44) is valid in the interval x ∈ [−π,π ] with an error
10−4 for m = 2,n = 4. The accuracy of this approximation
is increasing rapidly as either m or n or both become larger
(for example, for m = n = 4 the error is less than 10−8).

For large n one can combine, both for periodic and
antiperiodic boundary conditions, Eqs. (17), (21), and (44)
into

even m: cos
mnE

2
= cos(mnky) ± 1

2
,

(45)

odd m: (−1)n sin
mnE

2
= cos(mnky) ± 1

2
,

which are again valid in the energy domain mn|E| � π . One
can check that the solutions of Eqs. (45) reproduce the lowest
energy levels.

The symmetries of Eqs. (45) clearly imply the fractal self-
similarity of the energy levels,

E(m,n+p)(ky) = (−1)mpm−pE(m,n)(mpky), (46)

both for even and odd m and p ∈ N. These equations are
consistent with the scalings (34) and (41).

Equation (46) implies that the energy spectrum for q =
mn+1 can be obtained by the following:

(i) Rescaling (i.e., squeezing) the q = mn solution by the
factor 1/m both in the energy E and quasimomentum ky

coordinates.
(ii) Periodically copying (i.e., extending) the squeezed

solution m times along the energy E axis and m times along
the quasimomentum ky axis.

Note that these properties cannot be readily seen from the
original Eq. (9). They highlight three important properties of
the q = mn series, which were already numerically illustrated
above. As n → n + 1:

(a) The total area An enclosed by the energy ovals in a
fixed area of the (ky,E) plane remains constant since the
ovals become m times smaller in each of the two (ky and
E) directions while their number increases by a factor m2 so
that An+1 = An.

(b) The total lengths Lcol
n and Lrow

n of the energy oval
perimeters in a fixed column and a fixed row, respectively,
remain constant since they become m times smaller while
their numbers in each column and in each row increase by a
factor m so that Lcol

n+1 = Lcol
n and Lrow

n+1 = Lrow
n .

(c) The total length of the energy oval perimeters Ltot
n in a

fixed area in the (ky,E) plane increases by a factor m so that
Ltot

n+1 = mLtot
n due to the second property as well as because

the number of columns and ovals increases by the same factor
m.

When n → ∞, these three properties imply that the total
length of the energy curves (i.e., of the oval perimeters) in
a fixed area of the (ky,E) plane diverges as Ltot

n ∝ mn while
the area A enclosed by these ovals remains constant. Thus,
a union of the energy ovals indeed constitutes an area-filling

curve with Hausdorff dimension D = 2. In agreement with
Eq. (26), the size an ∝ 1/q ≡ 1/mn of any individual oval
along any direction decreases with an increasing resolution,
q → ∞, so that one gets Ltot

n ∝ a−1
n ≡ a1−D

n with the usual
D = 2 Hausdorff dimension for space-filling curves.

Notice that the band structure of the energy levels has
been obtained by projecting the ky-dependent energy levels
on the vertical energy axis and plotting it against the magnetic
flux β. Since the quasimomentum-dependent energy levels are
self-similar, we conclude that for a fixed base m the energy
band spectrum must also exhibit a fractal self-similarity for the
different powers n of the normalized magnetic flux β = 1/mn,
as illustrated in Fig. 4.

V. FLATTENED ENERGY SPECTRA

A. Flattening

The fractal self-similarity of the real-valued energy spec-
trum (9) can be addressed in yet another way. As stressed
above, the energy ovals are distorted near both edges of the
spectrum E ∼ ±2 (as illustrated in Fig. 6). On the other hand,
in the center E ∼ 0, the distortion is practically absent and the
self-similarity is quite pronounced. It turns out that in order to
remove the boundary distortion effects from the entire energy
domain, it is sufficient to consider, instead of the energy itself,
the energy-related quantity

Eq,r (ky) = arccos

[
1

2
Eq,r (ky)

]
(47)

in the interval E ∈ [0,π ].
Using (9) for the q energy branches r = 1, . . . ,q of the

original spectrum, one can rewrite Eq. (47) as

Eq,r (ky)=f

[
1

q

(
arccos

[
cos(qky) + eiqkx

2

]
+ 2πr

)]
, (48)

where

f (x)

∣∣∣∣
x∈[0,2π]

= π − |x − π | ≡ arccos(cos x). (49)

The flattened spectra (47) are shown in Fig. 8(a), 8(b),
and 8(c), respectively, for the q = mn series with m = 2, 3,
and 5—they correspond to the unflattened spectra of Fig. 6.
Clearly, the arccos operator in Eq. (47) “unfolds” the spectrum
by flattening the energy levels close to E = ±2, so that no
distortion is present anymore. It follows that the fractal self-
similarity of the spectrum is manifest in the whole energy
domain.

For example, in Fig. 8(a), each of the q = 2n energy ovals
intersects with two smaller q = 2n+1 energy ovals for n =
1, . . . ,5. Analogously in Fig. 8(b), each of the q = 3n energy
ovals intersects with four and includes one smaller q = 3n+1

energy oval for n = 1, . . . ,3. And in Fig. 8(c), a similar self-
similarity pattern can easily be observed for the q = 5n series.

B. Self-similarity for the flattened bands

In addition to these visual observations, one can make a
more precise statement on the self-similarity. In Fig. 9, we plot
the flattened band spectra for q = mn with m = 2,3,5. These
plots share certain features with Fig. 3 but with the difference
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FIG. 8. (Color online) The flattened energy spectra (47) vs the
quasimomentum ky for q = mn series with (a) m = 2, n = 1, . . . ,6;
(b) m = 3, n = 1, . . . ,4; and (c) m = 5, n = 1, . . . ,3. These plots
correspond the original energy spectra shown in Fig. 6.

being that in Fig. 9 the vertical axis shows the power n for a
given base m instead of 1/q for a set of q’s.

Consider first in Fig. 9(a) the q = 2n series. The spectrum
at the lowest level n = 0 has—in terms of the flattened energy
variable (47)—a single band of width δE20 = 2π/3 and a gap
of width π/3. To get the spectrum at the next level n = 1, it is
sufficient to do the following:

(i) Rescale the original n = 0 spectrum, shrinking it by a
factor 1/2 so that E ∈ [0,π ] → E ∈ [0,π/2].

FIG. 9. (Color online) The blue horizontal lines: The arccosine
(47) of the energy levels (9) for the series q = mn at fixed power n

and for (a) m = 2, (b) m = 3, and (c) m = 5. The shadowed regions
and the arrows show the self-similarity features.

(ii) Duplicate the resulting spectrum to cover again the
whole energy range, E ∈ [0,π/2] ∪ [π/2,π ] → E ∈ [0,π ].

(iii) Finally, invert the duplicate around its centerE = 3π/4.
Obviously, the total width of the two resulting bands at level

n = 1 remains equal to the width of the single original n = 0
band, δE tot

21 = δE20 .
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Recursively, the band spectrum at level n + 1 is obtained by
applying the same rescaling-duplicating-inverting procedure
on the spectrum at level n:

(i) Rescale the spectrum by a (1/2) shrinking.
(ii) Duplicate the resulting spectrum.
(iii) Invert the duplicate around its center E = 3π/4.
In Fig. 9(a), this procedure is explicitly illustrated up to level

n = 5. Note that some pairs of adjacent smaller bands merge
into single bands that are twice as wide. Note also that the
inversion is not trivial only for the first iteration n = 0 → n =
1 since from n = 1 onward the spectrum becomes symmetric
around its center.

As a result, for the q = 2n series, at level n � 1 there are
(2n + 2)/2 bands with individual widths necessarily summing
to

δE tot
2n = 2π

3
. (50)

By construction, this band spectrum is evidently self-similar,
and it becomes a fractal in the limit n → ∞.

Likewise, consider in Fig. 9(b) the flattened energy bands
for the series q = 3n up to level n = 4. Starting from level n,
the iterative procedure consists in the following:

(i) Rescaling the spectrum by a (1/3) shrinking.
(ii) Triplicating the resulting spectrum.
(iii) Finally, inverting the second copy around its center

E = π/2.
Once again, pairs of adjacent bands merge into single bands

that are twice as wide. As a result, for the q = 3n series, at level
n � 1 there are (3n + 1)/2 bands that again have a total width
δE tot

3n = 2π/3, as in Eq. (50). Similar to the q = 2n series, in
the limit n → ∞ the q = 3n band spectrum becomes a fractal.

A similar iterative procedure applies to the band spectrum
for the q = 5n series as illustrated in Fig. 9(c) up to level n = 3.
The bands at level n + 1 are constructed from the bands at
level n by a 1/5-shrinking, 5-plicating, and inversion of every
even copy around their centers E = 3π/10 and E = 7π/10,
respectively. Again adjacent bands merge into single bands that
are twice as wide so that at level n � 1 there are (5n + 1)/2
bands with a total width δE tot

5n = 2π/3. Clearly, in the limit
n → ∞ the q = 5n spectrum becomes a fractal.

The universality of the iterative self-similar procedure is
now evident. For the q = mn series, the band spectrum at level
n + 1 can be constructed from the band spectrum at level n by
(i) (1/m) shrinking, (ii) m-plicating, and (iii) inverting every
even copy around their centers E = (2k − 1)π/(2m) with
k = 2,4, . . . .

As a result, at level n � 1 there are (mn + 1)/2 (for odd
m) or (mn + 2)/2 (for even m) bands with a total width
δE tot

mn = 2π/3. This implies that the bands always occupy 2/3
of the available flattened energy range [0,π ]. The universality
of the procedure is highlighted by the fact that all the band
spectra are constructed from the same initial n = 0 level band
spectrum.

For every given base m, each successive iteration n →
n + 1 has the bands shrinking to smaller bands. Thus, in the
limit n → ∞, one obtains a pointlike spectrum consisting of
infinitely many bands of infinitely small width. The structure of

the band spectrum is similar to a Cantor set with a difference,
which is, however, essential: contrary to the Cantor set, the
total bandwidth is the nonzero base-independent quantity

lim
n→∞ δE tot

mn = 2π

3
. (51)

Thus, similarly to the original unflattened band spectrum,
the flattened band spectrum has a fractal self-similar structure
when plotted against the normalized magnetic flux β = p/q

with p = 1, . . . ,q, with a resolution q = mn for base m

determined by the increasing level number n. The self-
similarity pattern depends on m, but the total bandwidth (51) is
m-independent. The flattened band spectrum has a Hausdorff
dimension D = 1 that follows from the 1/m-shrinking m-
plicating iterative procedure.

Finally, we stress that, as far as the unflattened spectrum
E(ky) in Eq. (9) is concerned, distortion effects tend to
disappear in the n → ∞ limit: as n increases, the energy
“ovals” distortion effects migrate from the center of the
spectrum E ∼ 0 toward its edges, E → ±2. In other words, in
the limit of an infinitely large q = mn resolution, regions with
distorted ovals eventually disappear at the edges of the energy
domain. This feature is clearly visible in the plots of Fig. 6,
which are worth comparing with their corresponding flattened
versions in Fig. 8. In Ref. [3], the unflattened q → ∞ spectrum
was shown to have a total bandwidth saturating to 8/3.
Compared to the total unflattened energy range, E ∈ [−2,2],
the bands therefore occupy in this limit 2/3 of the whole
energy interval. Equation (51), not surprisingly, leads to the
same conclusion for the flattened band spectrum.

VI. COMPLEX ENERGY BRANCHES

So far we have discussed the real energy branches of the
non-Hermitian Hamiltonian (1). However, the full spectrum
contains energy branches with a nonzero imaginary part. Since
these energies correspond either to some formal instabilities or
to a dissipative motion of the particles, they are not particularly
relevant for a large system at thermodynamic equilibrium. Still,

FIG. 10. (Color online) The real and imaginary parts of the
energy spectrum for q = 8 plotted against the quasimomentum ky .
The horizontal blue lines represent the real spectrum (ImE = 0) while
the vertical red-orange lines correspond to the complex spectrum
with a nonzero imaginary part (ImE �= 0). A projection of the energy
spectrum on the bottom of the plot is also presented for convenience
(gray color).
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for the sake of completeness, we find it appropriate to display
the entire spectrum with its complex energy modes.

In Fig. 10, the q = 8 spectrum is displayed in a 3D (ky ,
ReE, ImE) plot. The real branches shown in Fig. 2 are
recognizable in the horizontal (ky , ReE, ImE = 0) plane.
They build ordered chains of distorted ovals. Similarly, the
complex branches build ordered chains of distorted ovals in
the (ky , ReE = 0, ImE) plane. These complex (“vertical” in
the 3D plot) ovals connect the real (“horizontal”) ovals in a 3D
chainlike manner.

Energy spectra for generic q values, both for periodic and
antiperiodic boundary conditions, are similar to Fig. 10, with
horizontal real ovals always connected by vertical complex
ovals along the ky coordinate. This observation gives strong
evidence to the fact that the entire energy spectrum—with the
imaginary branches included—is also a fractal, similar to the
real energy spectrum.

VII. DISCUSSION AND CONCLUSIONS

In our paper, we have studied the fractal properties of the
energy spectrum of a charged particle with a biased motion
on a two-dimensional square lattice in the background of a
magnetic field. This biased quantum model is such that the
particle is not allowed to hop in one of the directions (say, to
the left) while it can freely move in all other directions. Its
dynamics is described by a non-Hermitian Hamiltonian of a
Hofstadter type.

It is worth mentioning that biased random walks arise in a
wide range of systems in weakly off-equilibrium states, from
chemotaxis in biology (when small living organisms, notably
bacteria, are stimulated to randomly move with a biased prefer-
ence toward a low gradient of a chemical solution in a liquid or
gas—i.e., essentially, by a weakly space-dependent chemical
potential—or by a temperature and/or pressure gradients) [5]
to the directed diffusion of particles on fractal structures in the
presence of an applied field [6]. In these examples, the biased
motion should have a milder degree of bias compared to the
limiting case considered here, so that the motion of a particle to
a certain direction (say to the left, as in our case) should not be
completely forbidden compared to the motion to another (say
right) direction. This issue needs further investigation and we
plan to address it in a forthcoming article. Possible applications
of the non-Hermitian model (1) to real experimental systems—
such as 2D electronic samples with a perpendicular magnetic
field like in the quantum Hall effect—were discussed in the
last section of Ref. [3] (see also [7] for a general discussion of
non-Hermitian quantum-mechanical models).

Although at the moment we know no explicit examples of
the biased motion of the electrons on a square lattice to which
our work may directly apply, one might expect that the biased
propagation may be realized in certain weakly nonequilibrium
states of the mentioned system. Indeed, one may argue that
most known examples of the biased random walks, such as
chemotaxis [5] and directed diffusion [6], occur in slightly
off-equilibrium states that are characterized either by a slow
gradient of concentration of a certain chemical in a liquid or
gas (i.e., essentially, by a weakly space-dependent chemical
potential), or by temperature and/or pressure gradients.

In our article, we have shown that in the non-Hermitian
Hamiltonian of a Hofstadter type, the corresponding energy
spectrum, which depends on the normalized magnetic flux—
the ratio of the magnetic flux threading an elementary plaquette
to the magnetic flux quantum—possesses a nested multifractal
structure.

The energy bands, plotted against the rational magnetic
flux, exhibit a fractal pattern shown in Fig. 4. Contrary to
Hofstadter’s butterfly, the band spectrum is rather similar to a
spider web.

The energy levels, plotted against the quasimomentum,
exhibit even more curious fractal patterns as illustrated in
Fig. 6. We have shown, both numerically and analytically,
that the real energy spectrum is an overlap of infinitely many
inequivalent fractals that we call “fractal energy carpets.” The
energy levels in each fractal are space-filling curves with
Hausdorff dimensions 2.

In a more rigorous approach, we have shown that for a
given base m and resolution q = mn with n ∈ N, the energy
curves for the normalized magnetic flux β = 1/mn (m =
2,3,5,6,7,10, . . . is required to not be equal to a natural power
of a natural number) have a self-similar geometric structure.
This self-similarity is observed up to certain finite scales, both
in quasimomentum and in energy, constrained by the finiteness
of n. In the limit of an infinitely fine resolution, n → ∞, the
structure of the energy level becomes a fractal with various
fractal carpets depending on the base m considered.

We have also shown that the real branches of the energy
spectrum are connected by complex branches forming chain-
like structures in the 3D space of the energies plotted against
the quasimomentum. The fractal properties of the energy levels
are visualized in the supplementary video material [9].
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