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Percolation on a multifractal scale-free planar stochastic lattice and its universality class
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We investigate site percolation on a weighted planar stochastic lattice (WPSL), which is a multifractal and
whose dual is a scale-free network. Percolation is typically characterized by a threshold value pc at which a
transition occurs and by a set of critical exponents β, γ , ν which describe the critical behavior of the percolation
probability P (p), mean cluster size S(p), and the correlation length ξ . Besides, the exponent τ characterizes
the cluster size distribution function ns(pc) and the fractal dimension df characterizes the spanning cluster. We
numerically obtain the value of pc and of all the exponents. These results suggest that the percolation on WPSL
belong to a separate universality class than on all other planar lattices.
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Percolation is perhaps one of the most studied problems
in statistical physics because it provides a general framework
of statistical theories that deal with structural and transport
properties in porous or heterogeneous media [1,2]. To study
percolation one has to first choose a skeleton, namely, an
empty lattice or a graph. Each site or bond of the lattice or
graph is then either occupied with probability p or remains
empty with probability 1 − p, independent of the state of its
neighbors. For small values of p we see mostly single or a
few contiguous occupied sites, which are called clusters. As
p increases, the mean cluster size always keeps growing at an
increasingly faster rate until it comes to a state when suddenly
a macroscopic cluster appears for the first time, spanning from
one end of the lattice to its opposite end. This sudden onset of
a spanning cluster in an infinite system occurs at a particular
value of p known as the percolation threshold pc. This is
accompanied by a sudden or abrupt change in the behavior
of the observable quantities with a small change in its control
parameter p. Such a change is almost always found to be the
signature of a phase transition that occurs in a wide range
of phenomena [3,4]. This is why scientists in general and
physicists in particular find percolation theory so attractive.
Indeed, insight into the percolation problem facilitates the
understanding of the phase transition and critical phenomena
that lie at the heart of the modern development of statistical
physics (see Ref. [5], which is an excellent review published
recently).

Percolation on disordered lattices is potentially of great
interest since many real-life phenomena deal with such
disordered systems [6]. In recent decades there has been a surge
of research activities in studying percolation on random and
scale-free networks because the coordination number disorder
of these networks is closely tied to many natural and man-
made skeletons or media through which percolation occurs.
For instance, infectious diseases, computer viruses, opinion,
rumors, etc., usually spread through networks [7–12]. Besides,
the flow of fluids usually takes place through a porous medium
or through rocks, and hence the architecture of the skeleton is
anything but regular [13]. In fact, the transport of fluid through
multifractal porous media such as sedimentary strata and in
oil reservoirs is of great interest in geological systems [14].
In this Rapid Communication, we investigate percolation
on a weighted planar stochastic lattice (WPSL). One of us
has recently shown that its coordination number distribution

follows a power law and its size distribution can be best
described as multifractal [15]. In contrast, scale-free networks
too have a power-law coordination number distribution, but
nodes or sites in the scale-free networks are neither embedded
on spatial positions nor have edges or surfaces. Our goal is
to find how the two aspects, multifractality and power-law
coordination number distributions, leave their signature in
the percolation processes. Note that most of the studies on
percolation have been restricted to the use of lattices with
fixed coordination numbers, such as a square lattice, triangular
lattice, honeycomb, etc. However, percolation on random or
multifractal planar lattices in which the coordination number
is not fixed has been of relatively recent interest [16,17]. The
most interesting result of all these studies is that the critical
exponents are independent of the details of the lattice structure
and of the type of percolation (bond or site), but depend on the
dimension of the lattice only [18]. That is, percolation on all
lattices belongs to the same universality class if its embedding
dimension d is the same. This is, however, no longer the case
as we report that the percolation on all known planar lattices
(d = 2) belongs to one universality class and the percolation
on WPSL belongs to another class.

The construction process of the WPSL (see Fig. 1) starts
with an initiator, say, a square of unit area. The generator is
then defined as the one that divides the initiator randomly into
four smaller blocks. Thereafter, at each step, the generator is
applied to only one block by picking it preferentially with
respect to areas (see Ref. [15] for details of the construction
process). This process ensures that the blocks with a greater
area are more likely to be picked. We define each step of the
division process as one time unit. The sum of the area of all
the blocks of the WPSL always remains the same, although
the number of blocks N grow with time t . It implies that N

increases at the expense of the mean size of the blocks. Indeed,
the mean cell area decreases with N as 〈a〉 ∼ N−1 or with t as
〈a〉 ∼ t−1 since 〈a〉 = a/N , where the total area a of all the
blocks is always equal to one. We therefore need to emphasize
two ideas here. First, we can define the size of the side L of the
WPSL as t1/2 as we do for square lattice L = N1/2. Second,
to make the cells of the WPSL have the same size, in the
statistical sense, as we increase N , we have to scale up the cell
sizes by a factor of t . We just need to multiply each quantity
we measure by a factor t to compensate for the decreasing size
of the blocks.
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FIG. 1. A snapshot of the weighted stochastic lattice.

The construction process of WPSL might be simple but
its various properties are far from that. First, it evolves by
following several nontrivial conservation laws, namely, that the
value of the quantity

∑N
i xn−1

i y
4/n−1
i is independent of time or

size of the lattice ∀n, where xi and yi are the length and width
of the ith block. Second, its dual, obtained by replacing each
block with a node at its center and common border between
blocks with an edge joining the two vertices, emerges as a
scale-free network [15]. Third, if one considers that the ith
block is populated with probability pi ∼ x3

i or y3
i , then the

qth moment of pi can be shown to exhibit the power law
Zq(δ) ∼ δ−τ (q), where δ is the square root of the mean block
area and

τ (q) =
√

9q2 + 16 − (3q + 2). (1)

Note that τ (0) = 2 is the dimension of the WPSL and τ (1) = 0
follows from the normalization of the probabilities

∑
pi =

1 [19]. The Legendre transform of τ (q), on the other hand,
gives the multifractal spectrum f (α), where the exponent α is
the negative derivative of τ (q) with respect to q. Yet another
feature of the WPSL is that it emerges through evolution and
the area size distribution function of its cells exhibits dynamic
scaling [20].

To study percolation on the WPSL we employ the Ziff-
Newman algorithm [21] in which all the labeled sites or cells
i = 1,2,3, . . . ,(1 + 3t) are first randomized and arranged in an
order in which the sites will be occupied. This algorithm allows
us to create percolation states consisting of n + 1 occupied
sites simply by occupying one more site to its immediate past
percolation state consisting of n occupied sites. We keep track
of the number of clusters and their sizes as a function of n with
regard to the occupation probability p = n/(1 + 3t). In fact,
the product of the number of occupied sites n and the mean area
1/(1 + 3t) is equal to the mean area of all the occupied sites
〈a(n)〉, which is equal to 1 when all the sites are occupied, i.e.,
when n = N . In our simulation we use the periodic boundary
condition whereby the lattice is viewed as a torus without an
edge or surface.

In percolation, one of the primary objectives is to find the
occupation probability pc at which a cluster of contiguous
occupied sites span the entire lattice, either horizontally

or vertically, for the first time. Of course, the occupation
probability at which it occurs at each independent realization
on a finite-size lattice will not be the same. In reality, we
can get spanning even at very much less than pc or not get
it even at a much higher p than pc. This is exactly why the
percolation theory is a part of statistical physics. One way of
dealing with this is to use the idea of spanning probability
W (p) [22]. Consider that we have performed m independent
realizations, and for each realization we check exactly at
what value of p = n/N a cluster appears that connects the
two opposite ends either horizontally or vertically, whichever
comes first. The spanning probability W (p) is obtained by
finding the relative frequency of occurrence of spanning cluster
out of m independent realizations at p. The plot in Fig. 2(a)
shows W (p) as a function of p for three different lattice sizes.
Interestingly, all three plots meet at one particular point. It has
a special significance as it is actually the percolation threshold
pc = 0.5265 for the WPSL.

A careful look at the plots of W (p) vs p reveals that a given
fixed value of W is obtained at an increasingly higher value of
p for p < pc as we increase L, which is indicated by the arrow
in Fig. 2 (a). To quantify this, we draw a horizontal line, for
instance, at W (p) = 0.3, and a vertical line at pc = 0.5265.
The horizontal line intersects all three curves and the vertical
line for different L, say, at A, B, C, and at O. The distance
OA,OB,OC, etc., thus represents (pc − p). In the inset of
Fig. 2(a) we plot log(pc − p) vs log(L), and a linear fit to
the points gives a perfect straight line with a slope 1/ν =
0.6112(38), and hence we can write

(pc − p) ∼ L−1/ν . (2)

We thus find that ν = 1.636(10) for WPSL, which is signif-
icantly different from the known value ν = 4/3 for all the
regular planar lattices. The relation given by Eq. (2) implies
that (pc − p)L1/ν is a dimensionless quantity in the sense
that for a given value of W , the value of (pc − p) → 0 as
L → ∞ such that the numerical value of (pc − p)L1/ν remains
invariant regardless of the lattice size L. We now plot W (p)
as a function of (pc − p)L1/ν [see Fig. 2(b)], and find that all
the distinct curves of Fig. 2(a) collapse onto a single universal
curve. It implies that

W (p) ∼ Lηφ((pc − p)L1/ν), (3)

with exponent η = 0, where φ is the scaling function [23]. It
states that the spanning probability W itself is a dimensionless
quantity and for infinite lattice sizes it would become like a
step function around pc [24].

The fact is that not all the occupied sites belong to the
spanning cluster. To this end, we define the percolation
probability P as the ratio of the area of the spanning cluster
Aspant to the total area of the lattice at , and hence P (p) = Aspan

since the total area of the lattice is always equal to one. Unlike
W (p) vs p, the distinct curves of the P (p) vs p plots [see
Fig. 3(a)] for different lattice sizes do not meet exactly at
pc, which we can only appreciate if we zoom in. Unlike the
W (p) vs p case, if we apply the same rule to the P vs p case
and plot P vs (p − pc)L1/ν , we do not get a data collapse.
Instead, we find that for a given value of (p − pc)L1/ν , the
P value decreases with lattice size L. To quantify the extent
of the decrease, we measure the heights at a given value of
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FIG. 2. (a) Plots of spanning probability W (p) vs p for different lattice sizes L = N1/2, where N = 1 + 3t and t = 1000, 6500, and 66 667.
The arrow points in the direction of increasing L. The inset shows a linear regression fit to the data points obtained by plotting ln(pc − p) vs
ln(L) with a slope 1/ν = 0.6112(38), where each data point represents an average over 300 000 independent realizations. (b) Excellent data
collapse confirms the correctness of our estimation of the exponent ν.

(p − pc)L1/ν for different L. Plotting them in the log-log scale,
we find a straight line [see the inset of Fig. 3(a)] with a slope
β/ν = 0.1357(5), and hence we can write

P ∼ L−β/ν. (4)

It implies that if we now plot PLβ/ν vs (p − pc)L1/ν , all the
distinct plots of P vs p should collapse into a single universal
curve. Indeed, we find an excellent data collapse, as shown
Fig. 3(b). This again implies that percolation probability P

exhibits finite-size scaling,

P (pc − p,L) ∼ L−β/νφ((p − pc)L1/ν). (5)

Now, using Eq. (2) in Eq. (4) to eliminate L in favor of p − pc,
we get

P ∼ (p − pc)β, (6)

where β = 0.222(2) for WPSL, whereas β = 5/36 for all
known planar lattices.

Percolation is all about clusters, and hence the cluster
size distribution function ns(p) plays a central role in the

description of the percolation theory. It is defined as the number
of clusters of size s per site. In terms of ns(p) we can define
fs = sns(p)/

∑
s=1 sns as the probability that the cluster to

which an arbitrary occupied sites belongs is exactly of size s.
The mean cluster size S(p) then is defined as

S(p) =
∑

s

sfs =
∑

s s2ns∑
s sns

, (7)

where the sum is over the finite clusters only. In the case of
percolation on the WPSL, we regard s as the cluster area. It is
important to mention that each time we evaluate the ratio of
the second and the first moment of ns , we also have to multiply
the result by t , the time at which the snapshot of the lattice
is taken, to compensate for the decreasing block size with
increasing block number N . The mean cluster size therefore
is S = 1

p

∑
s s2nst , where

∑
s sns = p is the sum of the areas

of all the clusters. Note that the spanning cluster is excluded
from both the sums of Eq. (7). In Fig. 4(a) we plot S(p) as a
function of p for different lattice sizes L. We observe that there
are two main effects as we increase the lattice size. First, we see
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FIG. 3. (a) Plots of percolation probability P (p) vs p for different sizes L(t) where the arrow points in the direction of increasing L(t), and
t = 2500, 6500, 13 500, 22 534, and 66 667. Here, each data point represents an average over 300 000 independent realizations. The inset shows
a plot of ln(P ) at a given value of (p − pc)L1/ν vs ln(L). The linear regression fit gives an excellent straight line with a slope β/ν = 0.1357(5).
(b) We plot PLβ/ν vs (p − pc)L1/ν instead of P vs p and find an excellent data-collapse which confirms that the estimates for the exponents β

and ν are correct.
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FIG. 4. (a) Mean cluster area S(p) vs p for different L. The arrow points in the direction of increasing L(t), where t = 2500, 6500, 13 500,
and 22 534. Here, each data point represents an average over 200 000 independent realizations. The inset shows a plot of ln(S) at a given
value of (p − pc)L1/ν vs ln(L). The linear regression yields an excellent straight line with a slope γ /ν = 1.7281(19). (b) We plot SL−γ /ν vs
(p − pc)L1/ν find that all distinct curves of (a) collapsed onto a single universal curve as expected according to finite-scaling hypothesis. It
confirms that the estimates for the exponents γ and ν are correct.

that the mean cluster area always increases as we increase the
occupation probability. However, as the p value approaches to
pc, we find that the peak height grows profoundly with L.

The increase of the height at a given value of (pc − p)L1/ν

with a linear lattice size L can be quantified by plotting these
heights versus L in the log - log scale, which gives a straight
line [see the inset of Fig. 4(a)], revealing

S ∼ Lγ/ν, (8)

where γ /ν = 1.7281(19). A careful observation reveals that
there is also a shift in the p value at which the peaks occur. We
find that the magnitude of this shift (pc − p) becomes smaller
with increasing L following a power law (pc − p) ∼ L−1/ν .
Plotting the same data of Fig. 4(a) by measuring the mean
cluster area S in units of Lb and (pc − p) in units of L−1/ν ,
respectively, we find that all the distinct plots of S vs p collapse
onto one universal curve [see Fig. 4(b)]. It again implies that
the mean cluster area also exhibits finite-size scaling,

S ∼ Lγ/νφ((pc − p)L1/ν). (9)

Eliminating L from Eq. (8) in favor of (pc − p) by using
(pc − p) ∼ L−1/ν , we find that the mean cluster area diverges
the following power law,

S ∼ (pc − p)−γ , (10)

with exponent γ = 2.827(20). This is also significantly differ-
ent from the known value γ ∼ 2.389 for all the regular planar
lattices.

We can also obtain the exponent τ by plotting the cluster
area distribution function ns(p) at pc. In Fig. 5(a) we plot
ns(pc) vs s in the log-log scale and find a straight line, except
near the tail, where there is a hump due to the finite-size effect.
However, we also observe that as the lattice size L increases,
the extent of the straight line increases, too. It implies that
if the size L was infinitely large we would have a perfect
straight line obeying ns(pc) ∼ s−τ . The slope of the straight
line τ = 2.0728(25), which is a little more than the known
value for planar lattices τ = 187/91. We already know that the

mean cluster area S → ∞ as p → pc. According to Eq. (7), S
can only diverge if its numerator diverges. Generally, we know
that

∑∞
s=1 sα converges if α < −1 and diverges if α � −1.

Applying it into both the numerator and the denominator of
Eq. (7) at pc gives a bound that 2 < τ < 3. Now, in the large
s limit we postulate a scaling ansatz

ns(p) ∼ s−τ e−s/sξ , (11)

where sξ is the cutoff cluster size. Using the ansatz in Eq. (7),
and taking the continuum limit we get

S ∼ s3−τ
ξ . (12)

We know that sξ diverges as (pc − p)1/σ , where σ = 1/(νdf ),
and hence comparing it with Eq. (10) we get

τ = 3 − γ σ. (13)

There exists another scaling relation τ = 1 + d/df which can
also be used to find the τ value. However, to use these we
need to know the fractal dimension df that quantifies the
extent of ramification of the spanning cluster. The fractal
dimension df quantifies the extent of ramification of the
spanning cluster. It can be obtained by finding the gradient
of the plot of the size of the spanning cluster M as a function
of lattice size L in the log-log scale [see Fig. 5(b)]. We find
df = 1.8642(19) and that for regular planar lattices df ∼

TABLE I. The critical exponents for percolation in the WPSL and
in the regular planar lattice are given alongside.

Exponents Regular 2D lattice WPSL

ν 4/3 1.636(10)
β 5/36 0.222(2)
γ 43/18 2.827(20)
τ 187/91 2.0728(25)
df 91/48 1.8642(19)
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FIG. 5. (a) The plot of log(ns) vs log(s) for different lattice sizes L = (1 + 3t)1/2, where t = 2500, 6500, 13 500, and 22 534. (b) The plot
of ln(M) vs ln(L). In either case, each data point represents an average over 100 000 independent realizations.

1.895. Note that a small difference in the fractal dimension
makes a huge difference in the stringiness or in the extent
of ramification of the object. Using the value df = 1.8642 in
the scaling relations gives 2.073 and 2.0728, which coincide
up to two to three decimal places to the one obtained
from Fig. 5(b). Besides the scaling relations for τ , we also
have scaling relations for β and γ , namely, β = ν(d − df )
and γ = ν(2df − d), which we can use for a consistency
check. To this end, we find that our estimates for various
exponents satisfy these relations up to quite a good extent. (See
Table I.)

To summarize, we have studied site percolation on a scale-
free multifractal planar lattice using extensive Monte Carlo
simulations. We obtained the pc value and the characteristic
exponents ν, β, γ , τ , σ , and df which characterize the
percolation transition. Note that it is the sudden onset of a
spanning cluster at the threshold pc, which is accompanied by a
discontinuity or divergence of some the observable quantities,
that makes the percolation transition a critical phenomenon.
One of the most interesting and useful results of percolation

theory is that the values of the various exponents depend only
on the dimensionality of the lattice as they are found to be
independent of not only the type of lattice (e.g., hexagonal,
triangular, or square, etc.) but also of the type of percolation
(site or bond). This central property of percolation theory
is known as universality. In 2004, Corso et al. performed
percolation on a particular mutifractal planar lattice whose
coordination number distribution is, however, not scale-free
as WPSL, and still they found that the exponents share the
same universality class as for the planar regular lattices [17].
Thus, for WPSL it was expected that the pc value would be
different due to the unique nature of its coordination number
distribution, but it was not expected to fall into a different
universality class. It would be interesting to check the role
of the exponents γ of the power-law coordination number
distribution in the classification of universality classes. We
intend to do so in our future endeavor.

One of us (M.K.H.) wishes to acknowledge helpful corre-
spondence with R. M. Ziff.
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