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Crossing probability for directed polymers in random media
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We study the probability that two directed polymers in the same random potential do not intersect. We use the
replica method to map the problem onto the attractive Lieb-Liniger model with generalized statistics between
particles. Employing both the nested Bethe ansatz and known formula from MacDonald processes, we obtain
analytical expressions for the first few moments of this probability and compare them to a numerical simulation
of a discrete model at high temperature. From these observations, several large time properties of the noncrossing
probabilities are conjectured. Extensions of our formalism to more general observables are discussed.
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Introduction. Recently there has been considerable progress
in calculating the free energy and its fluctuations for directed
polymers or directed paths in random media. This problem
arises in a variety of fields, including optimization and
glasses [1], vortex lines in superconductors [2], domain walls
in magnets [3], disordered conductors [4], Burgers equation
in fluid mechanics [5], exploration-exploitation tradeoff in
population dynamics and economics [6], and biophysics [7,8].
Moreover, an exact mapping connects the Directed Polymer
(DP) in 1 + d dimension to the Kardar-Parisi-Zhang (KPZ)
equation [9] in dimension d, which, in d = 1, is at the center of
an amazingly rich universality class, including discrete growth
and particle transport models, with surprising connections in
mathematics to random permutations and random matrices.

Two very different methods led to exact solutions: one based
on the limit of discrete lattices, e.g., particle models such as
q-TASEP (q deformed totally asymmetric simple esclusion
process), often yielding rigorous results [10–14]; and the other
one based on replica, a standard approach in the physics of
disordered systems [15], and the mapping to a continuum
quantum integrable system, solvable by Bethe ansatz [16–19].
The calculation of the nth moment of the DP partition sum
is reduced to the time evolution of a n-particle quantum
state, determined by the initial conditions. The evolution
is performed with the attractive Lieb-Liniger Hamiltonian,
whose spectrum is exactly computable [20,21]. The derivation
based on the replica Bethe ansatz (RBA) involves some
guessing and has often anticipated rigorous results from the
math community. For instance, for the DP with two fixed
endpoints, corresponding to the droplet initial condition in the
KPZ equation, both approaches obtain the free energy as a
Fredholm determinant, showing convergence at large time to
the Tracy-Widom distribution for the largest eigenvalue of a
random matrix [11,12,16,17,22].

An outstanding challenge is to extend these methods and re-
sults to collections of directed paths with hard-core repulsion,
a difficult problem involving both interaction and disorder
in a nonperturbative way. It arises in the above examples,
e.g., populations competition, steps in vicinal surfaces, or the
vortex glass in two-dimensional (2D) superconductors [23].
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There was progress in that direction in the context of vortex
arrays [24], within the multilayer PNG growth model [25],
and the semidiscrete DP hierarchies [13,26], with emerging
connections to the spectrum of random matrices. Within the
RBA method, in almost all cases up to now, only the 1d Bose
gas was considered, i.e., with initial conditions corresponding
to a fully symmetric quantum state. Here we consider infinite
hard-core repulsion, modeled by a noncrossing condition,
which requires more general initial conditions.

The aim of this Rapid Communication is to study con-
tinuum DP observables for noncrossing paths. We develop the
more general nested replica Bethe ansatz (NRBA) and connect
it to another recently developed method [13]. Here, as a first
step, we focus on the calculation of crossing probabilities, but
we expect the potential outcome of the method to be broader.

We introduce the partition function of a directed polymer
with fixed endpoints

Zη(x; y|t) ≡
∫ x(t)=y

x(0)=x

Dxe− ∫ t

0 dτ [ 1
4 ( dx

dτ
)2−√

2c̄η(x(τ ),τ )] (1)

in a random potential with white-noise correlations
η(x,t)η(x ′,t ′) = δ(x − x ′)δ(t − t ′). Then, the probability that
two polymers with fixed endpoints do not cross in a given
realization η of the potential is expressed as

pη(x1,x2; y1,y2|t) ≡ 1 − Zη(x2; y1|t)Zη(x1; y2|t)
Zη(x1; y1|t)Zη(x2; y2|t) (2)

since all paths with at least one intersection can be obtained
from paths with y1,y2 exchanged [27] (see Fig. 1). For
simplicity, we consider the random variable defined by the
limit of near-coinciding endpoints

pη(t) ≡ lim
ε→0

pη(−ε,ε; −ε,ε|t)
4ε2

= ∂x∂y ln Zη(x; y|t)|x = 0
y = 0

(3)

where the last equality, derived from relation (2), belongs to
a larger set of relations between noncrossing probabilities and
the single path free energy [28,29]. We now present a technique
to calculate all the moments of pη(t) at arbitrary time t with
explicit results for the first few.
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FIG. 1. (Color online) Paths with fixed endpoints. By exchanging
the paths after the last intersection, one builds a mapping between
crossing paths and paths with the final endpoints exchanged.

Replica trick and nested Bethe ansatz. The average of
products Zn = Zη(x1; y1|t) . . . Zη(xn; yn|t) satisfies [30]

Zn(x; y|t) = 〈x1 . . . xn|e−tHn |y1 . . . yn〉 (4)

for any integer n, in quantum mechanical notations, where
bold symbols are shorthand for ordered sets of variables and
the Lieb-Liniger Hamiltonian reads

Hn ≡ −
n∑

i=1

∂2
xi

+ 2c
∑

1�i<j�n

δ(xi − xj ) (5)

with c = −c̄ < 0. To use the replica trick we introduce

�n,m(t) ≡ lim
ε→0

[(2ε)−2Z
(2)
η (ε)]m[Zη(0; 0|t)]n−2m, (6)

where we set Z(2)
η (ε) ≡ Zη(ε; ε|t)Zη(−ε; −ε|t) −

Zη(−ε; ε|t)Zη(ε; −ε|t), so that pη(t)m = �0,m(t). The
advantage of this expression is that for integers n,m with
n � 2m, it can be expressed in terms of relation (4):

�n,m(t) = lim
ε→0

(2ε)−2m〈�m(ε)|e−tHn |�m(ε)〉

=
∑

μ

|Dmψμ(0)|2
||μ||2 e−tEμ, (7)

where |�m(ε)〉 = 2−m/2(⊗m
j=1 |ε, − ε〉 − |−ε,ε〉) ⊗ |0 . . . 0〉

and a complete set of eigenstates |μ〉 of Hn of energies
Eμ has been inserted with ψμ(x) ≡ 〈x|μ〉. Here Dm is
a differential operator obtained from the limit ε → 0 of
(2ε)−m 〈�m(ε)|μ〉, e.g., D1 = 2−1/2(∂x1 − ∂x2 )|x=0. Since Hn

is integrable by Bethe ansatz, the eigenstates, with eigenvalues
Eμ = ∑n

j=1 μ2
j , take the form

ψμ(x) =
∑

P,Q∈Sn

ϑQ(x)AP
Q exp

⎡
⎣i

n∑
j=1

xQj
μPj

⎤
⎦, (8)

where {μ1, . . . ,μn} is a set of rapidities, Sn is the set of
n permutations, and ϑQ(x) is the indicator of the sector
xQ1 � xQ2 � · · · � xQn

. However, |�m(ε)〉 is not a symmetric
state under the exchange of the coordinates; thus the quantum
dynamics described by relation (5) does not belong to the
bosonic sector. Nonetheless, it is still possible to explicitly
determine the eigenstates [31] corresponding to different
representations of the symmetric group. It is enough to
choose the vectors AP

Q, for all fixed permutation P , inside

an irreducible representation of Sn. The relevant case for us is
the representation corresponding to a two-rows Young diagram
ξ = (n − m,m), where we denote a diagram as the decreasing
sequence of row lengths [32,33]. For instance, for n = 8 and
m = 3 we have

(5,3) ≡ 1 3 5 7 9
2 4 6 (9)

and the filling indicates antisymmetric wave functions under
the exchange of coordinates x1 ↔ x2 , x3 ↔ x4 , x5 ↔ x6,
which are in the symmetry class selected by the action ofDm=3.
These representations can be built explicitly as the Hilbert
space of an integrable spin-1/2 chain with n sites restricted to
the sector with m down spins. Then the eigenstates of Hn on a
ring of length L are obtained by diagonalizing simultaneously
the spin model. This leads to the so-called nested-Bethe-ansatz
(NBA) equations

m∏
b = 1
b �= a

λab − ic

λab + ic
=

n∏
j=1

λa − μj − ic/2

λa − μj + ic/2
, (10a)

n∏
k = 1
k �= j

μjk + ic

μjk − ic
×

m∏
a=1

μj − λa − ic/2

μj − λa + ic/2
= eiμj L, (10b)

where μαβ = μα − μβ and same for the λ’s, the auxiliary
rapidities on the spin chain that impose the appropriate
symmetry to the wave function. Solutions of Eqs. (10) provide
the eigenstates of relation (5) in the appropriate symmetry
class and the wave functions are obtained setting AP

Q =
AP

bos 〈〈�Q|ω(Pμ)〉〉 with

|ω(μ)〉〉 =
n∑

a1,...,am=1

α(a|μ)σa1− . . . σ
am− |+〉〉 . (11)

Here, (Pμ)j ≡ μPj
and |. . .〉〉 indicates states in the auxiliary

spin space, σa
− is the lowering spin operator at site a, a =

1, . . . ,m, acting on the reference state |+〉〉 = |↑ . . . ↑〉〉. The
vector of states |�Q〉〉 is fixed by the filling of ξ and performs
the unitary mapping between the spin-chain representation
and a particular representation of shape (n − m,m), such that
the exchange of two spins is mapped into the exchange of
two particles. Here AP

bos = �0
μ/�Pμ accounts for the bosonic

phase scattering with �μ ≡ ∏
j < l f (μlj ), �0

μ = √
�μ�−μ

and f (u) ≡ u/(u − ic), while

α(a|μ) = symλ

[∏
k<l

(
1 + ic sgn(alk)

λlk

) m∏
l=1

κal
(λl|μ)

]
,

κa(u|μ) = ic

u − μa − ic/2

n∏
b=a

u − μb − ic/2

u − μb + ic/2
,

and symλ[W (λ)] = ∑
R W (Rλ)/m! is the symmetrization of

W (λ) over the variables λ.
Average of pη(t). We now consider the case m = 1 which

selects the subspace of wave functions �μ(x1 = x2) = 0.
Then, the wave function in Eq. (8) remains continuous,
even after the action of D1, and we can average over
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different orderings of the coordinates x. Hence D1ψμ(0) =
1
n!

∑
P,Q d1(Q−1Pμ)AP

Q, where dm(μ) = (−i)mDmeiμ·x|x=0.
We then obtain [34]

1

n!

∑
Q

d1(Q−1μ) |�Q〉〉 =
√

Z

n∑
a=1

(μa − μ̂)σa
− |+〉〉 (12)

with Z = [(n − 1)n!]−1 ensuring normalization and μ̂ =∑
b μb/n. It leads to |D1ψμ(0)|2 = n(n − 2)!|�μ|2|F(λ,μ)|2,

where F(λ,μ) = symμ [�−1
μ

∑
a(μa − μ̂)κa(λ|μ)] and we

note λa=1 = λ. The sum over all solutions of Eqs. (10) must
then be performed according to Eq. (7), a formidable task
in general. However, Eq. (10b) simplifies dramatically when
L → ∞. For c̄ > 0, the n rapidities μ1, . . . ,μn are organized
in ns bound states, each composed by mj � 1 particles, with∑ns

j=1 mj = n. The rapidities inside a bound state follow a

regular pattern in the complex plane μj,a = kj + ic̄
2 (mj +

1 − 2a) + iδj,a , named string. Here a = 1, . . . ,mj labels the
rapidities inside the string and δj,a are exponentially small
for large L. A study of Eqs. (10) reveals that, at variance
with the bosonic case, not all string configurations are actually
allowed, which is consistently with the symmetry of the wave
function [28], see also Refs. [35–37]. For those allowed, using
Refs. [22,38], we obtain their norm Ref. [39] as

||ψμ||2(
�0

μ

)2 = (Lc̄)ns
∏

j m2
j

c̄n�(k,m)

n∑
l=1

4c2

c2 + 4(μl − λ)2
, (13)

�(k,m) =
∏

1�j<j ′�ns

(kj − kj ′ )2 + c2(mj − mj ′)2/4

(kj − kj ′ )2 + c2(mj + mj ′)2/4
. (14)

For each configuration of rapidities following the string ansatz,
a multiplet of eigenstates is given by the set {λ(1), . . . ,λ(n−1)}
of solutions of Eq. (10a), i.e., Q(λ) ≡ P+(λ)/P−(λ) = 1,
where P±(λ) = ∏

i(λ − μi ± ic/2). These values cannot be
determined analytically for general n; however, the sum over
them can be performed using residue theorem∑

i

w(λ(i)) =
∮
C

dz

2πi
w(z)

Q′(z)

Q(z) − 1
,

where w(z) is any analytic function inside the contour C,
which encircles all the solutions λ(i) and no other singularity
of the integrand. Equivalently, the integral can be computed
taking the poles outside the contour, which in the case w(z) =
|F(λ(i),μ)|2

||ψμ||2 are given by zk = μk − ic/2 [39]. The sum can
then be performed analytically. Moreover, for L → ∞, string
momenta become free and we can replace

∑
kj

→ mjL
∫ dkj

2π
,

which leads to

�n,1(t) =
n∑

ns=1

n!c̄n

ns!(2πc̄)ns

∑
(m1,..mns )n

×
ns∏

j=1

∫ +∞

−∞

dkj e
−A2t

mj

�(k,m)�n,1(k,m) (15)

with �n,1 = [n(n − 1)]−1h2. Here, (m1, . . . ,mns
)n indicates

sum over all integers m � 1 whose sum equals n and we
defined hp = ∑

j<l(μj − μl)p − (ic̄)p(j − l)p. The rapidities
μj are written as a function of string sizes and momenta

according to the string ansatz, so that �n,1 vanishes on the n

strings. The conserved charges of the Lieb-Liniger model have
been introduced as Ap = ∑n

j=1 μ
p

j , A2 being the energy. A
crucial property of Eq. (15) is that by replacing �n,1 → �n,0 ≡
1, one recovers the formula for Zn(t) ≡ Zn(x = 0; 0|t) =
�n,0(t) as given in Ref. [16]. Therefore, rewriting �n,1 in terms
of the conserved charges and using the statistical tilt symmetry
(STS) (see, e.g., the appendix of Ref. [18]), we obtain

�n,1(t) = 1

n − 1

[
n(n2 − 1)c̄2

12
− ∂t − 1

2t

]
Zn(t) . (16)

This expression is exact for n � 2 and allows the analytical
continuation n → 0. In particular, we obtain

pη(t) = lim
n→0

�n,1(t) = 1

2t
. (17)

This is in fact the exact result for pη(t) without disorder, i.e.,
η(x,t) = 0. This remarkable conclusion can also be obtained
by averaging relation (3) and recalling that the dependence of
the average free energy of a path with respect to its endpoints is
entirely fixed by the STS, namely ln Zη(x; y|t) = h(t) − (x −
y)2/(4t), where

h(t) = ln Zη(0; 0|t) (18)

is our averaged free energy (and average KPZ height).
Alternative derivation. A different approach was recently

proposed in Ref. [13] (remark 5.25) where nonintersecting
paths were also studied. There, it was proposed a multicontour-
integral formula is associated to a partition of n. We identify
the partition with a Young diagram and for the two-row case
of our interest, it can be put in the form

�n,m(t) = 1

2m

∫
dz1

2π
· · ·

∫
dzn

2π
e−t

∑n
k=1 z2

k

×
⎛
⎝ ∏

1�k<j�n

f
(
zkj

)⎞⎠
⎛
⎝ m∏

q=1

h(z2q−1,2q )

⎞
⎠, (19)

where zkj = zk − zj , h(u) = u(u − ic) and the integration
contours are parallel to the real axis with an imaginary part Cj

for zj satisfying Cj+1 > Cj + c̄. Shifting back all the contours
to the real axis, we encounter many poles whose residues
reduce to integrals with a smaller number of integration
variables. This expansion can then be organized to reproduce
the one based on strings in Eq. (15), with �n,1 replaced by [28]

�n,m(k,m) = 1

2m
symμ

[∏m
q=1 h(μ2q−1,2q )∏
1�j<k�n f (μkj )

]
(20)

and again the μ given by the string ansatz. Interestingly, �n,m

is always a polynomial in the μ’s of degree 2m as can be
seen considering the residue at coinciding points. Moreover,
Eq. (20) agrees with the result obtained from the NBA for
m = 1, which gives a completely independent check to the
proposition in Eq. (19). For m > 1, the calculation from NBA
becomes more involved but we will continue by assuming that
Eq. (20) retains its validity.
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Higher moments of pη(t). We now focus on m = 2. Upon
symmetrization in Eq. (20) one obtains

�n,2(μ) = h2
2 − (n − 1)h4 − n(n − 1)2c̄2h2

n(n − 1)(n − 2)(n − 3)
. (21)

After tedious calculations, it can be rewritten in terms of
the conserved charges �n,2({Ap}) [28]. In contrast with the
m = 1 case, higher charges, up to p = 4, are involved. It is
therefore useful to formally generalize the partition function
to Zβ

n (t) which is obtained from the expression of Zn(t)
replacing the imaginary time evolution e−A2t with the more
general e−A2t+

∑
p�1 βpAp . This is the partition function of a

generalized Gibbs ensemble (GGE) [40], which we show can
be related to a Fredholm determinant [28]. Here, we use it
as a generating function: �n,2(t) = �n,2({∂p})Zβ

n (t), formally
replacing Ap → ∂p ≡ ∂βp

and setting βp → 0 at the end.
Deriving extended STS identities from the invariance μj →
μj + k in Zβ

n (t), for arbitrary k, we are able to re-express it
only from the energy A2, leading to

pη(t)2 = −
(

1

t
∂t + 1

2
∂2
t

)
h(t) . (22)

Hence the second moment is determined at all times from
the average free energy h(t) (18). We did not find a direct
derivation of this remarkable result, and it may be a conse-
quence of integrability. At large time h(t) � − c̄2t

12 + χ2(c̄2t)1/3

[11,12,16,17], so that

pη(t)2 � c̄2

12t
− 2χ2c̄

2/3

9t5/3
(23)

with χ2 = −1.77(1) the mean of the Tracy-Widom GUE dis-
tribution [41] (see Ref. [42] for numerical details). Repeating
this procedure for m = 3 we can again use Zβ

n (t). Now higher
charges are involved and the result is expressed as derivatives
of a Fredholm determinant [28]. It simplifies at large time,
leading to

pη(t)3 � c̄4

15t
− 2χ2c̄

8/3

9t5/3
. (24)

It is natural to conjecture the leading decay pη(t)m �
γmc̄2(m−1)/t for any integer m > 1. However, the knowledge
of moments at long times is not sufficient to reconstruct
the full distribution of p: in view of Ref. [26], we further
surmise that pη(t) tends to zero (sub)exponentially at large t

for all but a small fraction ∼1/(c̄2t) of environments where
typically pη(t) ∼ c̄2. This is consistent with the conjecture [28]
ln pη(t) ∼ −a(c̄2t)1/3 where a = χ2 − χ ′

2 is the average gap
between the first (χ2) and second (χ ′

2) GUE (scaled) largest
eigenvalues, with a ≈ 1.9043 [43] (note that a ≈ 1.49134 for
the hard wall problem [44]).

Comparison with numerics. To check our results, we study
a discrete directed polymer on a square lattice [16], defined
according to the recursion (with integer time t̂ running along
the diagonal)

Zx̂,t̂+1 = (
Zx̂− 1

2 ,t + Zx̂+ 1
2 ,t̂

)
e−βVx̂,t̂+1 (25)

with Vx̂,t̂ sampled from the standard normal distribution. In
the high temperature limit β � 1, it maps into the continuous
DP (1) at c̄ = 1 with x = 4x̂β2 and t = 2t̂β4 [16]. We consider
two polymers with initial conditions Z±

x̂,t̂=1 = δx̂,±1/2 and
ending at time t̂ at x̂ = ±1/2. For each realization of the
Vx̂,t̂ , the noncrossing probability p̂ on the lattice is efficiently
computed using the image method [27]. By comparison with
relation (3), we deduce p̂ � 16pβ4, for β → 0, due to the
rescaling of the factor ε = 4β2. The numerical results and
the analytical predictions [Eqs. (17,23)] are shown in Fig. 2.
For the first moment pη(t) the agreement is excellent even at
finite temperature, presumably due to robustness of Eq. (17)
at any time. The numerical check of Eq. (23) is more delicate:
Indeed, the large-time behavior of the second moment depends
strongly on temperature and approaches our prediction only
for β � 1; see Fig. 2 (right). However, the leading decay is
found consistent with t−1 down to zero temperature, where
the polymer paths do not fluctuate thermally and for any
m > 0: p̂m = p̂. In order to interpolate between zero and
high temperatures, we conjecture the large time behavior
of the moments on the lattice p̂m � cm(β)/t̂ , with cm(β) �

(a) (b)

FIG. 2. (Color online) The first (a) and second moments (b) of pη in the continuum limit are shown vs t for several value of β. Numerical
simulations with at least 2 × 105 realizations and time up to t̂ = 8192. The value of pη introduced in Eq. (3) is obtained by pη(t) = p̂/(16β4),
with p̂ being the probability on the lattice, and the time is scaled to t by t̂ = t/(2β4). Dashed red (gray) line: analytical predictions (17)
and (23). In panel (b), the small t expansion p2

η � 4t−2 is shown with a dashed blue (gray) line. Inset in panel (b): plot of p̂2 t̂/β4 � β−4c2(β)
vs β and extrapolation at small β = 0 from the best fit with a quadratic function in β at fixed t = 103. It shows a finite limit consistent with our
prediction �32/3 = 10.6(7) (blue [gray] circle).
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γm24m−1β4(m−1) at high temperatures and cm(β → ∞) = c∞
is a constant that we expect to be nonuniversal [28]. This agrees
with the intuitive picture of the zero-temperature deterministic
path, weakly perturbed by thermal fluctuations. Checking
the subleading terms in Eq. (23) would require much more
intensive numerics.

Conclusions. We presented a general formalism to calculate
the statistics of N mutually avoiding directed polymers in
a random potential, with explicit results for N = 2. Multi-
polymer observables are reduced to a compact form in
terms of conserved quantities of the Lieb-Liniger Hamiltonian
and expressed at all times by derivatives of a Fredholm
determinant, i.e., the GGE partition function. As a simplest
example we obtained the lowest moments of noncrossing

probabilities, with an exact relation between the variance and
the free energy, a nontrivial scaling t−5/3 for the subleading
part and a prediction of leading behavior for all moments. The
full distribution of the noncrossing probability is under current
investigation. Going beyond the infinite hard-core repulsion re-
mains for the moment elusive, but we are confident that further
developments of the present method and full exploitation of its
integrable structure will allow further progress in the elusive
interplay between disorder and interactions.
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