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Microcanonical ensemble simulation method applied to discrete potential fluids
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In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed
to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002)], to the case of simple
fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states,
that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous
range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse
temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then
evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles
interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric
heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations.
These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential
systems, that are based on a generalization of the SW and square-shoulder fluids properties.
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I. INTRODUCTION

The random cluster model was first introduced by Kasteleyn
and Fortuin [1,2], and by Coninglio and Klein [3] for lattice
systems. Swendsen and Wang [4,5] developed the cluster
algorithm based on the physics of this model and were able
to implement an algorithm using the Widom-Rowlinson and
Stillinger-Helfand models for fluid mixtures [6,7], an example
that numerical simulation methods first developed for lattice
systems can also be extended to off-lattice systems.

Hüller and Pleimling [8] have developed a successful
cluster algorithm to study the Ising model in two and three
dimensions within the microcanonical ensemble based upon
the Broad Histogram Method (BHM) [9–11]. The algorithm
works very well because in the Ising model the energy and
magnetization have discretized values. The Hüller-Pleimling
method (HPM) has two important advantages compared with
the method proposed by Creutz (CM) [12]: First, in a single
run a wide range of energies can be covered, instead of a
fixed one as in CM. Second, the heat capacity can be obtained
with a numerical derivative, whereas for CM it is necessary to
calculate the fluctuations in the Fourier transform of the energy.
In the CM approach, however, no floating-point operations are
required and no random numbers are needed at all if sequential
updating is used.

In terms of efficiency the HPM approach compares
very well with the method proposed by Wang and Landau
(WLM) [13], that covers a wide range of temperatures too.
For example, for the 32 × 32 Ising model, the average errors
for the energy are 0.025% and 0.035% for HPM and WLM,
respectively, considering the same number of Monte Carlo
updates (7 × 105, see Ref. [8]).
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The first successful attempt to extend BMH to continuous
systems was made by Muñoz and Herrmann [14]. In this
work we use HPM to study simple fluids, taking advantage
that in this method the entropy is evaluated as a function of
the energy. The extension presented here can be applied to
discrete-potential (DP) systems, that also have a discrete set
of energy values as in the Ising model. The SW potential is a
very simple DP system after the hard-sphere potential, whose
structural and thermodynamic quantities have been very well
characterized along the years [15–27]. The SW system has
been extensively applied within different statistical mechanics
approaches [28,29], since it is usually easier to implement than
other pair potentials in statistical-mechanics theories, such as
the Discrete Potential and Multipolar Discrete Perturbation
Theories [30,31], as well as the statistical associating fluid
theory for chain molecules with attractive potentials of variable
range (SAFT-VR) [32]. These and other theories have made it
possible to describe phase diagrams of real complex fluids.

The SW potential is a radial potential defined as

φ(r) =
⎧⎨
⎩

∞ if r � σ

−ε if σ < r � λσ

0 if r > λσ

, (1)

where r is the separation distance between the centers of two
particles; σ represents the particle’s hard-core diameter; λ is
the potential range of an attractive interaction of depth −ε.

In Sec. II the method proposed in this work is described
in detail, and its application to SW systems is presented in
Sec. III. Among the thermodynamic quantities that can be
calculated, we focus our attention on the internal energy and
the isochoric heat capacity, since these quantities are more
sensitive when perturbation theories are used. As we shall see
in this section, both properties are predicted very accurately
with microcanonical simulations when compared with Monte
Carlo NVT (MC-NVT) data. Finally, in Sec. IV the main
conclusions of this work are given.
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II. SIMULATION METHOD

In order to describe the methodology we consider a system
of N particles confined within a volume V . The available
energy levels will be labeled as Ei , defined as

Ei = −iε =
∑
k,l �=k

φ(rkl), (2)

where rkl is the distance between the centers of the k and
l particles and i is the number of pair of particles that
satisfies σ < rkl � λσ . We denote by �(Ei) the number of
configurations, or microstates, that share the same energy Ei .

A new microstate is generated when a given mechanism
is applied to a previous microstate; for a fluid composed of
spherical particles the mechanism that has to be considered
is a displacement of a particle, �r. When �r is applied to
all N particles for each �(Ei) microstate, then N�(Ei) new
microstates are created, but only a small number will have
energy Ej , that will be denoted as Vij ; in order to satisfy the
reversibility condition, it is required that Vij = Vji , a relation
that holds for both continuous and discontinuous systems,
since the BHM method is an exact theory (see Ref. [33]). The
set of movements counted applying BHM is different to those
followed to construct the sequence of visited, averaged states,
that guarantee equiprobability. Consequently, it is necessary
to consider two different protocols of allowed movements,
depending on the reversibility or equiprobability conditions
to be satisfied. Then, if a random selection is done of one of
the �(Ei) microstates with energy Ei and a new microstate is
generated by applying a displacement �r to a random particle,
then the probability that the system has a new energy Ej is
given by

P (Ei → Ej ) = Vij

N�(Ei)
. (3)

Similarly,

P (Ej → Ei) = Vji

N�(Ej )
. (4)

Both probabilities can be obtained calculating the rate of
attempts Tij to go from level Ei to level Ej . In order to do
this, two variables are required:

(i) The number of times that the system spends in level Ei ,
denoted by zi .

(ii) The number of times that the system attempts to go
from level Ei to level Ej , denoted by zij .

Variables zi and zij can be evaluated according to the
following steps:

(1) With Ei as the initial state, a particle at random is
chosen and zi is then redefined as zi + 1.

(2) The new energy Ej is evaluated considering that a
random displacement is applied to the previously chosen
particle.

(3) If Ej is an allowed energy level, then zij is updated
as zij + 1, independently of the particle’s displacement being
accepted or not. The only possible restriction is the value of
the fixed energy chosen to work with, i.e., all cases where
Ej < Emin or Ej > Emax are discarded.

(4) The probability of an accepted displacement is 1 if
Tij < Tji , otherwise it is Tji/Tij .

The last condition assures that all levels are able to be visited
with equal probability, independently of their degeneracy. The
initial values for zi and zij can be any positive number and
after a large number of particle’s displacement attempts it is
observed that

zij

zi

→ Tij , (5)

and the required ratios are given by

Tij

Tji

= �(Ej )

�(Ei)
. (6)

This algorithm is highly efficient to obtain the ratios
�(Ei)/�(Ej ) (or the entropy differences Si − Sj , according to
Boltzmann’s relation S(E) = k ln [�(E)]), since the number
of times that the random number generator is used is smaller
than those required in MC-NVT simulations. The efficiency
of the method increases if the number of allowed levels
(Emax − Emin)/ε is decreased.

Since the inverse temperature β(E) = 1/kT is obtained
from the entropy by deriving it with respect to the energy,

β(E) = ∂S/∂E (7)

then it is convenient to express the entropy as a series expansion
in β(Ei),

S(Ej ) = S(Ei) + εηβ(Ei) + . . . , (8)

where η is an integer such that Ej = Ei + ηε. The rest of the
terms in the expansion can be discarded as long as N is large
enough, obtaining

ln(Tij /Tji) ≈ εη

k

∂S

∂E

∣∣∣∣
i

. (9)

This equation can be used to obtain the inverse temperature as
a function of the internal energy.

In the Ising model the energy changes are well defined since
they depend on the number of nearest neighbors in each lattice
site and this number is fixed, and the HPM algorithm can be
applied straightforwardly. In the next section we will explain
how this method can also be valid for the case of a SW fluid.

III. THE SW FLUID CASE

We consider SW systems with attractive ranges λ = 1.1,
1.3, and 1.5, that are typical values required to describe
molecular and complex fluids. Previous to any calculation we
must establish the allowed values of η for the SW potential. In
the original work by Hüller and Pleimling this is not necessary
since for the Ising model the energy changes are well defined
and depend on the number of nearest neighbors, which is a
fixed quantity. For the SW fluid case, however, different jumps
of energy (i.e., different η values) will occur, with different
frequencies among them. Nevertheless, the values of η can
be chosen by considering the more frequent energy jumps
performed by the system. This can be achieved using a simple
NVT Monte Carlo simulation for several values of density
and λ in the limit of infinity temperature, a limit in which all
energy changes are accepted. Then histograms can be obtained
considering the relative frequency of the energy changes, as
presented in Fig. 1 for three different densities of the SW
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FIG. 1. Histograms for the energy displacements η = �U/ε for
the SW fluid with attractive range λ = 1.5 and densities ρ∗ = 0.1,
0.4, and 0.7, from top to bottom.

fluid with λ = 1.5. Applying this method for the densities and
SW ranges values used in this work, accurate results can be
obtained for the inverse temperature β(E) when η = ±1, ±2,
and ±3. If we restrict the analysis with η = ±1 it is possible to
obtain reliable values of β(E) but at the cost of increasing the
computing time of the simulations. In any case, it is necessary
to evaluate proper values for η each time that a SW system is
simulated using HPM.

Once η values have been obtained, the inverse temperatures
are given by

β(Ei) = 1

6

3∑
η=−3

1

η
ln(Ti,i+η/Ti+η,i), η �= 0. (10)

Furthermore, from the curves β(E) = S ′(E) the isochoric
heat capacity c(E) can also be obtained performing a second
derivative,

c(E) = − [β(E)]2

S ′′(E)
. (11)

TABLE I. Second-order polynomial fit coefficients for λ = 1.1.

ρ∗ a0 a1 a2 u∗
min u∗

max

0.10 −0.96087 −14.54988 −23.13050 −0.225 −0.008
0.20 −1.17362 −7.82579 −6.07659 −0.410 −0.200
0.30 −1.35121 −5.20500 −2.33237 −0.700 −0.320
0.40 −1.62688 −4.10229 −1.27205 −0.910 −0.495
0.50 −1.88153 −3.25117 −0.65977 −1.200 −0.700
0.60 −2.25890 −2.78357 −0.39227 −1.520 −0.980
0.70 −2.86484 −2.59557 −0.27284 −1.880 −1.380
0.80 −3.27924 −2.10602 −0.09942 −2.350 −1.750

TABLE II. Second-order polynomial fit coefficients for λ = 1.3.

ρ∗ a0 a1 a2 u∗
min u∗

max

0.10 −1.40800 −6.26420 −4.01083 −0.550 −0.300
0.20 −2.01277 −4.20715 −1.44496 −1.000 −0.650
0.30 −2.89267 −3.80293 −0.90423 −1.430 −1.050
0.40 −4.26284 −3.99128 −0.73094 −1.920 −1.500
0.50 −6.41629 −4.57759 −0.67761 −2.450 −2.000
0.60 −9.80357 −5.57877 −0.68950 −3.300 −2.630
0.70 −8.45564 −3.31269 −0.21241 −3.630 −3.280
0.80 −6.62135 −1.48119 0.05530 −4.300 −3.950

In order to illustrate this method, computer simulations
for the SW fluid were performed using a unitary box with
periodic boundary conditions, considering N = 512 particles
and reduced densities ρ∗ = ρσ 3 between 0.1 and 0.8. In all
the cases, the reduced energy u∗ = E/Nε values are restricted
between u∗

min and u∗
max in the supercritical region. The number

of particle’s displacement attempts considered were from
N × 107, for the smaller energy intervals, to 2.5 × N × 107

for the higher energy intervals and performing eight different
independent runs.

The inverse temperature obtained values β∗ = ε/kT were
fitted to a second-order degree polynomial on u∗

β∗ = a0 + a1u
∗ + a2u

∗2
. (12)

The coefficients obtained from these fitted expressions are
given in Tables I–III for the values of density and attractive
ranges used in this work, as well as the range of validity for
the fitted expression. In Fig. 2 we present results for ρ∗ = 0.4
and three different SW systems.

From the fitted expressions it is possible then to evaluate
the energies and heat capacities, for a given temperature T ∗
in the range of validity of the polynomial (12). In Fig. 3 we
present the energy values for the isotherm T ∗ = 2.0; results
are compared with conventional MC-NVT simulated values,
obtained using 864 particles, with 2.5 × 105 cycles required
for equilibration and 5.0 × 105 cycles to obtain averaged
quantities.

In Fig. 4 results are presented for the reduced isochoric
heat capacity, c∗ = c(E)/Nε and are compared with MC-NVT
values reported by Largo et al. [25], obtaining a remarkable
compatibility between results.

TABLE III. Second-order polynomial fit coefficients for λ = 1.5.

ρ∗ a0 a1 a2 u∗
min u∗

max

0.10 −1.65393 −3.97199 −1.56668 −1.100 −0.574
0.20 −2.94547 −3.55764 −0.84737 −1.795 −1.205
0.30 −5.15246 −4.16089 −0.72716 −2.495 −1.900
0.40 −8.96461 −5.41218 −0.74406 −3.145 −2.654
0.50 −11.88410 −5.45835 −0.56681 −3.825 −3.400
0.60 −9.17055 −2.83072 −0.14575 −4.555 −4.200
0.70 −7.50855 −1.45483 0.01771 −5.295 −4.950
0.80 −1.37322 1.14105 0.24968 −5.975 −5.650
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FIG. 2. (Color online) Inverse temperature as a function of en-
ergy u∗ for density ρ∗ = 0.4 for the SW fluid with attractive ranges
λ = 1.1, 1.3, and 1.5. Black dots denote the computer simulation
data obtained in this work, and the red solid line is a second-order
polynomial fit.
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FIG. 3. (Color online) Excess energies of SW fluids with attrac-
tive ranges λ = 1.1, 1.3, and 1.5, for the isotherm T ∗ = 2.0 and
several densities ρ∗. Black circles correspond to results obtained with
the polynomial expressions with coefficients given in Tables I–III, and
red triangles are NVT MC simulation data generated in this work.

0

0.4

0.8

c*

0

0.2

0.4

c*
0 0.2 0.4 0.6 0.8

ρ∗
0

0.4

0.8

c*

λ=1.5

λ=1.3

λ=1.1

FIG. 4. (Color online) Isochoric heat capacities of SW fluids with
attractive ranges λ = 1.1, 1.3, and 1.5, for several temperatures T ∗

and densities ρ∗: λ = 1.1 with T ∗ = 1.0, 1.5, and 2.0 from top to
bottom, λ = 1.3 with T ∗ = 1.5, 2.0, and 2.5 from top to bottom,
and λ = 1.5 with T ∗ = 1.5, 2.0, and 2.5 from top to bottom. In all
cases black circles correspond to results obtained with the polynomial
expressions whose coefficients are given in Tables I–III and red
triangles are MC-NVT results from Ref. [25].

IV. CONCLUSIONS

In this work we have adapted a microcanonical algorithm,
originally developed for the Ising model, to simulate ther-
modynamic properties of fluids whose molecules interact via
a pair SW potential of variable range. The algorithm has
the advantage with respect to a MC-NVT simulation that
a continuous range of temperatures is obtained for a given
density, and it is also possible to predict accurate results for
the internal energy and the isochoric heat capacity. Since the
method is based on the Ising model using discrete values, in
the case of SW fluids it can only be applied to evaluate entropy
derivatives with respect to discrete quantities, like the number
of particles, that would be useful in order to obtain chemical
potentials. Since the SW fluid is the key ingredient to study
other DP systems, we are currently studying its extension to
these generalized models of fluids. Finally, implementing a
protocol for continuous systems could be possible, considering
that the probabilities to perform and revert each allowed
movement in the states space of the system are the same,
and defining a probability to obtain an energy change starting
from a given configuration [14].
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