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Strings of droplets propelled by coherent waves
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Bouncing walking droplets possess fascinating properties due to their peculiar wave-particle interaction leading
to unexpected quantumlike behaviors. We propose a study consisting in droplets walking along annular cavities.
We show that, in this geometry, they spontaneously form a string of synchronized bouncing droplets that share a
common coherent wave propelling the group at a speed faster than single walkers. The formation of this coherent
wave and the collective droplet behaviors are captured by a model. Those are at the opposite of the ones found
in two-dimensional geometries. Our results shed light on walking dynamics.
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When a tiny droplet is gently placed on an oscillating
liquid interface, which is vibrated with an amplitude A and
a frequency f , it is able to bounce without coalescing when
the bath maximum acceleration � = 4π2Af 2/g is above
a threshold �B [1–3]. Actually, an air layer separates the
droplet from the vibrated surface preventing coalescence by
lubrication. Above another threshold denoted by �F , a pattern
of standing waves appears at the liquid surface. This is the
Faraday instability [4,5] for which waves are characterized by a
wavelength λF and a frequency fF = f/2. By approaching the
Faraday instability from below (�B < � < �F ), the droplet
may start to bounce once every two periods of oscillation. In
such a situation, the emitted waves possess the characteristics
of the Faraday pattern [6]. Due to the coupling between the
droplet and the sum of waves emitted on the liquid surface
ζ (�r,t) by the successive previous impacts, bouncing droplets
may start to move horizontally along the liquid surface. They
are called walkers [6]. The droplet-wave interaction leads
to spectacular quantumlike phenomena at the macroscopic
scale. See Ref. [7] for a complete review of quantumlike
behaviors in the walking droplets experiment. Processes
involving interactions between two or more droplets were
investigated. It has been shown that co-orbiting droplets
move along circles of quantified radii [8]. In a recent article,
the rectilinear motion of two droplets, the so-called promenade
mode, was studied. In this article, Borghesi et al. [9] show that
walkers can move together at quantified average distances with
a velocity proportional to their separation. Similar behaviors
were already observed in [8]. Here we investigate the walker-
walker interactions by placing them into carved rings in the
experimental cell. We show that this one-dimensional (1D)
system motion leads to diametrically different behaviors than
the ones observed in 2D system, due to the coherent wave that
couples walkers together.

The experimental setup is the following. Identical droplets
of 800 μm diameter are created by an automatic genera-
tor [2]. The liquid is silicon oil with a kinematic viscosity
ν = 20 cSt, density ρ = 949 kg/m3, and surface tension
σ = 20.6 mN/m. The container is shaken vertically by an
electromagnetic system with a controllable amplitude A and
a fixed frequency f = 70 Hz. The resulting acceleration is
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measured through an accelerometer fixed to the experimental
cell. The dimensionless acceleration � has always been kept in
the interval [0.95�F ,0.99�F ] with �F = 4.25 ± 0.04 for our
fluid and frequency. This interval corresponds to a memory
M = �F /(�F − �) [10] ranging in the interval [20,100]. The
wavelength of the Faraday waves is estimated to λF = 6 mm.
Since the occurrence of the Faraday instability is highly
dependent on the liquid depth in the shallow regime, carved
cavities are a straightforward way to control the path of a
walking droplet. Indeed, previous experiments [11,12] already
use submerged objects in order to create obstacles for walking
droplets. Thus, we consider circular rings where droplets walk
forever without reaching a boundary. The sketch of an annular
cavity is given in Fig. 1(a) with a picture of the experiment
taken from above [Fig. 1(b)]. The liquid depth in the center of
the cavity is H = 4 mm and the width of the annular channel
is D = 7.5 mm [13]. Elsewhere, the liquid depth H0 is fixed
to 1 mm limiting the propagation of waves. At this depth, a
droplet may bounce but cannot walk. A picture of the Faraday
instability in the cavity is shown in Fig. 1(c). One observes
the limited wave propagation as well as the dependence of �F

regarding the fluid depth. Three ring cavities of different radii
have been considered with R = 13.75, 41.25, and 68.75 mm.

Observations show that typical trajectories in the xy plane
of single walkers are mostly circles [14], whatever the size of
the cavity, forcing parameters, or memory. Note that there is
no central force behind this circular trajectory. The fact that the
droplet follows the ring shows that the Faraday waves adopt
the symmetry of the cavity [see Fig. 1(c)]. Along the ring,
i.e., in the azimuthal direction, waves can be approximated
to sinusoidal standing waves, as expected for a 1D system,
as illustrated in Fig. 1(b). In the transverse direction, i.e., in
the radial direction, the Faraday waves present antinodes in the
center of the cavity and evanescent waves are strongly damped
outside the ring. The droplet remains in the central part of the
cavity. Moreover, the speed v1 of a single walker is fixed by
the forcing parameters of the experiment and the geometry
of the cavity. We checked that the speed v1 ≈ 10 mm/s of
the walker (at memory M = 20) is independent of the ring
radius R. Furthermore, the memory M of the system does not
change qualitatively the observations presented in this Rapid
Communication. We will thus work at memory 20 for the
whole study. Nevertheless, note that the walker speed strongly
depends on the presence of boundaries, especially the fluid
depth H and the channel width D.

1539-3755/2015/92(4)/041004(4) 041004-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.041004
http://www.grasp-lab.org


RAPID COMMUNICATIONS

B. FILOUX, M. HUBERT, AND N. VANDEWALLE PHYSICAL REVIEW E 92, 041004(R) (2015)

A, f

D

R

HH0

(a)

5mm

(b)

5mm

(c)

FIG. 1. (Color online) (a) Sketch of a quarter of the annular cavity
of width D and radius R. The oil level is adjusted to obtain a depth H

in the cavity and a thin layer H0 elsewhere. A walking droplet tends to
remain in the cavity. Contours of the liquid surface ζ (�r,t) are shown
to illustrate that the propagation of waves mostly takes place in the
cavity while evanescent waves are observed outside the cavity. (b)
Picture of the experiment from above. Yellow dashed lines account
for the channel borders. One can observe the waves emitted by the
walker at each impact propagating mainly along the channel for a
memory M = 20. (c) Faraday instability inside the channel above
�F . Evanescent waves can be observed outside the channel.

When two or more droplets are placed in the ring, they
walk clockwise or counterclockwise depending on their initial
conditions. After a while, they start to interact through their
waves. The result after long times is the formation of a string of
walking droplets moving cooperatively along the ring, sharing
a common and coherent wave. The distances between droplets
are quantified and correspond roughly to multiples of λF /2 and
bounces are (anti)synchronized. Figure 2(a) presents a picture
of such a group made of N = 7 droplets. In that string, two
successive droplets are antisynchronized, meaning that when
the first one bounces, the second one is in a free flight and vice
versa. In Fig. 2(a) the shadows below each droplet illustrate this
ordering. Strings of synchronous droplets can also be created,
but their interdistances should be different, as shown below.
Figure 2(b) presents a picture of a chain of four droplets. It also
offers a visualization of the wave field emitted by the drops,
which adapts to the cavity symmetry. Figure 2(c) shows the
interdistances between successive droplets in various groups of
two droplets that are launched randomly in an annular cavity.
In the steady state, their distances are given by the empirical
formula

s = (n − ε0)λF , (1)

where ε0 accounts for the dimensional aspect of the waves and
their damping due to viscosity. The label n is an integer or a
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FIG. 2. (Color online) (a) Picture of a group of seven droplets in
the small annular cavity. One observes quantified interdistances and
antisynchronous bounces for the successive droplets. (b) Four bounc-
ing droplets walking in an annular cavity and creating a coherent
wave propelling the group at a speed higher than individual droplets.
The coherent wave can be seen to follow the cavity symmetry. One
can observe antisynchronous bounces for the successive drops. (c)
Red circles represent the droplet interdistances as a function of the
label n describing the interaction mode for a memory M = 20. The
line is a fit using Eq. (1). Error bars are not indicated since they are
smaller than the symbol size. Blue triangles are droplet interdistances
given by the model for synchronous (up triangles) or antisynchronous
bounces (down triangles). The dashed line is a fit using Eq. (1). Note
that the quantification does not depend on the value of the memory M .

half integer. The fit using Eq. (1) gives λF = 6.1 ± 0.1 mm and
ε0 = 0.18 ± 0.02. The first observed situation corresponds to
n = 1, for which the bounces are synchronized. Half-integer
values of n correspond to antisynchronized values. The case
n = 1/2 is particular since the droplets start to orbit around
each other and they follow complex trajectories [8]. They

041004-2



RAPID COMMUNICATIONS

STRINGS OF DROPLETS PROPELLED BY COHERENT WAVES PHYSICAL REVIEW E 92, 041004(R) (2015)

finally coalesce or vanish in the vibrating bath. The absence of
circular motions and promenade modes for other interdistances
is assumed to be due to the constraint originating from the
boundaries.

The coherence of the wave propelling the string of walkers
has been tested [14]. When a string of a few droplets is
formed, we used a needle to destroy one of the central droplets.
The system appears to be unaffected by the disappearance
of this droplet and behaves exactly as before. The distances
remain unchanged and the synchronicity is kept. Movies of
that experiments are given in Ref. [14]. When the number N

of droplets increases, the coherent wave extension increases
accordingly. At some point, the wave starts to self-interfere
such that the system destabilizes. We checked that it is
nearly impossible to form a complete ring of droplets moving
cooperatively due to this effect. The only stable groups of
droplets are found up to 11 droplets in the smallest ring. In the
same spirit, modifying the acceleration will inevitably change
the stability of the system. Indeed, at higher memory, e.g.,
M = 45, only seven droplets can be placed.

The collective motion of the string was unexpected because
in two dimensions only a few cases lead to a rectilinear motion
of the center of mass. Indeed, mainly two behaviors are found:
promenade modes and orbiting motions. For both dynamics,
the collective velocity is lower than the individual droplets
freely moving along the surface [8,9]. We will demonstrate
herein a clear violation of this conjecture. Let us analyze
the speed of the walkers resulting from the collective effects.
Figure 3 shows the speed v2 of the pair of bouncing droplets as
a function of the distance s separating them. The group speed
is normalized by the speed v1 of single droplets in the ring. It is
worth noting that this speed v1 differs from the speed v2D

1 of a
drop in a cavity without a boundary. The single droplet case v1

should represent the asymptotic case when the interdistances
tends to infinity to neglect interactions. The speeds v2 obtained
for droplet pairs are larger than v1 in both synchronous and
antisynchronous cases. The speed ratio is also seen to decrease
exponentially as a function of s. The common coherent wave
shared by droplets has therefore a large driving force, as we
will explain below.

In order to emphasize the collective effects induced by
wider coherent waves, we created groups of N droplets being
separated by a single wavelength λF . All droplets are therefore
bouncing in a synchronized way. The normalized speed vN/v1

of the string increases with N , as shown in Fig. 4. The speed
of the string seems to saturate for high-N values, meaning
that there is a limit for coherence. The origin of this limit is
due to the damping of Faraday waves. Indeed, above a droplet
number (around N = 6 in our experimental conditions) any
additional droplet joining the string will not affect the global
dynamics. We also created strings with a larger separation
between successive walkers, like 3λF /2. Similar results (not
shown herein) are obtained, but the saturation speed is lower
than the previous case.

Actual models [7,10] do not account for 1D geometries
where emitted waves strongly depend on the presence of
boundaries or on the viscous damping of emitted Faraday
waves. As a consequence, we choose to adapt existing
model [10] to our experiments. We first assume that the
standing waves associated with the successive droplet impacts
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FIG. 3. (Color online) Circles represent the speed of a droplet
pair v2 (on a logarithmic scale) as a function of the distance s between
droplets. The speed is normalized by the speed v1 of a single droplet.
Error bars are indicated. The model explained in the text returns
quantified interdistances s between droplets as well as specific speeds
v2 for both synchronous (up triangles) and antisynchronous (down
triangles) cases. Excellent agreement is found between the model
and the experimental data. The dashed curve is an exponential decay
fitting the results from the model.
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FIG. 4. (Color online) Circles represent the speed vN of a droplet
string as a function of its number N of components. The speed is
normalized by the speed v1 of single droplets. Error bars are indicated.
The speed seems to saturate for large systems. The model described
in the text captures this effect for both synchronous (up triangles) and
antisynchronous (down triangles) cases. Good agreement is found
between the model and the experimental data. The dashed curve is a
guide for the eye.
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are given by damped sine waves along the s coordinate. We
reduce the system to a 1D liquid profile ζ (s,t) along the ring.
The driving horizontal force is supposed to be proportional
to the slope of the liquid profile at each impact. Since the
successive bounces are periodic events, separated by a time
τF = 2/f , a phenomenological strobed equation of motion is
considered for each droplet i. The speed change ui

n+1 − ui
n of

droplet i between the nth and (n + 1)th impacts is given by

ui
n+1 − ui

n = −γ ui
n − C0

∂ζ ii

∂s

∣∣∣∣
n+1

− C1

∑
j �=i

∂ζ ij

∂s

∣∣∣∣∣∣
n+1

. (2)

The first term represents some dissipation at bouncing, due to
air drag and the shear of the air layer, with a parameter γ . The
second term with a coefficient C0 represents the interaction of
the droplet i at the (n + 1)th impact with the waves produced
by the same droplet at previous impacts. The last term with a
coefficient C1 represents the interactions between the droplets
in a string. We expect C1 to be different from C0 because
the system is quasi-one-dimensional rather than purely one
dimensional. As a consequence, waves emitted by neighbor
droplets are also radiated outside the channel and this effect is
taken into account due to C1 [see Figs. 1(b) and 1(c)]. Since
we focus only on droplet motions in the tangential direction,
the relevant information for the strobed equation (2) is given
by

ζ ij = ζ0 cos

(
2π

(
si
n+1 − s

j
n

)
λF

)
exp

(
− si

n+1 − s
j
n

δ

)
, (3)

where ζ0 is an arbitrary parameter containing the wave
amplitude and thus on the memory. Assuming u1

n = u2
n = v2,

only one solution is found with quantified distances, depending
on whether successive walkers are in phase or out of phase.
The model [15,16] is calibrated as follows. The speed of a lone
droplet gives us the ratio C0/γ and the value of δ is chosen as
2.1λF in order to fit the exponential decrease of v2; this value
is in the range of previous values of δ [9,10]. Finally, C1 is the
only remaining fitting parameter with C0/γ ≈ 0.03 and C0 ≈
20C1. Quantification is shown in Fig. 2(c). The agreement with

the experimental data is excellent, except for ε0, which remains
close to zero in the model. Moreover, it can be shown that the
speed of a group is larger than individual speeds. The group
speed v2 is seen to decay with the interdistance between two
droplets. This is illustrated in Fig. 3. Extra speed for a pair of
droplets is due to the constructive interference of waves emitted
from both droplets. Since the wave damping is already taken
into account through δ, the fact that C1 is much lower than C0

has an origin related to the nontrivial dissipation of waves out
of the cavity. Indeed, the self-interaction of a droplet with its
wave is a local phenomenon, while cross interactions between
droplets involve propagation and reflection of waves along the
cavity. Although different interaction coefficients should be
considered, the coherent wave dynamics is well captured by
our model. By generalizing the calculations to N droplets, it
is possible to estimate numerically the speed increase of vN

reported in Fig. 4. Numerical results are shown in this plot
(triangles). Qualitative agreement with the experimental data
is obtained. Moreover, using different quantified distances for
successive droplets, we are able to show that the asymptotic
speed limit decreases with the distance between adjacent
droplets. In fact, decoherence appears for distant droplets.

In summary, we have investigated bouncing droplets in a ge-
ometry confining them to a nearly 1D system. The wave emit-
ted by a walker becomes a damped sine wave. We evidenced a
remarkable feature for 1D walkers: They form a group bounc-
ing collectively, leading to a faster motion than independent
elements. The fact that coherent waves can be created pushes
the analogy between walking droplets and the quantum system
further by considering, for example, waveguides. Moreover,
1D systems as considered herein are promising since droplets
can be conveyed to collisions and other phenomena that are
reminiscent of quantum information or wave fields.
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