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We comment on the investigation of the connection between chaos and dynamically generated entanglement
in Lombardi and Matzkin [Phys. Rev. E 83, 016207 (2011)]. Whereas, in the referred paper, the authors give an
explicit example of a state initially localized in the regular region and still has entanglement properties similar
to the states localized in the chaotic region, a few clarifications related to previous works are in order. First,
it is crucial to point out that such a behavior can occur for states initially localized near the border between
the chaotic region and the regular island, which seems to be the case in the example provided in the referred
paper. We comment on the time evolution of such states and the extent to which these can be regarded as having
“regular dynamics.” Second, the degree to which entanglement is correlated with the chaos in the system is better
understood when we analyze the same initial state and increase the chaoticity in the system gradually. We also
discuss in what capacity entanglement can be regarded as a signature of chaos in such studies.
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The role of dynamical chaos in entanglement generation
has been extensively studied in the past decade [1-9]. The
main interest of these works is the connection of chaotic maps
with the generation of random states in the Hilbert states that
have typically high entanglement [5,7]. The primary focus
here is not whether a particular regular initial condition can
generate more entanglement but to study the entangling power
of chaotic maps and connections to random matrix theory.
Therefore, for fully chaotic classical maps, the corresponding
quantum counterparts generate random states in the Hilbert
space. And the bipartite entanglement for random states is
near maximal [5,7]. As an example, for large d-dimensional
spaces, the entanglement of a “typical state” picked at random
from a d; ® d, tensor product Hilbert space is given by the
Haar measure average of the entanglement over the whole
space that gives [10-12]
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For large dimensions, Edl od, = In dy — d;/(2d,), which is
close to the maximum possible value of entanglement. Fully
chaotic dynamics generates typical pure states in an uncon-
strained bipartite Hilbert space that are highly entangled [10].
It is in this sense the generation of “high” entanglement by
chaotic dynamics is universal.

Another observation of these works [5,6] is to study the
dynamically generated entanglement and its correlation with
the classical phase space. Performing numerical calculations of
the long-time averaged entanglement generated by the Floquet
map, clear evidence of its relationship to the classical phase
space is seen. The key focus of these studies is the corre-
lation of phase space with entanglement. Long-time average
entanglement is higher for states whose initial coordinates are
located inside the chaotic sea as compared to states localized
deep inside regular islands. As we get near the border between
a regular island and the chaotic sea (the “edge of chaos” in
Ref. [13]), the time average of the dynamically generated
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entanglement for an initial condition inside a regular island
increases and becomes comparable to a that of a state with
chaotic initial conditions. Therefore, entanglement effectively
picks out the features of the classical phase space—regular
islands from the chaotic sea, whereas the boundary between the
regular island and the chaotic sea remains blurred. Although
classical chaos can cause infinitely fine structures in the
phase space, Planck’s constant A limits the scale for such
structures in the quantum domain. Our resolution of the phase
space is determined by Planck’s constant. Therefore, quantum
entanglement is a signature of chaos if one considers it as a
tool to differentiate between regular islands from the chaotic
seain a coarse grained way. It is in this sense that entanglement
is a signature of chaos. This is also the case for quantum maps
with large Hilbert space dimension although the difference
between average entanglement in the regular region and the
chaotic region will be less pronounced for large Hilbert space
dimensions.

In this regard, for the state corresponding to dot “2” in
Fig. 9 in Ref. [14] where we are at the border between a regular
island and the chaotic sea (but still inside the regular island),
the entanglement generated is high and comparable to the state
in the chaotic sea (dot “1”). Such states are characterized by a
high value of entanglement. Such states have similar properties
to the states localized in the chaotic sea on other indicators of
quantum chaos, such as the properties of expansion coefficients
in the basis of Hamiltonian eigenstates [15]. It is to be noted
that the initial location of the quantum state in the phase space
inherently has some information about the system dynamics
as can be seen in the expansion of such a state in the basis of
Floquet eigenstates and its subsequent time evolution in this
basis. The entropy of overlap of these states with the Floquet
eigenstates is a signature of chaos [15].

It is important to analyze the system in a way in which it
gives us an unambiguous correlation of entanglement with
chaos. Lombardi and Matzkin [14] pick a particular state
on the border between the chaos and the regular island
and compare its entanglement properties to another state in
the chaotic sea. In their approach the dynamics (i.e., the
quantum map) remains the same while they compare two
different initial conditions. They do find that regular initial
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FIG. 1. (Color online) Flooding of a coherent quantum state, initially localized in the regular region with 6 = 1.7416, ¢ = 2.8728 [shown
by the red dot in the classical phase space in (a)] in the chaotic sea. (b) At t = 1, the Husimi representation of the initial state is well
localized. (c) Att =5, the state is primarily in the regular island with a little support in the chaotic sea. (d)—(f) are the Husimi representations
at r =25, t = 34, and t = 86, respectively, showing the initial state has “flooded” the chaotic sea. The spin size j is equal to 10, and the

parameters of the map are @« = 27 x 0.95 and k¥ = 5.

conditions can generate more entanglement. However, to
what degree “regular initial” conditions are equivalent to a
“regular dynamics” for the quantum map when we have a
map that classically generates a mixed phase space is unclear.
Quantum dynamics, like classical dynamics, has two important
components—initial conditions and the time evolution. It is
unclear how a regular initial condition for a quantum map
whose classical counterpart has a mixed phase space (or
even an almost chaotic phase space in the extreme case!)
can be considered and classified as regular dynamics. For
systems with a mixed phase space the separation into regular
and chaotic dynamics is complicated, and chaotic eigenstates
“flood” in the regular islands [16]. From a dynamical point
of view, the wave packet from the regular islands can flood
into the chaotic sea and vice versa (Fig. 1). Therefore, such a
dynamics can hardly be regarded as regular dynamics, and the
high dynamical generation of entanglement is not surprising.
Moreover, the comparison of this with a “classically regular
dynamics” is of limited value.

Such a dynamics will not have the necessary eigenvalue
statistics and level repulsion which is a hallmark of regular
quantum maps and it is inaccurate to classify such a dynamics
as regular. Fully regular quantum maps corresponding to
a completely regular classical dynamics have Poisson level
statistics which gets perturbed when we consider mixed
phase spaces. The example given in Ref. [14] has regular
initial conditions, however the map as a whole generates an
intermediate level of chaos through a mixed phase space.
It is for this reason when we talk about entanglement as a
signature of chaos, we either consider entangling power of

fully chaotic maps or consider the association of phase space
with entanglement in a coarse grained fashion. Therefore,
we disagree with this being regarded as a “refutation” of
universality [17] as, to the best of our knowledge, this was
never the claim in the previous works.

Moreover, this distinction gets even more blurred when we
consider the so called “edge states,” i.e., the state on the border
between a regular island and the chaotic sea [13] as we have
already discussed.

It is therefore important to see how chaos correlates with
the dynamically generated entanglement for the same initial
state as we increase the chaoticity parameter in a systematic
manner. The rationale for this is to study unambiguously
how, for a fixed family of maps, the degree of chaoticity
is related to entanglement generation for particular coherent
states. We can then determine how this initial state behaves
under different dynamics characterized by different degrees of
chaos. Another way is to average the entanglement over initial
states in the regular island and compare it with the average
value of entanglement for initial states over the chaotic sea.

We give an example of this approach. We consider the
quantum kicked top (QKT) [6,18] and take the initial states as
coherent states in the familiar way. To study the dynamics of
entanglement, we use an N-qubit representation of the QKT
[4,14], and we trace out two qubits and calculate entanglement
between these two qubits and the rest of the system. The
entanglement measure chosen is the linear entropy. Figure 2
shows the average entanglement generated for the same
initial state, given by (0 = 2.25, ¢ = 1.05) and j = 10 as
we gradually increase the chaoticity parameter. The average is
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FIG. 2. (Color online) Average entanglement E as a function of
the chaoticity parameter « for the kicked top for j = 10. The average
is calculated over the first 350 kicks. The initial state is given by
60 =225, ¢ = 1.05.

calculated over the first 350 kicks. The number of kicks chosen
should be long enough to capture the periodic modulations of
entanglement in the regular region. We see a strong correlation
between the degree of chaos in the system and the average
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value of entanglement generated. As we increase the degree of
chaos in the system, the initial state transitions from being in
the regular island to be on the border and then finally lies
in the chaotic sea. Therefore, for a fixed family of maps,
the generation of entanglement is correlated with the degree
of chaos in the system. We believe that the initial states
mentioned in Ref. [14] follow similar entanglement behavior
as a function of chaoticity. In order to study the entanglement
generated in different parts of the phase space, we calculate
the average entanglement of the chaotic and regular regions,
and we take a grid of coherent states across the phase space.
Each point on the grid is classified as regular or chaotic by
the Lyapunov exponent of the classical dynamics. Weighting
these values according to the measure on phase space gives
us an average entanglement of E = 0.615 in the chaotic sea
and E = 0.344 in the regular islands. Therefore, using the
average value of entanglement, one can distinguish regular
islands from the chaotic sea. In Ref. [6] it was shown how the
average entanglement contour plots correlate with the classical
phase space (Figs. 1 and 6). This approach helps us to see a
quantitative difference between the entanglement generated
in different regions of phase space without considering a
particular state.

To summarize, we have briefly discussed in what way
entanglement is regarded as a universal signature of chaos,
and this Comment is to clarify and complement the findings
of Ref. [14].
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