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Evaluating the concentration dependence of static and dynamic properties of macromolecules in semidilute
polymer solutions requires accurate calculation of long-range hydrodynamic interactions (HI) and short range
excluded volume (EV) forces. In conventional Brownian dynamics simulations (BDS), computation of HI
necessitates construction of a dense diffusion tensor commonly performed via Ewald summation. Krylov subspace
techniques allow efficient decomposition of this tensor [computational cost scales as O(N2), where N is the
total number of beads in bead-spring representation of macromolecules in a simulation box] and computation of
Brownian displacements in the box. In this paper, a matrix-free approach for calculation of HI is implemented
which leads to O(N log N ) scaling of computational expense. The fidelity of the algorithm is demonstrated by
evaluating the asymptotic value of center-of-mass diffusivity of polymer molecules at very low concentrations
and their radius of gyration scaling as a function of number of beads for dilute and semidilute solutions (with
concentrations up to 5 times the overlap concentration). In turn, a favorable comparison between our results and
the blob theory is shown.
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I. INTRODUCTION

The effect of concentration on equilibrium and dynamic
properties of polymer solutions has been observed experi-
mentally even at very low concentrations [1–3]. Accurate
determination of the aforementioned properties of the polymer
solutions near or above c∗ (the concentration at which chains
begin to partially overlap at equilibrium), i.e., the semidilute
regime, is of great importance to the polymer physics as well
as polymer processing communities. To this end, development
of high-fidelity and computationally efficient simulation tech-
niques for this class of fluids is important both from a scientific
perspective and in industrial applications.

Brownian dynamics simulation (BDS) is a mesoscopic
simulation technique that has been extensively used to study
the equilibrium and nonequilibrium properties of solutions in a
broad range of solute concentration, e.g., dilute and semidilute
suspension of particles with simple or complex shapes [4–6]
or synthetic and biological polymeric solutions [7–12]. In
BDS, the influence of the solvent on the mesoscale solutes is
implicitly considered via random Brownian and hydrodynamic
drag forces.

In polymeric solutions, hydrodynamic interaction (HI) is
present which results in the perturbation of the velocity
field around a polymer segment due to the movement of all
segments of the same chain (intrachain interaction) and the
segments of other chains (interchain interaction). Simulations
of large multichain systems are predominantly performed
for a homogeneous system in an unbounded domain, which
necessitates the application of a periodic boundary condition.
Excluded volume (EV) is another important interaction that
needs to be considered. This interaction is short range, in the
sense that the interaction is restricted to the entities involved
in the cutoff radius. For polymer solutions, the EV effect
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arises due to the fact that polymer segments cannot physically
overlap and consequently there is a repulsive force between
different parts of molecules [13]. Clearly, this could indirectly
introduce an attractive interaction between the polymer and the
solvent.

For dilute polymer solutions in the presence of HI, the
most time consuming operation in performing BDS is the de-
composition of the diffusion tensor [12]. The straightforward
approach for the decomposition is the Cholesky factorization,
which for a bead-spring chain with Nb beads requires O(N3

b )
operations [4]. The Chebyshev polynomial and the Krylov
subspace based techniques are two elegant alternatives which
can reduce the number of operations to O(N2.25

b ) and O(N2
b ),

respectively. Recent comparison of the three aforementioned
techniques has revealed that the Krylov subspace approach is
the best choice, for all Nb � 10, when the diffusion tensor is
updated at each time step [12]. In semidilute polymer solutions,
Nc chains are considered in a periodic box, so the number
of interacting beads is N = NcNb. Due to the long-range
nature of HI, each bead interacts not only with the beads
inside the primary simulation box, but also with particles in
all periodic replicas (images) of the primary box. This sum is
known to be slowly and/or conditionally convergent [14,15].
Similar to electrostatic interactions (which is also an example
of long-range interaction), Ewald summation can be employed
to split the original sum into two exponentially decaying sums
in real and reciprocal spaces [14–16]. In this approach, one
can distribute the computational load between the real and
reciprocal space sums by tuning a parameter α, such that one of
the computations scales as O(N ) and the other scales as O(N2)
[15]. Hence, in a straightforward implementation of the Ewald
sum, the construction of the diffusion matrix requires O(N2)
operations. This procedure followed by the decomposition
which also scales as O(N2) (if the Krylov subspace method
is used) are the most cost prohibitive procedures in simulating
polymer solutions with concentrations well above c∗. Similar
arguments apply for colloidal suspensions which contain N

particles in the simulation box.
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To mitigate the high computational cost of simulating
long-range electrostatic interactions, approximation methods
such as particle mesh Ewald (PME) [17,18] and/or particle-
particle particle-mesh (P3M) [19,20] have been successfully
introduced. Smooth particle mesh Ewald (SPME) is another
variant of PME which has improved accuracy due to utilization
of high-order B-splines instead of the Lagrange function in
PME, in the grid value assignment and interpolation parts of
the algorithm. In this approach, small subset of interacting
particles is treated in real space while the main load (a large
number of particles) is transferred to the reciprocal space sum
where fast Fourier transform (FFT) is employed to accelerate
the computations. Efficient implementation of this method
leads to scaling of O(N log N ).

Guckel [21] applied the PME method developed for
electrostatic interactions to hydrodynamic interactions of rigid
particles in Stokes flow. Subsequently, Brady and co-workers
introduced accelerated Stokesian dynamics (ASD) [22,23]
which benefits from PME algorithm in the calculation of
the far-field mobility matrix. Saintillan et al. [6] combined
SPME and ASD algorithms to simulate long-range HI of
sedimenting fibers. For polymer solutions confined between
two parallel walls, Hernández-Ortiz et al. [24,25] introduced
a “general geometry Ewald-like” BDS method that scales as
O(N1.25 log N ). In the context of BDS, Jain et al. [15] used
another class of optimization which is based on the original
Ewald summation but with an optimal value of α, such that
computational expense is evenly distributed between real and
reciprocal space sums. Jain et al. also used the Chebyshev
polynomial approximation for calculating the decomposition
of the diffusion tensor and were able to obtain a computational
time that scales as O(N1.8).

Recently, Liu and Chow [26] introduced the “matrix-free”
approach in the context of BDS of colloidal suspensions. In
their approach, the computational burden of the real space
sum is substantially reduced by considering the interaction of
particles within a small cutoff radius. This causes the real part
of the diffusion matrix to be highly sparse; hence, it can be
efficiently computed. To compute the decomposition of diffu-
sion tensor, Liu and Chow used the Krylov subspace method
(Note that, in a matrix-free algorithm, the direct decomposition
of diffusion matrix, e.g., the Cholesky factorization, cannot
be used; see Sec. II C). On the other hand, the reciprocal
part is calculated using highly efficient FFT routines. The
method is capable of simulating systems with as many
as 500 000 particles.

While the Ewald summation for HI in ASD is based on
the Oseen-Burgers tensor [22], Beenakker’s Ewald sum [14]
which is widely used in BDS is based on the Rotne-Prager-
Yamakawa (RPY) tensor [15,16,26,27]. The RPY tensor
consists of two branches: namely a far-field solution and the
regularization of the singularity which occurs for interbead
distances of less than the diameter of a bead (see Sec. II A).
The Beenakker solution only considers the far-field part of the
RPY tensor. This solution works well only when the beads
do not overlap, which is the case if a strong enough EV
potential is utilized. However, there should be a correction
to the original Beenakker formula for the simulation of the
systems where the overlap of the beads is permitted, e.g.,
θ solutions. Zhou and Chen [27] and Jain et al. [15] resolved

this issue by appropriately taking into account the second
branch of the RPY tensor in the case of an overlap.

In this work, we start by formulating the stochastic
differential equation (SDE) such that it can be used in both
Euler-Murayama as well as semi-implicit predictor-corrector
schemes [8,12,28]. Then, we adopt a matrix-free algorithm for
simulating semidilute polymer solutions where an optimized
version of the Krylov subspace approach recently developed
for calculating Brownian displacements [12,29] is imple-
mented. Compared to the original implementation of a matrix-
free approach for colloidal suspensions [26], our implemen-
tation has the extended capability of correctly accounting for
the overlap between the beads, which is particularly important
for polymer solutions in θ solvent or slightly better-than-θ
solvent. Also in this work, the EV potential is incorporated
using the soft Gaussian potential, which has been extensively
used in predicting the behavior of macromolecules in slightly
better-than-θ solvent and good solvent [12,30,31]. Overall,
our algorithm has several improved features when compared
to those of Stoltz et al. [16] and Jain et al. [15]: (i) it uses highly
efficient libraries for sparse matrix vector multiplication (math
kernel library or MKL) to calculate the real space contribution
of the diffusion tensor; (ii) FFT calculations are performed
using the efficient MKL routines; (iii) fine-grained level
parallelization for shared memory platforms using OpenMP
has been added.

II. SIMULATION ALGORITHM

A. Governing equations

The dynamics of a macromolecule in semidilute polymer
solutions can be expressed using a coarse grained bead-spring
model [15,16,27]. In this micromechanical model, the linear
flexible polymer molecule with NK independent statistical
Kuhn steps is discretized using Nb identical beads, which
resemble the centers of hydrodynamic resistance, connected
by Nb − 1 springs, which account for the entropic force
between the neighboring beads. For simulation of a semidilute
polymer solution, there are Nc bead-spring chains in the
simulation box. The box is assumed to have sides with
equal length L; i.e., V = L3. Therefore, the concentration
of beads in the box is given by c = N

V
, where N = NcNb.

In what follows, we use the convention that ν,μ = 1, . . . ,N ,
β = 1, . . . ,Nb, γ = 1, . . . ,Nb − 1, i = 1, . . . ,Nc, and q,s =
1,2,3. The configurational state of the system can be specified
by the position vector of all beads rν , or equivalently using
the connector vectors of all springs in the simulation box
Qi,γ and the center of mass of all chains rc,i . As it was
shown in earlier studies of bead-spring models [7,8,12], the
Itô stochastic differential equation of motion which describes
the time evolution of beads in the bead-spring model can
be nondimensionalized using the the time scale λH = ζ/4H

and length scale lH = √
kBT /H , where ζ is the bead friction

coefficient, which relates the hydrodynamic radius of the bead
ab to the solvent viscosity ηs through the Stokes relation,
i.e., ab = ζ/6πηs . H is Hooke’s spring constant, kB is the
Boltzmann constant, and T is the absolute temperature. As
we are dealing with the equilibrium properties of semidilute
polymeric solutions in this paper, the terms regarding the flow
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are not present in the SDE. Furthermore, since we employ
the RPY HI tensor [8], the nondimensionalized SDE does not
contain the spatial derivative of the diffusion tensor and can be
represented as follows (note that the variables expressed in the
rest of the paper are dimensionless unless otherwise stated):

d Q̃ ≡ ˜̄B · dr = ˜̄B ·
⎡
⎣1

4

u︷ ︸︸ ︷
D · Fφ dt + 1√

2
C · dW

⎤
⎦, (1)

where t denotes time, Q̃ is a block column vector consisting
of Nc block vectors Qi , each of which contains Nb − 1
connector vectors between the adjacent beads of an individual
chain i, i.e., Qi,γ = rν+1 − rν and ν = (i − 1)Nb + γ . ˜̄B is
a diagonal square block matrix with dimensions Nc, where

each of its diagonal elements is B̄, which is the transformation
matrix used by Bird et al. [7] to convert position vectors to
connector vectors and is defined as

B̄ =

⎡
⎢⎢⎣

−δ δ 0 · · · 0
0 −δ δ · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −δ δ

⎤
⎥⎥⎦

Nb−1×Nb

(2)

with δ being the 3 × 3 unit tensor. The diffusion matrix D is
also a block matrix which contains N × N blocks and, due to
the long-range nature of HI, each block involves the sum of
the corresponding RPY HI tensor ϒνμ over infinite periodic
images. ϒνμ between the beads ν and μ is written as

ϒνμ =

⎧⎪⎪⎨
⎪⎪⎩

δ, ν = μ,

3
√

πh∗
4rνμ

[(
1 + 2πh∗2

3r2
νμ

)
δ + (1 − 2πh∗2

r2
νμ

) rνμrνμ

r2
νμ

]
, ν �= μ, rνμ � 2

√
πh∗,[(

1 − 9rνμ

32
√

πh∗
)
δ + 3

32
√

πh∗
rνμrνμ

rνμ

]
, ν �= μ, rνμ < 2

√
πh∗,

(3a)

(3b)

(3c)

where rνμ = |rνμ| and rνμ = rν − rμ. h∗ is the hydrodynamic
interaction parameter which is related to the dimensionless
hydrodynamic radius: h∗ = (1/

√
π )a and a = ab

lH
. Note that

Fφ = FS + FEV is the block force vector defined based on
all conservative interactions, i.e., FS

ν which is the net spring
force and the FEV

ν , the total EV force on a bead due to the
interaction with all other beads. FS

ν is obtained from the tension
in the neighboring springs Fc

i,γ and Fc
i,γ−1 with Fc

i,γ defined
based on the connector vector between the adjacent beads,
Qi,γ , and the corresponding force law. For instance, the finitely
extensible nonlinear elastic (FENE) force law, which refers to
the Warner approximation to the inverse Langevin function, is
written as

Fc
i,γ = Qi,γ

1 − Q2
i,γ /b

(4)

where Qi,γ = | Qi,γ | and
√

b is the maximum dimensionless
length of polymer springs. Other forms of force law can
be found elsewhere [12]. FEV

ν is calculated using the soft
Gaussian potential introduced by Prakash and Öttinger [30]:

FEV
ν =

{∑
μ �=ν

(
z∗
d∗5

)
rνμ exp

(− r2
νμ

2d∗2

)
, rνμ � rc,F ,

0, rνμ > rc,F ,
(5)

where the parameter z∗ is an indication of EV potential strength
and d∗ specifies the spatial range of the potential. The solvent
quality can be shown to scale with the square root of molecular
weight, i.e., z = z∗

χ(b)3

√
Nb. In this equation, χ is a function

of b due to finite extensibility of the chain, where in the limit
of a Hookean spring χ = 1. χ (b) can be directly obtained for
a given force extension behavior [31], and for the case of the
FENE force law it is χ2 = b

b+5 . The effective radius for EV
interaction is specified with rc,F . Note that the conservative
spring force on the beads is obtained by using the relation
FS = − ˜̄BT · Fc. Also, the term D · Fφ can be interpreted as
a vector containing the velocity u of all beads.

C is the coefficient matrix which satisfies the equation

D = C · CT . (6)

The solution to Eq. (6) is not unique. Cholesky decomposition
is a straightforward approach to determine C; however as
its computational expense scales with O(N3), polynomial
approximation of D1/2, e.g., the Chebyshev or the Krylov
based techniques are the two best alternatives [12]. Since the
diffusion tensor is symmetric, the Lanczos approach is used
to construct the orthonormal basis for the Krylov subspace.
In the rest of the paper, “Lanczos” is used to designate the
Krylov subspace technique. W is a 3N dimensional Wiener
process [8], defined for all beads in the simulation box.

The evolution equation for the position of center of mass of
the chain i, i.e., rc,i = (1/Nb)

∑Nb

β=1 r i,β , is written as

r
q

c,i;n+1 = r
q

c,i;n + 1

Nb

⎡
⎣1

4

Nb∑
β=1

u
q

{i,β};nt + 1√
2

Nb∑
β=1

S
q

{i,β};n

⎤
⎦,

(7)

where {q = 1,2,3} refers to the three Cartesian coordinates
and Sn = Cn · Wn is the Brownian displacement after n

time steps.
The numerical integration of the governing differential

equation [Eq. (1)] can be performed by either the Euler-
Murayama or a semi-implicit predictor-corrector scheme [12].
We have implemented both integration methods. In the
predictor-corrector scheme, as Fφ gets updated in the corrector
steps it is necessary to calculate D · Fφ , which in the case of
large N is a very expensive procedure. On the other hand, at
equilibrium where 10−3 � t � 10−2, the Euler-Murayama
method results in sufficient accuracy. Hence, this method
is used in the computations reported in this paper. How-
ever, in nonequilibrium simulations, the difference between
the appropriate time step for the Euler-Murayama and the
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semi-implicit predictor-corrector can be around three orders
of magnitude, particularly at high flow strength [32]. This
issue, namely, the efficiency of the predictor-corrector versus
the Euler-Murayama method for nonequilibrium simulations,
will be addressed in a future communication.

It should also be noted that the conversion of Q̃ to R, where
Ri,β = r i,β − rc,i , is achieved with the help of the equation
R = B̃ · Q̃, and the matrix B̃ is an Nc × Nc matrix with only
diagonal nonzero blocks B that are defined as

Bβγ =
{ γ

Nb
δ, γ < β,

−[1 − γ

Nb

]
δ, γ � β,

(8)

B. Ewald representation of an infinite sum

It was stated in the Sec. II A that Dνμ contains the
hydrodynamic interaction of bead ν with beads μ not only
in the simulation box (primary image) but also in all other
replicas of the primary image which span the entire space. It is
known that HI is long range in nature, i.e., it scales with 1/r .
Therefore, to overcome the convergence issue of the infinite
sum, Beenakker [14] used the idea of Ewald summation to
split the sum into two exponentially decaying sums, one in
real space and the other in reciprocal (or Fourier) space:

Dνμ = Dself
νμ + Dreal

νμ + Drecip
νμ , (9)

where the first term is the correction due to self interaction
and the last two terms are the contributions of the real and
the reciprocal space summations, respectively. Each term is
written as

Dself
νμ =

(
1 − 6√

π
αa + 40

3
√

π
α3a3

)
δνμδ, (10a)

Dreal
νμ =

′∑
n∈Z3

M (1)
α (rνμ,n), (10b)

Drecip
νμ = 1

V

∑
kλ �=0

exp(−ikλ · rμν)M (2)
α (kλ). (10c)

Here, the parameter α controls the relative computational load
between the reciprocal and the real space and hence their
convergence rate. If large values of α are selected, the real
space sum converges faster than its reciprocal counterpart.
δνμ is the Kronecker delta. The vector n = (nx,ny,nz) with
integer components specifies all images including the primary
image (n = 0). However, as indicated by the prime on the
summation over n, n = 0 is omitted for ν = μ. M (1)

α is a 3 × 3
matrix which is a function of the vector connecting bead μ to
beads ν in different images, i.e., rνμ,n = rν − rμ + nL. M (1)

α

is written as

M (1)
α (r) =

[
C1 erfc (αr) + C2

exp(−α2r2)√
π

]
δ

+
[
C3 erfc (αr) + C4

exp(−α2r2)√
π

]
r r
r2

, (11)

where r = |r|, erfc( ) denotes the complementary error
function, and the C1, . . . C4 parameters are defined as follows:

C1 = 3a

4r
+ a3

2r3
,

C2 = 4α7a3r4+3α3ar2−20α5a3r2− 9

2
αa+14α3a3+ αa3

r2
,

C3 = 3a

4r
− 3a3

2r3
,

C4 =−4α7a3r4−3α3ar2+16α5a3r2+ 3

2
αa−2α3a3− 3αa3

r2
.

(12)

In Eq. (10c) kλ = 2π
L

l where l ∈ Z3, and M (2)
α is written as

M (2)
α = m(2)

α

(
δ − kλkλ

k2

)
, (13)

where k = |kλ| and m(2)
α is defined as

m(2)
α =

(
a − a3k2

3

)(
1 + k2

4α2
+ k4

8α4

)
6π

k2
exp

[
− k2

4α2

]
.

(14)

Equation (10b) implicitly assumes no overlap between the
beads, since Beenakker [14] exploited Eq. (3b) to derive the
Ewald sum of the RPY formulation for the HI tensor. To
remove this assumption, Zhou and Chen [27] introduced a
correction which is applied by adding Eq. (3c) to the real part
of the diffusion tensor for a pair of beads and subsequently
subtracting Eq. (3b) when there is an overlap between the two
beads. This is particularly important for the primary image and
all the images in its vicinity (27 replicas in total). This approach
is equivalent to adding a 3 × 3 matrix M∗ to the right-hand
side (RHS) of Eq. (10b) in the case of an overlap [15]:

Dreal
νμ =

′∑
n∈Z3

M (1)
α (rνμ,n) + M∗(rνμ,n)(1 − δνμ), (15)

where M∗, which is included only for ν �= μ, is defined as

M∗ =
{

0, r � 2a,[
1− 9r

32a
− 3a

4r
− a3

2r3

]
δ + [ 3r

32a
− 3a

4r
+ 3a3

2r3

]
r r
r2 , r < 2a.

(16)

C. SPME representation of an infinite sum

In this section, we present the matrix-free approach that
is employed for the simulation of semidilute bead-spring
polymer solutions. This approach uses the smooth particle
mesh Ewald method for the calculation of reciprocal space
sum based on the original SPME method for electrostatic
interactions by Essmann et al. [18]. PME based techniques
for dealing with long range HI were also considered previ-
ously [6,22,26]. Our matrix-free approach is very similar to
the one implemented by Liu and Chow [26] for simulation of
suspension of Brownian particles, and hence we try to follow
similar nomenclatures and notations throughout this section.
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Primarily, we are looking to obtain uν = (D · Fφ)ν =∑
μ Dνμ · Fφ

μ . The RPY Ewald operator on the force Fφ

can be expressed as

D · Fφ =
ureal︷ ︸︸ ︷

Dreal · Fφ +
urecip︷ ︸︸ ︷

Drecip · Fφ +
uself︷ ︸︸ ︷

Dself · Fφ , (17)

where the three terms on the RHS are related to the real,
reciprocal, and self parts of the RPY interaction tensor. The
reciprocal term can be written as

urecip
ν =

∑
kλ �=0

∑
μ=1

exp(−ikλ · rμν)M (2)
α (kλ) · Fφ

μ. (18)

After some minor manipulations, Eq. (18) can be rewritten as

urecip
ν =

∑
m �=0,μ

exp(2πim · rν)M (2)
α (2πm′)

× exp(−2πim · rμ)Fφ
μ, (19)

where m, the reciprocal lattice vector, is defined by m =
m1a

∗
1 + m2a

∗
2 + m3a

∗
3 , where a∗

q parameters are the conjugate
reciprocal vectors defined based on as parameters which are
the unit vectors that form the edges of the simulation box.
The two aforementioned vectors are related as a∗

q · as = δqs .
For a box with dimensions L × L × L, m = 1

L
(m1,m2,m3),

where the mq range is 0, . . . ,K − 1. Note that the periodic
feature of complex exponentials was used to map the range
of kλ to those of mesh grid points. Also, kλ = 2πm′ and
m′ = m′

1a
∗
1 + m′

2a
∗
2 + m′

3a
∗
3 , where m′

q is defined as

m′
q =

{
mq, 0 � mq � K/2,

mq − K, otherwise.
(20)

The term
∑

μ exp (−2πim · rμ)Fφ
μ can be interpreted as the

discrete Fourier transform of the forces Fφ
μ, i.e., F̃(m):

urecip
ν =

∑
m �=0

exp(2πim · rν)M (2)
α (2πm′) · F̃(m); (21)

here the summation over m can be regarded as the inverse
Fourier transform.

1. Spreading the forces

As it was shown above,

F̃(m) =
∑

μ

{∏
q

exp

(
−2πi

mq

K
ξμ,q

)}
Fφ

μ; (22)

here ξμ,q = K/Lrμ,q . To take advantage of the fast Fourier
transform (FFT), the force on the nonequally spaced particles
cannot be directly used. Instead, the forces have to be spread
onto a regular mesh, which is the primary task of PME
based methods. This can also be achieved by interpolating a
complex exponential on the regular grid defined earlier using
the properties of Euler exponential splines [18]:

exp

(
−2πi

mq

K
ξμ,q

)
≈ b∗

q(mq)
+∞∑

k=−∞
Mp(ξμ,q − k)

× exp

(
−2πi

mq

K
k

)
. (23)

FIG. 1. (Color online) Spreading the force on a regular mesh,
where the cells represent the grid points. The filled cell is the nearest
point to the particle and the cells bounded by the dash-dotted line are
p3 grid points at which the force on the particle is distributed.

The functions Mp are the cardinal B-splines of order p

(piecewise polynomials of degree p − 1):

M2(x) =
{

1 − |x − 1|, 0 � x � 2,

0, x < 0, x > 2,

Mp(x) = x

p − 1
Mp−1(x) + p − x

p − 1
Mp−1(x − 1), p > 2.

(24)

The Mp functions spread the forces for the particles near the
boundaries based on the corresponding periodic grids inside
the simulation box. b∗

q(mq) is the complex conjugate of bq(mq)

which is given by bq(mq) = exp [2πi(p−1)mq/K]∑p−2
k=0 Mp(k+1) exp (2πimq k/K)

. The

distribution of the forces on the nearby grids is depicted in
Fig. 1.

2. Forward Fourier transform (3D FFT)

Now Eq. (22) is approximated as

F̃(m) ≈ F̂(m) =
{∏

q

b∗
q(mq)

}
F [Fφ,g](m1,m2,m3), (25)

where Fφ,g are the forces on the regular grid, i.e., Fφ,g =∑
μ {∏q Mp(ξμ,q − kq)}Fφ

μ, and F [·] is the forward FFT
operator which is defined as

F [Fφ,g](m1,m2,m3) =
K−1∑

k1,k2,k3=0

{∏
q

exp

[
−2πi

mqkq

K

]}

× Fφ,g(k1,k2,k3). (26)
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3. Backward Fourier transform (3D IFFT)

Now back to Eq. (21), again we use the properties of Euler exponentials but this time for exp (2πim · rν):

urecip
ν =

K−1∑
k1,k2,k3=0

{∏
q

Mp(ξν,q − kq)

}∑
m �=0

{∏
q

bq(mq)b∗
q(mq)

}
M (2)

α (2πm′) · F [Fφ,g](m1,m2,m3)

{∏
q

exp

[
2πi

mqkq

K

]}
.

(27)

If we define the influence function I(m1,m2,m3), which is a 3 × 3 matrix at each of K × K × K grid points, as I(m1,m2,m3) =
{∏q |bq(mq)|2}M (2)

α (2πm′), then

urecip
ν =

K−1∑
k1,k2,k3=0

{∏
q

Mp(ξν,q − kq)

}
F−1[I · F [Fφ,g]], (28)

where

F−1[I · F [Fφ,g]](k1,k2,k3) =
∑
m �=0

(I · F [Fφ,g])(m1,m2,m3)

{∏
q

exp

[
2πi

mqkq

K

]}
.

4. Interpolation of the velocities to particle positions

Equation (28) is interpreted as the back interpolation
of the velocities on the grid, i.e., urecip,g(k1,k2,k3) =
F−1[I · F [Fφ,g]](k1,k2,k3), to the positions of the particles,
which is done with the same functions used for the spreading
task.

D. Accuracy of Ewald summation

The parameters which influence the accuracy of the Ewald
summation technique are identified as Ewald parameter α,
which changes the distribution of load between real and
reciprocal space sums, real space cutoff radius rc,D , and kmax,
a parameter which defines the accuracy of the reciprocal
space summation. As shown below, these three parameters are
related. In fact, only rc,D and kmax are required to be optimized
to ensure the accuracy of the Ewald summation.

Fincham [33] proposed a method to choose the optimal val-
ues of these parameters for electrostatic interactions. Similar
discussions were made by Jain et al. [15] for the hydrodynamic
interactions. Following the arguments made by Fincham [33]
and Jain et al. [15] and based on Eqs. (11) and (14), the con-
vergence of the real and reciprocal space sums is determined
by exp (−α2r2

c,D) and exp (− k2

4α2 ), respectively. Mexp is defined
such that exp (−M2

exp) becomes negligibly small, therefore

α = Mexp

rc,D

, kmax = 2M2
exp

rc,D

. (29)

Hence, the accuracies of the real and reciprocal space sums and
therefore the Ewald summation are tuned using rc,D and Mexp.

III. OPTIMAL FEATURES OF THE
MATRIX-FREE ALGORITHM

This section summarizes the main distinguishing features
of the matrix-free method as compared to the original Ewald
summation as well as the straightforward implementations of
PME based algorithms. As the term “matrix-free” implies, all
instances of matrix variables are avoided in the numerical
calculations. Specifically, Drecip · Fφ is directly calculated
using the SPME technique without explicitly calculating

Drecip. Dself is diagonal and therefore is calculated efficiently
without storing the matrix. Dreal is, in general, a dense matrix
which is made sparse in the matrix-free approach (as will
be described in detail in Sec. III A). ˜̄B and B̃ are both
highly sparse and are treated efficiently using optimized MKL
routines for sparse matrices.

A. Sparsification of Dreal

As pointed out earlier in the paper, Dreal has to be
sparse in the matrix-free approach. To this end, rc,D is made
very small such that each bead interacts with only a few
surrounding beads. The sparse Dreal is then constructed using
the combination of the cell linked list and the Verlet list [34,35].
As the elements Dreal

νμ are 3 × 3 tensors, the sparse variant
of Dreal is stored based on the MKL’s block compressed
sparse row format [26]. Furthermore, as Dreal is symmetric,
MKL’s sparse matrix vector (SpMV) operations for symmetric
matrices are used in the calculation of Dreal · Fφ and SpMV
operations which are involved in the Lanczos algorithm.

B. Efficient implementation of SPME

Following the original matrix-free approach for HI [26], the
N × K3 transformation matrix P is defined as

P (μ,k1 + k2K + k3K
2) =

⎧⎨
⎩

3∏
q=1

Mp(ξμ,q − kq)

⎫⎬
⎭; (30)

note that P has only p3 nonzero terms at each row, which
means that it is considerably sparse. It is stored according to
the well-known compressed sparse row format. In addition, P
only depends on the configuration of the system and hence can
be computed a priori in each time step and reused for all the
corresponding SpMV operations involved in the calculation of
D · Fφ and the Lanczos decomposition.

Next, the forces on the particles are spread to the regular
grid, [

Fφ,g
x ,F φ,g

y ,F φ,g
z

] = P T · [Fφ
x ,F φ

y ,F φ
z

]
.
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Then, the forward 3D FFT at all grid points, i.e., F [Fφ,g],
is performed using efficient MKL discrete Fourier transform
interfaces. In this regard, an “in-place real-complex” storage
scheme is used which is more efficient than the “out-place
complex-complex” variant from the memory transactions
perspective.

Subsequently, the influence function is applied by calcu-
lating I · F [Fφ,g] again at all grid points. It is obvious from
the definition of I in Sec. II C 3 that influence function is
not dependent on configuration of the system. Hence, it can be
stored once the number of mesh points is known. However, the
memory efficient way of storing this function is to store only
{∏q |bq(mq)|2}m(2)

α and calculate (δ − kλkλ

k2 ) on the fly [26].
Furthermore, owing to the inversion symmetry of reciprocal
space, the influence function is stored for about half of the grid
points [15,26]. This operation is followed by the inverse 3D
FFT, where F−1[I · F [Fφ,g]] is calculated at the regular grid
points.

The last step in SPME is to interpolate the velocities at grid
points to the location of the particles,[

urecip
x ,urecip

y ,urecip
z

] = P · [urecip,g
x ,urecip,g

y ,urecip,g
z

]
.

C. The frequency of updating D

One of the strategies used to increase the speed of the
calculation is to update the diffusion tensor after every λRPY

time steps [12,26,32,36]. The appropriate choice of λRPY was
investigated in our recent paper [12] and it was found that
λRPY t is the key parameter which determines the accuracy
of the integration. Here, our implementation benefits from
this approach. Specifically, in cases where the diffusion tensor
changes slowly, λRPY > 1 is utilized.

IV. RESULTS AND DISCUSSION

A. Error definition in iterative Lanczos

In order to track the accuracy of the Lanczos approximation
method, one has to define the error in estimation of correlated
vectors. We use the error expression proposed by Ando
et al. [36] based on two consecutive iterations in Lanczos

algorithm, i.e., m − 1 and m:

E(m) = ||S(m) − S(m−1)||2
||S(m−1)||2

. (31)

In case λRPY �= 1, the first column of S is used to calculate
the error. The convergence criteria is met when the value of
error falls below a certain threshold. Based on the results
presented by Ando et al. [36], E(m) = 0.01 was selected as
an indication of sufficient accuracy to reproduce the results of
the Cholesky decomposition within the statistical error.

B. Algorithm verification

To validate the accurate implementation of the Ewald and
matrix-free algorithms, the equilibrium properties of the dilute
and semidilute polymer solutions are evaluated in θ solvent
and good solvent. To this end, the mean-square displacement
(MSD) as a function of time τ and long-time diffusivity of
center of mass Dcm is used to track movement of the chains in
a θ solvent:

Dcm = lim
τ→∞

MSD(τ )

6τ
= lim

τ→∞
〈(rc(t + τ ) − rc(t))2〉

6τ
, (32)

where t is an arbitrary initial time. In case of θ solvent or
good solvent, the mean-square end-to-end distance and the
mean-square radius of gyration are utilized to ascertain the
accuracy of the matrix-free algorithm.

〈
R2

ee

〉 = 〈(rNb
− r1)2〉, (33)

〈
R2

g

〉 = 1

Nb

〈∑
β

(rβ − rc)2

〉
. (34)

1. Diffusivity in θ solvent

To validate the diffusivity of center of mass in semidilute
regime, the values of MSD as a function of normalized time
and Dcm for a system of multichains with Nb = 20 at different
c/c∗ were computed (see Fig. 2).

The overlap concentration is calculated using c∗ =
N/(4π/3)R3

g,0 where Rg,0 is the radius of gyration at infinite
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FIG. 2. (Color online) (a) The mean-square displacement and (b) the diffusivity of center of mass in θ solvent obtained using both Ewald
and matrix-free techniques. The filled and open symbols represent the results for the Ewald and the matrix-free algorithms, respectively.

033307-7



AMIR SAADAT AND BAMIN KHOMAMI PHYSICAL REVIEW E 92, 033307 (2015)

TABLE I. The simulation parameters for multichain systems at different concentrations. L is obtained using the analytical radius of gyration
of polymers in a θ solvent. The simulation results of end-to-end distance and radius of gyration are given for both the Ewald and the matrix-free
algorithms.

Ewald Matrix-free

c/c∗ L Mexp rc,D

〈
R2

ee

〉 〈
R2

g

〉
rc,D

〈
R2

ee

〉 〈
R2

g

〉
10−4 297.73 3.5 350 57.1 ± 0.3 10.0 ± 0.04 310 57.5 ± 0.3 10.0 ± 0.04
10−3 138.2 3.5 200 57.2 ± 0.4 10.0 ± 0.05 200 57.3 ± 0.1 9.9 ± 0.01
10−2 64.15 3.75 100 57.6 ± 0.5 10.1 ± 0.06 100 56.4 ± 0.5 9.9 ± 0.06
0.1 29.77 4.25 45 56.5 ± 0.4 9.9 ± 0.05 7 58.0 ± 0.4 10.1 ± 0.05
1 18.76 3.75 20 57.6 ± 0.5 10.1 ± 0.07 5 57.8 ± 0.4 10.1 ± 0.06
3 13 3.75 20 57.1 ± 0.6 10.0 ± 0.08 4 57.1 ± 0.7 10.0 ± 0.07

dilution limit. It is known that in a θ solution (irrespec-

tive of concentration regime) 〈R2
g〉 = χ2 N2

b −1
2Nb

and 〈R2
ee〉 =

3χ2(Nb − 1) [7,37]. Our simulations for low concentrations,
i.e., c/c∗ = 10−4–10−1, typically consist of an equilibrium
run of around 10 dimensionless longest relaxation times, λ1,
followed by a production run of from 25 to 50 relaxation times.
As the macromolecules are in a θ solvent, λ1 is estimated

using the Zimm formula, λ1,Z ≈ 1.22N
3/2
b

h∗π2 . Nc = 20 was used
in the simulations for low concentrations and hence the final
results of MSD and Dcm are reported based on averaging over
20–50 independent runs. For higher concentrations, namely
c/c∗ = 1 and 3, Nc = 50 with equilibrium and production
runs similar to lower concentrations was used. The parameter
h∗ was chosen to be 0.25 and the time step size is 0.01. The
springs are assumed to be Hookean. The parameters specifying
the accuracy of Ewald and matrix-free algorithms are given in
Table I. The rc,D for the SPME algorithm is chosen such that
the diffusion tensor remain semi-positive-definite throughout
the course of simulation. Since there is a large degree of
overlap between the beads in a θ solution, the minimum cut
off radii for very dilute cases were found to be on the order
of the box dimension. Subsequently, the real-space part of
D · Fφ for the cases where rc > 0.42L is obtained using dense
matrix calculations. For matrix-free simulations, the degree of
B-splines is equal to 4.

The asymptotic behavior of Dcm at low concentrations is
further compared against the value of Dcm at infinitely dilute
solution at similar conditions using an algortihm recently
developed in our group [12]. It is shown in Fig. 2(b) that
the value of Dcm at very low concentrations is correctly
approaching the infinitely dilute solution results. Furthermore,
the differences between the Ewald and matrix-free results
for both MSD and Dcm lie within the statistical error bar
[see Figs. 2(a) and 2(b)]. Note that the approach and the
parameters are chosen to closely correspond to simulations
of Jain et al. [15]. Hence, the results are in very good
agreement with their findings. Moreover, the radius of gyration
and end-to-end distance for all cases studied in this section
were in excellent agreement with the theoretical values (see
Table I).

2. Static dimension in good solvent

In this section, the behavior of multichain systems in good
solvents is evaluated both in dilute and semidilute solutions

(see Fig. 3). The static size of the chains for low concentrations
(c/c∗ < 0.1) is expected to be equivalent to the dimensions of
the chains in infinite dilution [11,16]. Similar to an infinitely
dilute solution, the dimensional scaling for multichain systems
with low concentration is expected to follow 〈R2

g〉 ∝ N2ν
b ,

where ν is the effective EV exponent. Again the conventional
BDS algorithm by Saadat and Khomami [12] is employed to
determine the dimension of the macromolecules at c/c∗ = 0.
It was found by Saadat and Khomami [12] that the effective
excluded volume exponent based on center-of-mass diffusivity
for the bead-spring system with FENE force law and b = 20
is νcm = 0.581 ± 0.01. Following the same parameter setting
in the infinitely dilute case, zχ3 = 1 is selected for Nb = 10
and is increased based on zχ3 ∝ √

Nb for higher number of
beads. The broadness of the EV potential is determined based
on d∗ = z∗1/5 [38]. The simulations in this section involve an
equilibrium run of more than one chain relaxation time and the
production run of between 5 to 15 relaxation times. The chain
relaxation time here is approximated using λ ≈ R2

g/6Dcm (see
Table II). For the simulations of this section, the degree of
B-splines is set as 6. It should be noted that the simulation box
size is selected such that L � 2Ree to prevent any unrealistic
interaction of the chain with itself.

At higher concentrations, however, one chain is sur-
rounded by several other chains. Therefore, an individual

100

101

102

101 102

<R
g2

>

Nb

c/c∗=0.1
Infinite Dilution

c/c∗=5
Blob Theory Prediction

FIG. 3. (Color online) Mean-square radius of gyration as a func-
tion of number of beads in a multichain system with c/c∗ = 0.1 and
5. The error bars are smaller than the symbols.
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TABLE II. The parameters of dilute and semidilute multichain systems determined based on the diffusivity, radius of gyration, and
end-to-end distance of the chains in infinitely dilute polymer solution.

c/c∗ = 0.1 c/c∗ = 5

Nb Dcm,0 〈R2
g,0〉 λ L (L/Ree) Nc λ L (L/Ree) Nc

10 0.074 ± 0.005 5.476 ± 0.2 12.35 28.23 (5) 42 21.55 14.21 (3) 267
20 0.048 ± 0.003 12.75 ± 0.4 44.27 44.04 (5) 45 77.25 22.17 (3) 286
40 0.031 ± 0.002 30.96 ± 1.0 166.45 69.55 (5) 47 290.44 23.34 (2) 88
60 0.026 ± 0.002 48.43 ± 1.6 310.45 87.83 (5) 48 541.70 29.48 (2) 91
100 0.018 ± 0.001 95.64 ± 3.1 871 127.1 (5) 52 1520 42.66 (2) 99

macromolecule experiences the repulsion due to the other
chains in its vicinity which results in reduction of its di-
mensions. The blob theory takes this into consideration when
determining the Rg scaling [11,39],

Rg/Rg,0 = (c/c∗)−(2ν−1)/(6ν−2). (35)

Here, we use this known theoretical fact to validate our
matrix-free algorithm. To this end, the radius of gyration
of multichain systems with relative concentration c/c∗ = 5
is determined. It is clearly seen in Fig. 3 that the results of
our BDS algorithm for multichain systems in good solvents
and dilute solutions match the infinite dilution case. Although
the theoretical scaling based on the blob model holds true
for long chains, the simulated static radius of gyration is
consistent with the predictions from blob theory for Nb � 20.
Note that the relaxation time in the semidilute regime is
approximated based on diffusivity obtained by Dcm/Dcm,0 =
(c/c∗)−(1−ν)/(3ν−1) [11]. Moreover, as far as the calculation
of box dimension is concerned, Ree/Ree,0 follows the same
scaling as that of the radius of gyration.

C. Computational time scaling

The recent comparison of the BDS algorithm with the lattice
Boltzmann molecular dynamics (LB/MD) by Jain et al. [15]
indicated that the BDS with improved Ewald summation
along with the Chebyshev polynomial for decomposition is far
more expensive than LB/MD. The matrix-free implementation
for polymer solutions developed in this work is expected
to substantially reduce the computational cost difference
between BDS and other fast mesoscale simulation methods,
such as dissipative particle dynamics (DPD) and LB/MD.
Furthermore, the total execution time versus the number
of beads in the simulation box is anticipated to scale as
O(N log N ) . To this end, the code is tested on a 16-core
Intel Xeon E5-2670 processor by tracking the wall-clock time
spent in the simulation of a multichain system with Nb = 40.
The chains are assumed to be in a good solvent, and hence
there is EV interaction between each pair of particles and HI
is considered with h∗ = 0.25. A box with side length equal to
27.8 is considered to ensure L � 2Ree. The Ewald summation
parameters are selected as Mexp = 4.25 and rc,D = 11 and 5
for Ewald and matrix-free methods, respectively. The values
of Mexp and rc,D for the matrix-free approach imply K = 63.
The degree of B-splines is chosen to be 6.

Using these parameters, simulations are performed for
about 0.01λ, where λ is obtained using the same procedure

outlined in Sec. IV B 2. This corresponds to more than 150
time steps with t = 10−2. The execution time per time step
is depicted in Fig. 4 as a function of N . It should be noted
that the values of the relative error of the mean square radius
of gyration at the end of 0.01λ, calculated for the matrix-free
approach compared to the corresponding results of the Ewald
algorithm, were less than 5 × 10−4 for all the cases studied in
this section.

Clearly the matrix-free implementation with proper choice
of the Ewald parameters can result in a total execution time
which scales as O(N log N ). As expected, the scaling of
execution time for the original Ewald algorithm is as O(N2),
as the algorithm uses a constant rc,D [15].

V. CONCLUSIONS

In this article, a matrix-free approach is presented to
enhance the efficiency of the BDS for a large system of
macromolecules which are coupled through hydrodynamic
interaction and excluded volume forces. The advantages of
the matrix-free algorithm over the conventional BDS are due
to the fact that all matrices involved in BDS are treated as
sparse matrices, which in turn results in considerable speed-up.
Moreover, the matrix-free implementation benefits from using
the SPME method in construction of the diffusion tensor
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FIG. 4. (Color online) Execution time per time step for Ewald as
well as matrix-free algorithms.
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along with the Lanczos method for computation of Brownian
displacements.

The fidelity and computational efficiency of the matrix-free
approach in equilibrium condition is shown by evaluating
the mean-square displacement and the averaged diffusivity
of the center of mass for a broad range of concentrations
in θ solvent as well as the mean-square end-to-end distance
and the mean-square radius of gyration for chains with
different degrees of fine-graining in a θ solvent or good
solvent. The matrix-free results for center-of-mass diffusivity
are found to be in excellent agreement with the ones obtained
using the original Ewald summation technique. Moreover, the
asymptotic values of diffusivity at very low concentrations
correctly approach the infinite dilution case. The radius of
gyration of chains with different numbers of beads in the dilute
regime of concentration was predicted to be consistent with
an infinitely dilute system. At higher concentration, namely

c/c∗ = 5, the results of 〈R2
g〉 are in a very good agreement

with the values predicted by blob theory [11,39].
Last, it is shown that the computational cost of the matrix-

free technique is reduced by more than two orders of magnitude
compared to conventional BDS for systems containing more
than 103 beads. Furthermore, while the execution time for
the method based on the Ewald summation and the Lanczos
algorithm results in a computational cost scaling of O(N2), the
matrix-free technique improves the scaling to O(N log N ).
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[10] M. Długosz, P. Zieliński, and J. Ttylska, J. Comput. Chem. 32,
2734 (2011).

[11] A. Jain, B. Dünweg, and J. R. Prakash, Phys. Rev. Lett. 109,
088302 (2012).

[12] A. Saadat and B. Khomami, J. Chem. Phys. 140, 184903 (2014).
[13] S. Somani, E. S. G. Shaqfeh, and J. R. Prakash, Macromolecules

43, 10679 (2010).
[14] C. W. J. Beenakker, J. Chem. Phys. 85, 1581 (1986).
[15] A. Jain, P. Sunthar, B. Dünweg, and J. R. Prakash, Phys. Rev. E

85, 066703 (2012).
[16] C. Stoltz, J. J. de Pablo, and M. D. Graham, J. Rheol. 50, 137

(2006).
[17] T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089

(1993).
[18] U. Essmann, L. Perera, M. L. Berkowitz, T. D. H. Lee, and

L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
[19] R. W. Hockney and J. W. Eastwood, Computer Simulation Using

Particles (McGraw-Hill, New York, 1981).

[20] M. Deserno and C. Holm, J. Chem. Phys. 109, 7678 (1998).
[21] E. K. Guckel, Ph.D. thesis, University of Illinois at Urbana-

Champaign 1999 (unpublished).
[22] A. Sierou and J. F. Brady, J. Fluid Mech. 448, 115 (2001).
[23] A. J. Banchio and J. F. Brady, J. Chem. Phys. 118, 10323

(2003).
[24] J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, J.

Chem. Phys. 125, 164906 (2006).
[25] J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, Phys.

Rev. Lett. 98, 140602 (2007).
[26] X. Liu and E. Chow, in 27th IEEE International Parallel and

Distributed Processing Symposium (IPDPS) (IEEE, Piscataway,
NJ, 2014).

[27] T. Zhou and S. B. Chen, J. Chem. Phys. 124, 034904 (2006).
[28] M. Somasi, B. Khomami, N. J. Woo, J. S. Hur, and E. S. Shaqfeh,

J. Non-Newton. Fluid Mech. 108, 227 (2002).
[29] T. Ando and J. Skolnick, Proc. Natl. Acad. Sci. USA 107, 18457

(2010).
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