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Correlations of correlations: Secondary autocorrelations in finite harmonic systems
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The momentum or velocity autocorrelation function C(t) for a tagged oscillator in a finite harmonic system
decays like that of an infinite system for short times, but exhibits erratic behavior at longer time scales. We
introduce the autocorrelation function of the long-time noisy tail of C(t) (“a correlation of the correlation”),
which characterizes the distribution of recurrence times. Remarkably, for harmonic systems with same-mass
particles this secondary correlation may coincide with the primary correlation C(t) (when both functions are
normalized) either exactly, or over a significant initial time interval. When the tagged particle is heavier than
the rest, the equality does not hold, correlations show nonrandom long-time scale pattern, and higher-order
correlations converge to the lowest normal mode.
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I. INTRODUCTION

The theme of fluctuations in finite systems of harmonic
oscillators emerges naturally in both application and theory.
From a theoretical point of view, the study of the stochastic
dynamics of a tagged degree of freedom in finite harmonic
systems provides a valuable illustration, and often more than
that, of the role of the thermodynamic and weak-coupling lim-
its, ergodicity, thermalization, recurrences, synchronization,
and other basic concepts in nonequilibrium phenomena [1–7].
Another relevant area is Langevin dynamics generated by a
coupling to a finite harmonic bath(s), and its application to
mesoscopic systems and networks; see [8–14].

Being nonergodic, the capability of harmonic systems to
illustrate general phenomena in statistical mechanics might
seem doubtful at first glance. By means of a canonical trans-
formation a harmonic system of any size can be transformed
into a collection of independent oscillators, or normal modes;
since the energies of normal modes are the integrals of motion,
a single isolated harmonic system does not equilibrate and
is not very interesting from the point of view of statistical
mechanics.

A more fruitful approach is to consider an ensemble of
harmonic systems, assuming that in the past they were in
contact with a larger thermal bath in equilibrium at a given
temperature, and that the initial normal modes of the ensemble
are distributed according to the canonical distribution. Within
this framework, one evaluates statistical averages of dynamical
variables over the ensemble of the system’s initial coordinates
rather than over time. Such averages show the transition of the
ensemble to thermal equilibrium in the limit of a large number
of particles, and thus the nonergodic nature of harmonic
systems does not explicitly manifest itself, and for most cases is
inessential. It should however be stressed that this framework,
which is standard for most works on stochastic dynamics of
harmonic systems both classical and quantum, assumes a very
special type of coupling between the system and the external
thermal bath: this coupling justifies the initial conditions for the
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system’s degrees of freedom, yet is assumed to be sufficiently
weak, or completely turned off, as not to affect the system’s
further dynamics.

The inequivalence for harmonic systems of ensemble and
time averages, together with the almost exclusive exploitation
in literature of the former, does not necessarily entail that
the latter are inadequate. Rather, we introduce in this paper
a class of time-average correlations (we call these secondary
correlations) which characterize recurrences in finite harmonic
systems. For systems of same-mass particles, these correla-
tions are shown to be very close, and under certain conditions
exactly identical, to the conventional (primary) time correla-
tions defined with ensemble averaging. This implies that for
finite nonergodic systems, the use of both ensemble and time
averages may give meaningful complementary descriptions,
and that correlations with the two types of averaging may be
related in some subtle way.

II. SECONDARY CORRELATIONS

Consider the temporal autocorrelation function 〈A(0)A(t)〉
of a dynamical variable A in a finite system of size L—
typically, such a function exhibits two distinctive regimes,
separated by a crossover time tc of order L/v, where v is
the speed of signal propagation in the system. For short
times t < tc, the variable does not feel the presence of the
boundaries, and the correlation function decays in a smooth
regular way, following the same laws as for an infinitely
large system. On the other hand, for longer times t > tc the
dynamics of the variable are affected by signals reflected from
the boundaries. For long time regimes such as this, rather
than decaying smoothly the correlation functions may exhibit
erratic, apparently noisy, behavior [1,2].

We illustrate this behavior in Fig. 1 by way of the
normalized momentum correlation function for the central
particle in a harmonic chain with fixed ends. The Hamiltonian
of the system is

H = 1

2m

N∑
i=1

p2
i + mω2

2

N∑
i=0

(qi − qi+1)2, (1)
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FIG. 1. Normalized momentum correlation function Ci(t) for the
central particle (i = i0 = 51) of the harmonic chain with fixed ends
with Hamiltonian (1) with N = 101, given by Eq. (3). The time unit
is 1/2ω. The time of the crossover from the regular dissipation to
“stochastic” regimes is tc ≈ 200.

which describes N + 2 linearly coupled particles indexed
i = 0,1, . . . ,N + 1 with terminal particles fixed, with dis-
placement q0 = qN+1 = 0. Assuming N is odd, the middle
particle indexed

i0 = N + 1

2
(2)

has normalized (C(0) = 1) momentum correlation function

Ci0 (t) = 1〈
p2

i0
(0)

〉 〈pi0 (0)pi0 (t)〉 = 2

N + 1

N∑′

j=1

cos ωj t, (3)

where the prime indicates that the summation is only over odd
j . In this expression (we outline its derivation in the Appendix),
the ωj terms are frequencies of normal modes

ωj = 2ω sin
πj

2(N + 1)
, (4)

where ω is the frequency of a single oscillator, and the
average 〈· · · 〉 is taken over the equilibrium ensemble of initial
conditions. For t < tc the correlation function Ci(t) is very
close to that of an infinite chain, given by the Bessel function

Ci(t) ≈ C∞(t) = lim
i,N→∞

Ci(t) = J0(2ωt). (5)

This can be readily justified by approximating the sum (3)
with an integral, and recognizing the latter as the well-known
integral representation of J0(2ωt); see, e.g. [9,15].

More interesting from the perspective of this paper is the
regime t > tc in which the correlation Ci(t) becomes irregular;
see Fig. 1. It can be shown that the function Ci(t) given by (3)
belongs to the class of almost periodic functions: any value c

which the function achieves once is achieved again, infinitely
many times. Traditionally, such functions are characterized by
the average frequency with which they return to c, or by the
reciprocal, i.e., the mean recurrence time τ (c). For correlations
of type (3) with large N , the famous result for the recurrence

time, first obtained by Kac [4] (see also [1,2,5]),

τ (c) ∼ eNc2
(6)

implies that recurrences of order c ∼ N0 or larger are expo-
nentially rare. This result resolves, or rather (being derived
for a model system) shows, the direction of resolution for the
paradoxes of irreversibility [1].

In this paper we propose to characterize the irregular
part of the function Ci(t) in another way, which is more
in the spirit of nonequilibrium statistical mechanics than the
mathematics of almost periodic functions. Namely, observing
that for large t the correlation function Ci(t) appears to behave
like stationary noise, we are encouraged to characterize it by
another correlation function

Di(t) = 1〈
C2

i (τ )
〉
τ

〈Ci(τ ) Ci(τ + t)〉τ (7)

defined with the time average

〈· · · 〉τ = lim
T →∞

1

T

∫ T

0
(· · · )dτ. (8)

Since we are only interested in the interval t > tc when
Ci(t) behaves irregularly, one might prefer to set the lower
integration limit in definition (8) to tc instead of zero. However,
this would only be an unnecessary complication, as the limit
T → ∞ makes the two definitions numerically equivalent
(assuming always that the integral from 0 to tc converges).

We shall refer to Di(t), defined by relations (7) and (8), as
the secondary correlation function, and call Ci(t) the primary
one. We would like to promote the secondary correlation
Di(t) as a meaningful statistical tool for characterizing the
distribution of recurrences times in a system of finite size.
Such information is not contained in the Kac formula (6) for
the average recurrence time τ , so the two functions τ (c) and
Di(t) do not duplicate each other but describe recurrences in
complementary ways.

III. RELATION TO PRIMARY CORRELATIONS

Since the primary and secondary correlations Ci(t) and
Di(t) characterize recurrences at different levels and are
defined using different types of averaging (over ensemble
and time, respectively), the existence of any specific relation
between them is perhaps a priori unexpected. Yet a simple
numerical experiment with Eqs. (1)–(6) suggests, for the
middle atom of a chain with fixed ends, the equality

Ci0 (t) = Di0 (t). (9)

Closer scrutiny reveals that the equality is exact and holds for
any t , such that the secondary correlation completely repeats
the structure of the primary one for both regular (t < tc) and
noisy (t > tc) domains and has the same crossover time tc. The
proof follows immediately from the relation

〈cos ωjτ cos ωj ′(τ + t)〉τ = δjj ′

2
cos ωj t, (10)

which holds for an arbitrary spectrum of (nonzero) normal
mode frequencies {ωj } and can be verified by direct evaluation
(with the help of L’Hospital’s rule). For t = 0 this may further
be reduced to the familiar orthogonality relation for the Fourier
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basis, and thus can be considered a generalized form of the
latter. From (3) and (10) one obtains for the non-normalized
secondary correlation

〈Ci0 (τ ) Ci0 (τ + t)〉τ

=
(

2

N + 1

)2 N∑′

j,k=1

〈cos ωjτ cos ωk(τ + t)〉τ

= 1

2

(
2

N + 1

)2 N∑′

j=1

cos ωj t. (11)

Normalizing this function to unity at t = 0 by dividing it by

〈
C2

i0
(τ )

〉
τ

= 1

2

(
2

N + 1

)2
N + 1

2
= 1

N + 1
, (12)

one obtains the normalized secondary correlation

Di0 (t) = 〈Ci0 (τ )Ci0 (τ + t)〉τ〈
C2

i0
(τ )

〉
τ

= 2

N + 1

N∑′

j=1

cos ωj t, (13)

which coincides with the primary correlation Ci0 (t), Eq. (3).
One may observe that for the above derivation it is

essential that the primary correlation Ci(t) takes the form of
a superposition of cosines with equal weights, as in Eq. (3).
In general this, of course, is not the case. For example, for a
chain with fixed ends described by the Hamiltonian (1), the
normalized momentum correlation function for a particle with
arbitrary index i has the form (see the Appendix)

Ci(t) =
N∑

j=1

A2
ij cos ωj t, Aij =

√
2

N + 1
sin

πij

N + 1
. (14)

For the middle particle i = i0 = (N + 1)/2 this is reduced
to (3), whereas for the other particles normal modes enter
the expression (14) with different amplitudes A2

ij . As one
can immediately verify, the exact equality of primary and
secondary correlations does not hold in these cases. An
important example when this equality does hold for any
particle is a harmonic chain with periodic boundary conditions.
In this case the momentum correlation for each particle is a
superposition of equally weighted normal modes [1,2]

Ci(t) = 1

N

N−1∑
j=0

cos ωj t, ωj = 2ω sin

(
πj

N

)
, (15)

and repetition of the above derivation leads again to the exact
equality Ci(t) = Di(t) for any particle of the system.

So far, even with the above examples of its validity, the
equality of primary and secondary correlations may appear
as no more than a curious coincidence. However, further
numerical exercises reveal that even when equality does not
hold exactly, it remains a very good approximation for the
initial time interval t < t0; see Fig. 2. The duration of this
interval, t0, is found to depend nonmonotonically on particle
position i, and for any i be equal or shorter than the crossover
time, t0 � tc. Respectively, for t < t0, both primary and
secondary correlations coincide with the primary correlation
for the infinite chain,

Di(t) = Ci(t) = C∞(t) = J0(2ωt), t < t0 � tc. (16)
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FIG. 2. Primary momentum correlation function Ci(t) given by
Eq. (14) (solid line) and secondary correlation function Di(t) given
by Eq. (17) (dashed line) for the harmonic chain with Hamiltonian (1)
with N = 101 for particles i = 20 (top), i = 30 (middle), and i = 40
(bottom). The difference between Ci(t) and Di(t) becomes noticeable
for t > t0, where t0 depends on i nonmonotonically: t0 ≈ 80,120,90,
from top to the bottom.

The proof of the approximate equality (16) can be carried
out as follows. From the expression (14) for Ci(t) and the
definition (7) for Di , and using the relation (10), one gets

Di(t) = 1∑N
j=1 A4

ij

N∑
j=1

A4
ij cos ωj t, (17)

or taking into account the expression (4) for normal mode
frequencies

Di(t) = 1∑N
j=1 A4

ij

N∑
j=1

A4
ij cos

[
2ωt sin

(
πj

2(N + 1)

)]
. (18)

Recognizing here the generating function for Bessel functions

cos(x sin θ ) = J0(x) + 2
∞∑

k=1

J2k(x) cos(2kθ ), (19)

Di(t) can be written as a superposition of Bessel functions

Di(t) = J0(2ωt) +
∞∑

k=1

SikJ2k(2ωt), (20)

with coefficients

Sik = 2∑N
j=1 A4

ij

N∑
j=1

A4
ij cos

(
πjk

N + 1

)
. (21)
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A simple analysis of this expression shows that given i, the
coefficients Sik are nonzero only for five sets of k:

Sik =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2, k = 2(N + 1)s,
−4/3, k = 2(N + 1)s − 2i,

−4/3, k = 2(N + 1)(s − 1) + 2i,

1/3, k = 2(N + 1)s − 4i,

1/3, k = 2(N + 1)(s − 1) + 4i,

0, otherwise,

(22)

where s = 1,2,3, . . . . Note that this expression is invariant
under the transformations i → (N + 1) − i, reflecting the
symmetry of the left and right sides of the chain. One can
observe that for large N and i not too close to the end or
to the middle of the chain the coefficients Sik are nonzero
only for large indices k. For instance, for the chain with
N = 101 and the particle i = 20, coefficients Sik are nonzero
only for k = 40,80,124, . . . . As a result, for t not too large
in the expression (20), the dominating contribution comes
from the first term J0(2ωt), while the corrections given by
the sum

∑∞
k=1 Sik J2k(2ωt) involve Bessel functions of large

orders which are negligibly small for a significant time interval
t < t0 [16].

The above consideration not only justifies the equality
Di(t) = Ci(t) = J0(2ωt) for t < t0, but also accounts for a
curious nonmonotonic dependence of t0 on the tagged particle
index i, which we noticed empirically in Fig. 2. For example,
according to (22), for N = 101 and particles i = 20,30,40 the
minimal indices k for which Sik takes nonzero values (−4/3, −
4/3,1/3) are k = 40,60,44, respectively. Then keeping only
the leading and first correction terms in the exact expression
(20), one gets

D20(t) = J0(2ωt) − 4
3J80(2ωt),

D30(t) = J0(2ωt) − 4
3J120(2ωt),

D40(t) = J0(2ωt) + 1
3J88(2ωt). (23)

One can verify that these approximations describe the initial
deviation of Di(t) from C∞(t) = J0(2ωt) very well indeed
(Fig. 3 shows this for particles i = 30 and i = 40). Since for
small arguments Ji(x) decreases with order i, it is clear from
(23) that the second correction terms for particles i = 20,40
involve Bessel functions of smaller orders, and thus become
essential at earlier times than for particle i = 30.

If one applies a similar analysis to the primary correlations
Ci(t), Eq. (14), one gets a familiar approximate relation for
the left side of the chain [5,9,15]

Ci(t) = J0(2ωt) − J4i(2ωt). (24)

Here, in contrast to corresponding relations (23) for Di(t), the
order of the second Bessel function, which describes effects
of finite size, increases monotonically (linearly) with particle
index i, and so does the crossover time tc.

In order to study the dependence of the characteristic time
t0, during which Ci(t) = Di(t), on i in a more quantitative
way, let us consider the function

δi(t) = Ci(t) − Di(t), (25)

which is zero when the two correlations coincide for t < t0
and fluctuates at longer times. For a given i, let us define t0
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FIG. 3. Secondary correlation functions D30(t) (top) and D40(t)
(bottom) according to the exact expression (17) (solid lines) and
the approximation (23) (dashed lines). The insets show apparently
random behavior of D30(t) and D40(t) at longer times.

somewhat arbitrarily as the time at which δi(t) reaches its first
local minimum or maximum; see Fig. 4(a). Similarly, we can
define the crossover time tc as the moment when the function

�i(t) = Ci(t) − C∞(t) (26)

has its first local extremum, recalling that C∞(t) = J0(2ω) is
the correlation in an infinite system. Using these definitions,
we record observations of t0 and tc for N = 101 in Fig. 4(b),
as a function of particle index i. Whereas tc increases linearly
as we approach the central particle, t0 coincides with tc for
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FIG. 4. Top plot (a): the functions �i(t) = Ci(t) − J0(2ωt) (solid
line) and δi(t) = Ci(t) − Di(t) (dashed line) for particle i = 40. The
characteristic times tc and t0 are defined as times at which �i(t) and
δi(t), respectively, have their first local extremum. Bottom plot (b): the
characteristic times tc (×) and t0 (+) for particles with indices i � 51
for the left side of the chain described by Hamiltonian (1) with N =
101. For particles i0 = 51 and i1 = 34 the time t0 diverges (illustrated
by an arrow pointing upward), indicating the exact equality Ci(t) =
Di(t).
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i < i1 = 34 and linearly decreases for i > i1. As we already
know, the primary and secondary correlations coincide for the
middle particle i0 = 51, so δi0 (t) is identically 0 and t0 diverges
here. Somewhat unexpectedly, we find that t0 also diverges,
i.e., Ci(t) = Di(t) identically, for i1 = 34 [and of course the
symmetric case i2 = (N + 1) − i1 = 68]. Therefore, it would
appear that t0(i) diverges whenever it changes from increasing
to decreasing, or vice versa. Further calculations for different
N show that in general the exact equality Ci(t) = Di(t) holds
for particles with indices

i0 = N + 1

2
, i1 = N + 1

3
, i2 = 2(N + 1)

3
, (27)

provided of course that these expressions are integers. For N =
101 there are three such particles (i0 = 51,i1 = 34,i2 = 68),
two for N = 200 (i1 = 67,i2 = 134), and none for N = 100.

Let us show that this phenomenon is readily accounted
for with Eqs. (20)–(22) for the secondary correlation Di(t).
First, from inspecting (22) one might observe that for i < i0

the minimum k for which Sik is nonzero is k = 2i and comes
from the set k = 2(N + 1)(s − 1) + 2i with s = 1. This yields
the approximation

Di(t) = J0(2ωt) − 4
3J4i(2ωt), (28)

which we already used for D20(t) and D30(t) in (23). It differs
from the corresponding approximation (24) for Ci(t) only by
the factor 4/3 in the second term. Then, from (28) and (24),
the difference functions defined above by relations (25) and
(26) take the form

δi(t) = 1
3J4i(2ωt), �i(t) = −J4i(2ωt). (29)

Since these two functions have local extrema at the same time,
by definition we have t0 = tc. Furthermore, since the position
of the first maximum of the Bessel function Ji(t) increases
approximately linear with i [17], Eq. (29) explains the equality
of the characteristic times tc(i) = t0(i) and their linear increase
for i < i0 in Fig. 4(b).

As i gets larger still, one observes from (22) that a minimal
k for which Sik 	= 0 is k = 2(N + 1) − 4i and comes from
the set k = 2(N + 1)s − 4i with s = 1. In this case for Di(t),
instead of (28), we have another approximation

Di(t) = J0(2ωt) + 1
3Jα(2ωt),

(30)
α = 4(N + 1) − 8i,

which we already used for D40(t) in (23). Since the primary
correlation Ci(t) is still given by (24), the difference function
δi(t) = Ci(t) − Di(t) in this case reads

δi(t) = − 1
3Jα(2ωt) − J4i(2ωt) ≈ − 1

3Jα(2ωt). (31)

The position of its first extremum increases approximately
linearly with α [17] and, as follows from (30), linearly
decreases with i. This explains the behavior of t0(i) for i > i1

in Fig. 4(b).
The transition of t0(i) from a positive to a negative slope

(over the domain [0,51]) occurs at i = i1, for which k2 =
2(N + 1) − 4i [the minimal value of the set k = 2(N + 1)s −
4i] becomes less than or equal to k1 = 2i [the minimal value of
the set k = 2(N + 1)(s − 1) + 2i]. Then the equality k1 = k2

gives i1 = (N + 1)/3, which is consistent with our empirical
findings (27).

The exact equality Ci(t) = Di(t) for i given by (27) can be
readily verified using the following expression for the primary
correlations

Ci(t) = J0(2ωt) +
∞∑

k=1

TikJ2k(2ωt), (32)

with coefficients

Tik = 2
N∑

j=1

A2
ij cos

(
πjk

N + 1

)
. (33)

These relations are similar to (20) and (21) for Di(t) and can
be derived in a similar way [9]. For i = i0,i1,i2 given by (27),
one can verify directly from (33) and (21) that Sik = Tik for
any k. Then the comparison of (32) and (20) gives for those
values of i the exact equality Ci(t) = Di(t).

IV. HEAVY IMPURITY PROBLEM

So far we have discussed finite harmonic systems of similar
particles. If a tagged particle is heavier than the rest, it turns
out that the equality of primary and secondary correlations,
C(t) and D(t), does not hold. Though structurally similar—
D(t) looks like a coarse-grained copy of C(t)—the two
correlations are quite distinctive on any time scale; see Fig. 5.
In particular, the approximation of exponential relaxation for
t < tc, while good for C(t), is noticeably worse for D(t).
Another observation is that for t 
 tc both correlations, being
apparently random on a short time scale, show on a larger scale
a noisy yet periodically repeating pattern; see the bottom plot in
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FIG. 5. Primary (solid line) and secondary (dashed line) momen-
tum correlation functions, C(t) and D(t), for the heavy impurity
problem described by Hamiltonian (36) with mass ratio μ = m/M =
0.1 and N = 50. The top, middle, and bottom figures show the
evolution of the correlations on short (t < tc), intermediate (t ∼ tc),
and long (t 
 tc) time scales. The inset shows correlations on the
short time scale for an impurity that is twice as heavy; μ = 0.05.
Time is in units of 1/2ω.
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Fig. 5. This feature, absent in systems of equal-mass particles,
is made all the more obvious when considering higher-order
correlation functions Ck(t), defined recursively as

Ck+1(t) = 〈Ck(τ )Ck(τ + t)〉τ〈
C2

k (τ )
〉
τ

, (34)

assuming new notations for C(t) = C1(t) and D(t) = C2(t).
[In this section we use the notation Ck(t) with a subscript
referring to the correlation order, rather than to the index of
a particle.] For the heavy impurity problem one finds that as
the order k increases the apparent randomness of correlations
Ck(t) on the time scale t > τc quickly diminishes, and higher
correlations converge to the normal mode with the lowest
eigenfrequency 	1:

Ck(t) → cos(	1t); (35)

see Fig. 6. Below we outline a theoretical framework underly-
ing these empirical observations.

Consider a cyclic chain of 2N particles of mass m and an
impurity of mass M > m described by the Hamiltonian

H = P 2

2M
+

2N∑
i=1

p2
i

2m
+ mω2

2

2N−1∑
i=1

(qi − qi+1)2

+ mω2

2
[(Q − q1)2 + (Q − q2N )2], (36)

where P and Q are the momentum and coordinates of the
impurity. Using a diagonalization method similar to that
described in the Appendix (see [3] for details), one can
show that the normalized momentum correlation function for
the impurity C(t) = 〈P (0)P (t)〉/〈P 2(0)〉 is again an almost
periodic function, now of the form

C(t) ≡ C1(t) =
2N−1∑

j=0,1,3,...

Aj cos 	j t. (37)

-1

-0.5

0

 0.5

1

 5000  5200  5400  5600  5800  6000

C
i(t

)

time

C1(t) C3(t) C5(t) cos Ω1 t

FIG. 6. Primary correlation C1(t) (solid line), and two higher
correlations C3(t) (dashed line) and C5(t) (dotted line), defined by
Eq. (34), at long time t 
 tc for the heavy impurity problem with
μ = 0.1 and N = 50. Higher correlations converge to the lowest
normal mode cos 	1t (dot dashed line).

The amplitudes Aj in this expression are given by

Aj =
{

1 +
2N−1∑

i=1,3,...

ε2
i(

	2
j − ω2

i

)2

}−1

, (38)

where

ωi = 2ω sin
iπ

2(2N + 1)
,

(39)

εi = −2μ
1
2 ω2

(
2

2N + 1

) 1
2

sin
iπ

2N + 1
,

and μ = m/M is the mass ratio.
Due to the system’s symmetry only the modes with zero

and odd indices contribute to the superposition (37). Their
frequencies 	j (j = 0,1,3, . . . ,2N − 1) for M 	= m cannot
be expressed in closed form and must be evaluated as roots of
the secular equation [3]

G(z) = z2 − 2μω2 −
2N−1∑

i=1,3,...

ε2
i

z2 − ω2
i

= 0. (40)

This transcendental equation has N + 1 solutions z = 	j ,
j = 0,1,3, . . . ,2N − 1. It can be verified that one solution is
the zero frequency 	0 = 0, which reflects the translational
invariance of the system. The remaining N nonzero roots
	1,	3, . . . ,	2N−1 lie in the interval (0,2ω) and must be
evaluated numerically.

With the set of eigenfrequencies 	j found, one may
calculate the amplitudes Aj with (38) and evaluate the primary
correlation C(t) by carrying out the summation in (37). Then,
using (10), for the secondary correlation D(t) one obtains

D(t) = C2(t) = c2

⎧⎨
⎩A2

0 + 1

2

2N−1∑
j=1,3,...

A2
j cos 	j t

⎫⎬
⎭, (41)

with normalization coefficient

c2 =
⎛
⎝A2

0 + 1

2

2N−1∑
j=1,3,...

A2
j

⎞
⎠

−1

. (42)

Figure 5 presents C(t) and D(t), calculated with Eqs. (37) and
(41), for μ = 0.1 and N = 50. In a similar manner, one can
obtain the expression for order-k correlations from (34)

Ck(t) = ck

⎧⎨
⎩A

αk

0 +
2N−1∑

j=1,3,...

(
Aj√

2

)αk

cos 	j t

⎫⎬
⎭, (43)

with powers αk = 2k−1 and normalization coefficient

ck =
⎧⎨
⎩A

αk

0 +
2N−1∑

j=1,3,...

(
Aj√

2

)αk

⎫⎬
⎭

−1

. (44)

While expression (43) is a superposition of N + 1 modes,
one can observe that for larger k the main contribution
comes from the mode with eigenfrequency 	1, such that
Ck(t) ≈ cos 	1t . This can be accounted for by noticing that the
sequence of coefficients {Aj } has A1 as its maximum element
and is monotonically decreasing for j > 0. For example, for
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μ = 0.1 and N = 50 we find that A0 = 0.09,A1 = 0.17,A2 =
0.15,A3 = 0.12, . . . (approximately). For the primary and
secondary correlations involving Aj and A2

j , respectively, such
an insignificant difference in values hardly plays a role. But for
higher-order correlations the maximum of the set {Aαk

j } (still
at j = 1) may be orders of magnitude greater than any other
element. As a result, the superposition in (43) is increasingly
dominated by the term with A

αk

1 , and higher-order correlations
quickly converge to the first normal mode; Ck(t) ≈ cos 	1t .

For systems of same-mass particles the set of normal mode
amplitudes, given by the second equation in (14), is a periodic
function of the mode index j and has no single maximum.
In this case the reduction of higher-order correlations to a
dominating normal mode does not occur.

V. CONCLUSION

Temporal autocorrelation functions 〈A(0)A(t)〉 are often
evaluated in the thermodynamic limit, in which case they
typically decrease in a regular (nonrandom) fashion, either
monotonically or nonmonotonically. In finite systems, auto-
correlation functions themselves become noisy at long time
scales t > tc; this illustrates recurrences in the dynamics of
the tagged variable due to reflections of sound off boundaries.
In this paper we introduced and studied some properties
of the secondary correlation function D(t) defined as an
autocorrelation function of the primary correlation function
C(t). If it exists, the characteristic time of decay for D(t)
determines the time scale of a typical “period” for C(t), which
in turn may be associated with the typical recurrence time of the
targeted variable. These “typical” times may however be ill-
defined mathematically (as is indeed the case for the harmonic
systems discussed above), so to be more precise the secondary
correlation D(t) can be described as a function characterizing
a distribution of recurrence times: for a given t , a larger value
for D(t) corresponds to a greater probability (density) that C(t)
will return to an assigned value in time about t . Comparing the
secondary correlation D(t) with the mean recurrence time τ (c),
Eq. (6), the latter being more prevalent in literature, one notices
that the two functions give complementary descriptions: while
τ (c) characterizes the number of returns to an assigned value c,
the secondary correlation D(t) gives the distribution of return
times regardless of the assigned value of c.

One interesting result is the equality C(t) = D(t) for
systems of same-mass particles. The equality is either exact
for all t or a very good approximation over the initial interval
t < t0 whose duration t0 depends on the tagged particle’s
position nonmonotonically. Although its derivation is quite
simple, the equality of primary and secondary correlations
may be a remarkable property, especially considering that the
former is defined over the ensemble and the latter with time
averaging. We restricted the discussion to the simplest case
of one-dimensional harmonic systems, but an extension to
higher dimensions appears to be straightforward. Whether the
equality, or perhaps some other relation, between primary and
secondary correlations still holds for nonlinear systems is an
open question.

Like the primary correlation, for long time scales the
secondary correlations also develop noisy tails (see the insets in
Fig. 3), which themselves can be characterized by correlations
of higher order. In turn, this tertiary correlation has the same

structure as the secondary and primary correlations, exhibiting
regular decay over shorter times and fluctuating over longer
times. Thus one can construct an infinite hierarchy of higher-
order correlations whose order-scaling properties are also
interesting to study. Of course, for the particular cases when the
equality D(t) = C(t) holds exactly for all t , e.g., a harmonic
chain with periodic boundary conditions, all higher-order
correlations are identical. We have studied higher correlations
in the context of the heavy impurity problem. Here the equality
of primary and secondary correlations does not hold, and the
primary correlation displays a nonrandom idiomatic pattern
on long time scales, which becomes even more visible in
correlations of higher orders. Indeed the sequence of higher-
order correlations converges to the lowest normal mode.
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APPENDIX

In this Appendix we outline the derivation of expressions
(3) and (14) for the momentum correlation functions of ith
particle in a harmonic chain with fixed ends, described by the
Hamiltonian (1). Using the normal mode transformation

qi = 1√
m

N∑
j=1

AijQj , pi = √
m

N∑
j=1

AijPj ,

with coefficients Aij given by (14) and taking into account the
orthogonality relation

∑N
i=1 AijAij ′ = δjj ′ , the Hamiltonian

(1) is diagonalized into the form of uncoupled normal modes

H = 1

2

N∑
j=1

{
P 2

j + ω2
jQ

2
j

}
,

with frequencies ωj given by (4). The normal modes are
governed by the Hamiltonian equations

Ṗj = − ∂H

∂Qj

= −ω2
jQj , Q̇j = ∂H

∂Pj

= Pj ,

and evolve as

Pj (t) = Pj (0) cos ωj t − ωjQj (0) sin ωj t,

Qj (t) = Qj (0) cos ωj t + ω−1
j Pj (0) sin ωj t.

Assuming that initially the system is in equilibrium with
canonical distribution function ρe = Z−1e−βH , correlations
of the normal modes’ initial values are 〈Pj (0)Pj ′ (0)〉 = δjj ′/β

and 〈Qj (0)Pj ′ (0)〉 = 0. Then

〈Pj ′ (0)Pj (t)〉 = 〈Pj ′ (0)Pj (0)〉 cos ωj t = δjj ′

β
cos ωj t

and the momentum correlation of the ith particle is

〈pi(0)pi(t)〉 = m

N∑
j,j ′=1

AijAij ′ 〈Pj ′ (0)Pj (t)〉

= m

β

N∑
j=1

A2
ij cos ωj t.
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Division of this expression by 〈p2
i (0)〉 = m/β gives the

normalized correlation function (14). In the case of the
middle particle i = (N + 1)/2 (assuming N is odd), A2

ij =
2/(N + 1) for odd j and zero otherwise. In this case, one

obtains the normalized correlation function in the form (3).
The correlation (15) corresponding to the periodic boundary
condition can be derived in a similar way. For the extension to
the heavy impurity problem, see, e.g. [3].
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