
PHYSICAL REVIEW E 92, 033302 (2015)

Measurement-based quantum lattice gas model of fluid dynamics in 2+1 dimensions
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Presented are quantum simulation results using a measurement-based quantum lattice gas algorithm for
Navier-Stokes fluid dynamics in 2+1 dimensions. Numerical prediction of the kinematic viscosity was measured
by the decay rate of an initial sinusoidal flow profile. Due to local quantum entanglement in the quantum lattice
gas, the minimum kinematic viscosity in the measurement-based quantum lattice gas is lower than achievable in
a classical lattice gas. The numerically predicted viscosities precisely match the theoretical predictions obtained
with a mean field approximation. Uniform flow profile with double shear layers, on a 16K × 8K lattice, leads to
the Kelvin-Helmholtz instability, breaking up the shear layer into pairs of counter-rotating vortices that eventually
merge via vortex fusion and dissipate because of the nonzero shear viscosity.
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I. INTRODUCTION

An efficient and accurate numerical simulation of the
Navier-Stokes equations over large and complex domains, at
high Reynolds numbers, and under turbulent flow conditions
is of extreme interest to the engineering and scientific com-
munity. The availability of an increasing number of processor
cores each year has helped to enable a corresponding increase
in the simulation domain size and Reynolds number, but
algorithms that make the most efficient use of the available
parallel computing resources are also needed.

Three main paradigms for addressing the simulation of
incompressible viscous fluid dynamics have developed over
the years: (1) a macroscopic approach starting with the hy-
drodynamic equations of motion, (2) a microscopic approach
starting with particle dynamics, directly modeling particle
motion and particle-particle collisions, and (3) a mesoscopic
approach using a kinetic Boltzmann equation of motion.

The first (macroscopic) paradigm starts with the macro-
scopic governing equations of motion of divergence free flow
and the Navier-Stokes equation that, respectively, derive from
mass continuity and momentum conservation

∇ · v = 0, ∂tv + v · ∇v = −∇P

ρ
+ ν∇2v. (1)

These equations are a closed set with the pressure P being
determined from a nonlinear Poisson equation found by taking
the divergence of the momentum equation. This paradigm
employs numerical techniques to deconstruct (1) for com-
puter implementation. Two main methods in this high-level
approach have evolved to solve partial differential equations
such as the classical incompressible flow equations above:
spectral methods and stencil-based methods. Spectral methods
use assumed basis functions such as a Fourier series for a
truncated series expansion of the solution [1]. Test functions
are used to ensure that the differential equations are satisfied
as closely as possible by the truncated series expansion.
In recent work, Schlatter and Orlu [2] have extended the
Reynolds number of their simulations up to a value of 4300
by using 3.2 × 109 modes. Stencil-based methods such as
the use of finite differences, where the governing equations

are discretized and solved for on a grid, sacrifice accuracy
in exchange for better parallel performance due to lower
communication requirements since only neighboring values
need to be communicated. Pirozzoli and Barnardini [3] were
recently able to achieve a Reynolds number of approximately
4000 using 34 × 109 grid sites using a finite difference
technique. More recent work with a stencil-based method
has extended the simulation domain to 4.1 × 1012 grid points
through the use of 1.97 × 106 cores [4].

The second (microscopic) paradigm involves the calcu-
lation of the motion of particles in such a manner that the
Navier-Stokes equations emerge from the particle motion.
Molecular dynamics (MD) does this in the most simple and
accurate manner by calculating the motions of individual
atoms or molecules acted upon by interatomic potentials.
Simulations of continuum flows have been shown to match
results given by the Navier-Stokes equations [5]. How-
ever, the computational resources required to track every
individual atom or molecule currently limit MD to low
Reynolds numbers due to the small simulation domain
sizes [6].

The desire to increase simulation domain size and therefore
Reynolds number has led to the development of various
lattice-based methods. Lattice-based methods have the abil-
ity to incorporate microscopic physics, are able to take
advantage of computer processor parallelization, and have
reduced memory requirements since particle positions are
discretized. The classical lattice gas method solves for the
motion of particles having discrete momenta on a discrete
lattice subject to both particle collisions and streaming. In
1986, Frisch, Hasslacher, and Pomeau showed that the use
of a triangular (Bravais) lattice with six momentum states
reproduced isotropic two-dimensional flow as given by the
Navier-Stokes equations [7]. In 1987, Frisch et al. extended
the model to three-dimensional flows through the use of
a four-dimensional face-centered hypercube (fchc) lattice,
where the three-dimensional flow is obtained by projecting
the fchc lattice onto three dimensions [8]. The microscopic
method presented here, a quantum mechanical generalization
of the classical lattice gas method, is called the quantum lattice
gas method.
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The third (mesoscopic) paradigm starts with a Boltzmann
equation model of collisional processes in gases [9]. In the
kinetic Boltzmann equation method, the collision operator
includes terms in a hierarchy of particle-particle interactions.
This hierarchy can be cut off and the collision operator
linearized, such as in the Bhatnager-Gross-Krook (BGK)
approximation [10], to direct the flow distribution function
toward a local equilibrium chosen to be the Maxwellian
distribution. When implemented on a discrete space-time, this
kinetic method becomes the lattice Boltzmann method [11].
The lattice Boltzmann method was originally developed as
a computational fluid dynamics technique to reduce the
statistical noise inherent in the classical lattice gas, and the
method was usually implemented in the BGK approxima-
tion [12–14]. However, the lattice Boltzmann method in the
BGK approximation suffers from numerical instability as
the viscosity is reduced in order to increase the simulation
Reynolds number.

To alleviate this problem, the entropic lattice Boltzmann
method (ELB) has been developed to replace the lattice BGK
linear collision approximation: particle-particle interactions
are generated using an appropriate Lyapunov functional to
model the collisional process [15,16]. The Lyapunov func-
tional determines both the equilibrium distribution and the
path to that distribution and thus can be used to control the
stability properties of the model. Vahala et al. [17] used
ELB to calculate turbulence characteristics at a Reynolds
number of 25 000 by using a 16003 grid and found excellent
agreement with large eddy simulation lattice Boltzmann
(LES-LB) results. A quantum lattice gas model, such as the
particular one presented below, can also be implemented as a
mesoscopic model and in this case is referred to as a quantum
lattice Boltzmann equation model [18].

II. QUANTUM LATTICE GAS METHOD

Quantum computing and the development of quantum
algorithms represent a paradigm shift in the way computing
is done. Whereas a single bit (the smallest unit of memory
storage in a classical digital computer) can only have one
of two values, 0 or 1, quantum computing is based on a
quantum state of a qubit, which is the superposition of the
two discrete quantum states |0〉 and |1〉. The qubit state |q〉
is thus α|0〉 + β|1〉, where |α|2 and |β|2 are the probabilities
of the qubit being in either of the two respective states. The
values of the complex coefficients α and β are constrained
by |α|2 + |β|2 = 1 such that the probability of the qubit
being in the |0〉 state plus the probability of it being in
the |1〉 state is unity. So, quantum computing offers a new
way to address the problem of modeling fluid dynamics.
One generalization of the classical lattice gas method is a
measurement-based quantum lattice gas algorithm [18,19]. An
overview description of the quantum lattice gas model of quan-
tum computation is given in Ref. [20], and numerical results
obtained by a supercomputer implementation of incompress-
ible viscous fluid flow in 2+1 dimensions are reported in the
following.

Computation can be reversible when implemented as a
microscopic quantum algorithm. For a reversible algorithm,
a unitary evolution operator e−iĤ τ/� can be specified that

acts at time t on the total system wave function |�(t)〉,
which constitutes the state of all the qubits or the quantum
computer’s memory. If there are n qubits, the quantum
space |�(t)〉 occupies an exponentially large Hilbert space
with 2n dimensions. A new quantum state at a later time,
|�(t + τ )〉, is obtained by application of the unitary oper-
ator, which can be represented by a unitary matrix of size
2nx 2n:

|�(t + τ )〉 = e−iĤ τ/�|�(t)〉, (2)

where n is the number of qubits in the system. Thus, a
solution for the system state at a later time requires a
single computational step on a quantum computer, and the
computational step is the same regardless of the number of
particles in the quantum simulation. It has also been found
serendipitously that quantum algorithms for the solution of a
variety of mathematical problems, even when implemented on
classical computers, can provide a significant computational
speedup [20–26].

The Hamiltonian Ĥ = Ĥ◦ + Ĥ ′ contains both a free
kinetic energy part Ĥ◦ and a particle-particle interaction
part Ĥ ′. These two parts of the Hermitian generator are
decomposed into two distinct operators and separated by a
measurement operation, such that the reversible evolution
operator e−iĤ τ/� is converted to a dissipative evolution
operator e−iH̃◦τ/� 	̂ e−iH̃ ′τ/�, where we use the tilde symbol
to denote the lattice gas generators.1 This represents the
measurement step. The collide operator Ĉ ≡ e−iH̃ ′τ/� creates
entangled cluster states at every point in the system. After that
(post-collision), the operator 	̂ ≡ ÎP̂ causes collapse of the
entangled cluster state via operator P̂ and then injects this state
back into the full Hilbert space by tensor product operator Î.
Finally (post-measurement), the stream operator Ŝ ≡ e−iH̃◦τ/�

models the free particle motion confined to the lattice. The
effective hydrodynamics behavior of the quantum lattice gas
algorithm for modeling a Navier-Stokes fluid is tested here via
quantum simulations carried out using the measurement-based
quantum algorithm

|�(t + τ )〉 = e−iH̃◦τ/�	̂e−iH̃ ′τ/�|�(t)〉. (3)

The measurement-based quantum lattice gas (3) originally
proposed as a practical algorithm for computational fluid
dynamics [28] is tested here in various (2+1)-dimensional
simulations. We find that (3) is a valid representation
of (1).

The measurement-based quantum lattice gas is a generaliza-
tion of a classical lattice gas. A classical lattice gas algorithm
for fluid dynamics in 2+1 dimensions was developed by
Frisch, Hasslacher, and Pomeau, and it is known as the FHP
model [7]. The occupancy probability of the momentum state

1Since [Ĥ◦,Ĥ ′] �= 0, we know that e−iĤ◦τ/� �= eiĤ ′τ/�e−iĤ τ/�.
However, there exist Hermitian generators H̃◦ and H̃ ′ such that
e−iH̃◦τ/�eiH̃ ′τ/� ≈ e−iĤ τ/� to very high-order accuracy when entan-
glement in the quantum state is localized to the Hilbert subspace at a
point, and this localization is represented by 	̂ [27]. So, the Hermitian
generators in (3) are akin (but are not equal) to their counterparts
in (2), i.e., H̃◦ �= Ĥ◦ and H̃ ′ �= Ĥ ′.
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along the ath lattice direction at a point in the lattice is given
by Boolean number variable na ∈ [0,1]. In the quantum lattice
gas algorithm developed by Yepez [19,20,28], the occupancy
probability amplitude of the momentum state along the ath
lattice direction at a point is given by the quantum state
of a qubit |qa〉, which is a superposition of logical “zero”
state |0〉 = (1

0) and the logical “one” state |1〉 = (0
1), at that

point. The classical Boolean number variable is recovered by
taking the expectation value of the singleton number operator
na = 〈qa|n̂|qa〉 = 0 when |qa〉 = |0〉 and na = 〈qa|n̂|qa〉 = 0
when |qa〉 = |1〉, where n̂ = (0 0

0 1). However, as mentioned
in the Introduction, in general |qa(x)〉 = α(x)|0〉 + β(x)|1〉 is
a superposition state, where the c numbers are constrained
by bit conservation |α(x)|2 + |β(x)|2. Then, the real-valued
occupancy probability of the ath momentum state at a point
x is given by fa(x) = 〈qa(x)|n̂|qa(x)〉 = |β(x)|2, which is a
kinetic variable represented at the mesoscopic scale. Six qubits
for the six momentum states are assigned to each point in the
lattice, where each qubit at x is determined by the occupancy
probability by

|qa(x)〉 =
√

fa(x)|1〉 +
√

1 − fa(x)|0〉. (4)

Because there are Q = 6 qubits per point, there are 26 = 64
dimensions in the local Hilbert space per point. Each numbered
state is represented by the incoming onsite ket given by the
tensor product of the six qubits:

|ψ(x)〉 =
Q⊗

a=1

|qa(x)〉. (5)

The number states may be labeled by a 6-bit integer N ∈
[0,63], i.e., |N〉 = |n1n2 . . . n6〉, where na are Boolean number
variables. The local ket at point x is in general the quantum
state

|ψ(x)〉 =
2Q−1∑
N=0

ψN (x)|N〉 =

⎛
⎜⎜⎝

ψ0(x)
ψ1(x)

...
ψ2Q−1(x)

⎞
⎟⎟⎠, (6)

where ψN (x) is the c-number probability amplitude for the
numbered state |N〉, and the full quantum state is formed as
a tensor product over all spatial points of the lattice |�(t)〉 =⊗

x∈lattice |ψ(x,t)〉. Defining an onsite collision operator Û , the
post-collision ket |ψ ′(x)〉 is given by

|ψ ′(x)〉 = Û |ψ(x)〉, (7)

and the outgoing (post-collision) occupancy probability distri-
bution is given by

f ′
a(x) = 〈ψ(x)|Û †n̂aÛ |ψ(x)〉 = 〈ψ ′(x)|n̂a|ψ ′(x)〉, (8)

where the multiple qubit number operator for the ath qubit
has the singleton number operator at the ath position, i.e.,
n̂a ≡ 1⊗(a−1) ⊗ n̂. Each probability is then streamed to its
neighboring lattice site and the process is repeated. In the
quantum lattice gas algorithm, the unitary evolution operator

in (2) is decomposed into the product of unitary stream and
collision operators e−iĤ τ/� = ŜĈ, where the Ĉ = ⊗

x Û .
In measurement-based quantum lattice gas form, the

decomposition (3) can be written as a strongly correlated
many-body quantum evolution equation

|�(x1, . . . ,xn; t + τ )〉 = Ŝ 	̂ Ĉ|�(x1, . . . ,xn; t)〉, (9)

where Ŝ is a unitary streaming operator and Ĉ = ⊗
x Û is a

tensor product of the local complex unitary collision operator,
analogous to the collision operator in the classical lattice gas. Û
causes entanglement of the outgoing collision configurations
at each point of the lattice. Characteristic of a measurement-
based quantum algorithm, the local evolution (9) contains
a projection operator, denoted here by 	̂, and this operator
collapses each entangled cluster state that exists at every point
of the system. 	̂ can be implemented on a measurement-based
quantum computer by Von Neuman projective measurement
of the qubits in the system. Because of 	̂, (9) represents
dissipative particle dynamics, which becomes equivalent to (1)
in the continuum limit. The stream operator Ŝ is an orthogonal
permutation matrix with components being either 0 or 1. It
causes particles to move from one site to the next and causes
global shift of the qubit occupations. Yepez derived unitary
collision operators that reproduced the lattice Boltzmann
equation, and thus the viscous Navier-Stokes equations, at
the mesoscale [19,20,28]. He showed that detailed balance is
obeyed and that the method is noiseless and unconditionally
stable.

Yepez’s analytical result from Refs. [19,20] is that the
effective equation of motion for flow field v and fluid density
ρ for a quantum lattice gas in D spatial dimensions reduces
to the following flow equation in the long-wavelength, low-
frequency, and subsonic limits:

∂t (ρvi) + ∂j�ij + · · · = 0, (10)

where the momentum flux density is

�ij = Pij + gρvivj − ρ�2

(D + 2)τ

(
1

κη

− 1

2

)
∂jvi, (11)

and where the lattice cell size is � = cτ for the unit speed
c. With sound speed cs ≡ �/(τ

√
D), the pressure tensor is a

bilinear functional of the fluid flow

Pij = ρc2
s

(
1 − g

v2

c2

)
δij , (12)

with the density-dependent factor

g(d) = D

D + 2

1 − 2d

1 − d
, (13)

where the reduced density is d = ρ/B and B is the lattice
coordination number (i.e., B = 6 for the triangular lattice).
Finally, inserting (11) into (10), the momentum equation for
viscous flow is

∂t (ρvi) + ∂j (gρvivj )

= −∂iP + η∂2vi +
(
ζ + η

D

)
∂i∂j vj + . . . , (14)
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with shear viscosity

η = ρ�2

τ

1

D + 2

(
1

κη

− 1

2

)
, (15)

and bulk viscosity

ζ = ρ�2

τ

2D − 1

D(D + 2)

(
1

κη

− 1

2

)
, (16)

where κη is the viscosity eigenvalue of the Jacobian matrix
with components Jab = ∂�a/∂fb|f equil.=d and where the form
of the collision operator �a in the quantum lattice gas model is
explained in the following. With small Knudsen, Strouhal, and
Mach numbers, the momentum equation (14) approximates
the Navier-Stokes equation in (1) with g(d) appearing in the
convective and pressure terms in (14).

If g(d) is positive definite but less than unity for some
particular value of d used in a flow simulation, then one
simply rescales velocity field v → gv to ensure that the
momentum flow equation is Galilean invariant. Furthermore,
when modeling fluid flow with characteristic flow speed U ,
the density-dependent factor g > 0 may be chosen to be
proportional to or less than the Mach number [g(d) � U/c =
M] by choosing d � 1

2 so that the pressure P = ρc2
s + O(M3)

becomes effectively isotropic and velocity independent, to
within the level of approximation employed in the model. So,
like the lattice Boltzmann equation method for compressible
flow constrained to low Mach number, the pressure term in
the quantum lattice gas also becomes proportional to the
density.

We provide the following numerical demonstrations below.
We test the quantum lattice gas in its classical lattice gas
representation and then we test the quantum lattice gas
as a quantum algorithm that exploits local entanglement.
As part of both these tests, we carry out numerical mea-
surements reported below that include incompressible fluid
simulations of viscous decay and the Kelvin-Helmholtz shear
instability.

A. Classical lattice gas as a special case

Two-body, three-body, four-body, and two-body with a
spectator particle collisions were incorporated into the algo-
rithm in order to lower the viscosity and increase the Reynolds
number of the simulations as much as possible. An example
of a two-body collision with even and odd chirality is shown
in Fig. 1(a). A three-body collision, shown in Fig. 1(b), has
only one possible outcome. A four-body collision has two
possible outcomes depending on the chirality as is shown
in Fig. 1(c). Finally, a two-body collision with a spectator
particle, an example of which is shown in Fig. 3(d), has,
as in the case of three-body collisions, only one possible
outcome.

By the correspondence principle, quantum mechanics leads
to classical mechanics by the Ehrenfest theorem. The particle
dynamics represented by a quantum lattice gas is a superset of
the particle dynamics represented by a classical lattice gas. So,
it possible to use a quantum lattice gas algorithm to represent
a classical lattice gas, albeit without the shot noise, and this
correspondence is a first test of our quantum method reported
herein.

FIG. 1. Examples of particle-particle collisions in a classical
lattice gas confined to a two-dimensional hexagonal lattice. The
collisions show particle momenta with incoming states (solid) transi-
tioning to outgoing states (dotted). All single particle momentum
vectors are unit magnitude and are along the hexagonal lattice
directions. The value within the ket is the number of the shown
state out of the possible 26 = 64 states in the Hilbert space as given
by (5). The other particle-particle collisions are obtained by cyclic
permutations of these.

The classical (albeit unitary) collision matrix for three-
body and two-body with a spectator particle collisions is an
orthogonal O(2) matrix of the form

Û classical
three-body =

(
0 1
1 0

)
(17)

with no free parameters. Thus following (7), the collision
shown in Fig. 1(b) can be written as

(
ψ ′

21

ψ ′
42

)
= Û classical

three-body

(
ψ21

ψ42

)
, (18)
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where the two states are switched at each collision. The
collision matrix for two- and four-body collisions is an
orthogonal O(3) operator of the form

Û classical
two-body =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, (19)

and its transpose, where (19) and its transpose are applied
at alternating time steps. Again, following (7), the collision
shown in Fig. 1(b) can be written as

⎛
⎜⎝

ψ ′
9

ψ ′
18

ψ ′
36

⎞
⎟⎠ = Û classical

two-body

⎛
⎜⎝

ψ9

ψ18

ψ36

⎞
⎟⎠, (20)

where the three states are permuted at each collision.
A two-dimensional Bravais lattice with periodic boundary

conditions was constructed, with a collision and stream
operation performed sequentially at each lattice site for each
time step to update the probabilities of the six momentum
directions. Kinematic viscosities of the simulated fluids were
computed by simulating the exponential decay of an initial
sinusoidal velocity oscillation for the cases of (a) two- and
three-body collisions, (b) two-, three-, and four-body colli-
sions, and (c) two-, three-, four-, and two-body with a spectator
particle collisions. Analytical expressions for the kinematic
viscosity were obtained using the mean field approximation
by calculating the degenerate eigenvalues of the Jacobian of
the collision operator evaluated at equilibrium [29], where the
collision operator is given by

�a = f ′
a − fa = 〈ψ |Û †n̂aÛ − n̂a|ψ〉. (21)

For two- and three-body collisions, the kinematic viscosity
as a function of the reduced density d is given by

ν = 1

12d(1 − d)3
− 1

8
, (22)

where 0 � d � 1 is the probability of occupancy of a
point when the system is under the condition of global
thermodynamic equilibrium. For two-, three-, and four-body
collisions, the kinematic viscosity (that is manifestly particle-
hole symmetric) is given by

ν = 1

12d(1 − d)3 + 12(1 − d)d3
− 1

8
, (23)

and for two-, three-, four-, and two-body with a spectator
particle collisions, the kinematic viscosity is given by

ν = 1

3d(1 − d)3 + 12d2(1 − d)2 + 3(1 − d)d3
− 1

8
. (24)

The computed viscosities as a function of reduced density
were found to match the values given by the classical mean
field approximation over the entire range of densities, shown
in Fig. 2. So, with the appropriate special case unitary collision
operator, the quantum lattice gas behaves as a classical lattice
gas. However, since probability amplitudes of a qubit are used

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

d

FIG. 2. (Color online) Kinematic viscosity as a function of re-
duced density d . Dashed lines show the mean field approximation
results. Blue (dark) represents two- and three-body collisions, red
(middle) represents two-, three-, and four-body collisions, and orange
(light) represents two-, three-, four-, and two-body with a spectator
particle collisions.

to encode particle occupation, the shot noise that is otherwise
characteristic (and a drawback) of the classical lattice gas
is altogether eliminated in the quantum lattice gas in this
special limit. The collision operators (17) and (19) do not
induce any quantum entanglement, so no projection operation
is required prior to particle streaming. Thus, the operative
quantum algorithm in this special limit has the classic form
|�(t + τ )〉 = e−iĤ◦τ/�e−iĤ ′τ/�|�(t)〉 = ŜĈ|�(t)〉 of a lattice
gas model. This evolution is just the usual stream-collide
decomposition of (2).

B. Measurement-based quantum lattice gas

The classical lattice gas algorithm was converted into a
quantum lattice gas algorithm following the work of Yepez.
The collision matrix for three-body and two-body with
a spectator particle collisions is an SU(2) matrix of the
form

Û
quantum
three-body =

(
eiζ cos η eiξ sin η

−e−iξ sin η e−iζ cos η

)
(25)

with three free parameters: ζ , ξ , and η. Following (7), the
collision shown in Fig. 3(a) can be written as

(
ψ ′

21

ψ ′
42

)
= Û

quantum
three-body

(
ψ21

ψ42

)
(26)

where the two states ψ21 and ψ42 are now entangled at each
collision.

The SU(3) collision matrix for two- and four-body colli-
sions is obtained by combining the appropriate three Gell-
Mann matrices (see Appendix for the matrix representation of
λi for i = 1,2, . . . ,8), via

Û
quantum
two-body = eiθ(−λ2+λ5−λ7) (27)

with θ as the single free parameter. The degenerate eigenvalues
of the Jacobian of the collision operator evaluated at equilib-
rium, i.e., the viscosity, are real only for a value of θ = 3π/

√
3,
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FIG. 3. Examples of particle-particle collisions in a quantum gas
confined to a two-dimensional hexagonal lattice. The collisions show
particle momenta with incoming states (solid lines) transitioning to
outgoing states (dotted lines). All single particle momentum vectors
are unit magnitude and are along the hexagonal lattice directions.

giving the
√

SWAP unitary operator of the form

Û
quantum
two-body =

⎛
⎜⎝

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

⎞
⎟⎠. (28)

The three parameters (ζ,η,ξ ) are now available to vary the
viscosity. The outgoing entangled cluster states for the four
types of collisions are shown in Fig. 3. Again, following (7),
the collision shown in Fig. 3(a) can be written as⎛

⎜⎝
ψ ′

9

ψ ′
18

ψ ′
36

⎞
⎟⎠ = Û

quantum
two-body

⎛
⎝ ψ9

ψ18

ψ36

⎞
⎠, (29)

where the three states are entangled at each collision.
Kinematic viscosities were again computed by simulat-

ing the exponential decay of an initial sinusoidal velocity
oscillation and calculated analytically via the mean field
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FIG. 4. (Color online) Kinematic viscosity as a function of re-
duced density d . Lines show the mean field approximation results,
dashed for classical lattice gas and solid for quantum lattice gas. Blue
(top pair) represents two- and three-body collisions, red (middle pair)
represents two-, three-, and four-body collisions, and orange (bottom
pair) represents two-, three-, four-, and two-body with a spectator
particle collisions.

approximation as for (22)–(24) for the same three cases. The
kinematic viscosity given by the mean field approximation for
two- and three-body collisions is

ν = 1

16d(1 − d)3
− 1

8
. (30)

For two-, three-, and four-body collisions the kinematic vis-
cosity (that is manifestly particle-hole symmetric) is given by

ν = 1

16d(1 − d)3 + 16(1 − d)d3
− 1

8
, (31)

and for two-, three-, four-, and two-body with a spectator
particle collisions the kinematic viscosity is given by

ν = 1

4d(1 − d)3 + 12d2(1 − d)2 + 4(1 − d)d3
− 1

8
. (32)

Because of the quantum superposition of states none of the
kinematic viscosities are dependent on the three SU(2) param-
eters in (25), which in this case were η = π

2 and ζ = ξ = 0. It is
shown in Fig. 4 that for all three cases, the minimum viscosity
as a function of reduced density computed in the quantum
lattice gas algorithm was lower than that computed in the
classical lattice gas algorithm due to the entangled output states
in the quantum lattice gas following each collide step. The
viscosities computed with the quantum lattice gas algorithm
also agreed with those given by the mean field approximation.

The quantum lattice gas algorithm was then modified to
simulate a shear flow and the resulting development of Kelvin-
Helmholtz instabilities. The computational domain consisted
of 16384 × 8192 Bravais lattice sites for a total of 1.34 × 108

points with the initial flows in the long dimension and periodic
boundary conditions on all sides. A strip of 1024 lattice sites
in the middle of the domain was initialized with a velocity
of 0.28 while the domains on each side of this strip were
initialized with a velocity of 0.04 in the opposite direction for
an initial total system momentum of zero. The value of the
reduced density d was 0.17. Random noise with an amplitude
of 5% was added to the initial velocities. As for the classical
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FIG. 5. (Color online) Contour plot of vorticity at initialization. Center flow is upward at a velocity of 0.28, and outer flow is downward at
a velocity of 0.04 with a background density of d = 0.17. Start of the KH instability occurs around 100 000 time steps. By 150 000 time steps,
the KH instability causes the breakup of the shear layer into separate vortex pairs. By 400 000 time steps, dissipation begins to dominate the
flow. By 700 000 time steps, merging of the vortices has started.

lattice gas, a collision and stream operation were performed
sequentially at each lattice site for each time step to update the
probabilities of the six momentum directions.

The algorithm was parallelized using MPI and was run
using from 256 to 4096 processor cores, achieving a maximum
site update rate on 4096 cores of 2.43 × 109 lattice sites per
second and a wall clock run time of approximately 90 min to
complete 100 000 time steps. The wall clock run time scaled
approximately with the inverse of the number of cores up
to 2048 cores. At 4096 cores, the communication required
for the outputting of the plot and continuation files began to
consume a significant amount of the total run time. Memory
requirements are low as, in theory, only six values are stored for
each lattice point and each processor only needs the values for
its lattice points and those on two of its boundaries. Although
the algorithm was optimized for speed, the processors were
shown to be able to handle at least 524 288 lattice nodes
each, enabling a future expansion of the algorithm to three
dimensions.

Figure 5(b) shows a contour plot of the initial vorticity,
showing the shear layer with opposite vorticity on each side
of the center upward flow. By 100 000 time steps, shown in
Fig. 5(c), it can be seen that an instability is starting to develop
in the shear layer. This instability then rapidly grows, and as
shown in Fig. 5(d), by 150 000 time steps separate vortices
are beginning to break off. The breakup of the shear layer
completes around 200 000 time steps, shown in Fig. 5(e).
Figures 5(f) and 5(g) show the vortices at 400 000 and 700 000
time steps, respectively, where merging and dissipation of
the vortices have occurred. From this point on, the vortices
dissipate, with the last one dropping below the contour color
level at approximately 1 119 000 time steps.

III. CONCLUSION

A quantum lattice gas model of Navier-Stokes fluid dy-
namics (i.e., incompressible flow limit) in 2+1 dimensions
was tested as a candidate computational fluid dynamics
algorithm. The quantum algorithm was parallelized using
MPI to increase the domain size and therefore the Reynolds
number, reduce the run time, and take advantage of the
computational resources available at the MHPCC. Four types

of collisions were incorporated: two particle, three particle,
four particle, and two particle with a spectator particle. The
quantum lattice gas model can incorporate unitary collision
operators that induce classical particle-particle collisions or
quantum mechanical particle-particle collisions, the latter
producing locally entangled states. Numerical simulations
were conducted for both classical and quantum collisions, and
in the former case the fluid dynamics in a classical lattice gas
is reproduced. Even though the computational effort for the
quantum lattice algorithm is similar to that for a classical lattice
gas, the case of quantum collisions is important because of its
potential to reduce the shear viscosity compared to the classical
lattice gas when incorporating the same collision types in the
modeled fluid and thus achieve a high level of convective
nonlinearity in the flow. The quantum lattice algorithm is
reversible and noiseless, and provides an algorithm that can
be implemented on measurement-based quantum computers
as they become available.

Calculation of the fluid viscosity was conducted by sim-
ulating the decay of an initial sinusoidal flow profile. Due
to the local quantum entanglement of states in a quantum
lattice gas, the minimum fluid viscosities for the quantum
lattice gas algorithm were lower than those obtained by a
classical lattice gas algorithm, and the viscosities matched
analytical values given by the mean field approximation. A
shear layer producing a Kelvin-Helmholtz instability was then
simulated on a 16K × 8K lattice with the quantum lattice
gas algorithm. Instability of the shear layer resulting in the
breakup of the shear layer into separate vortices that then merge
and dissipate was observed. The numerical behavior of the
quantum lattice gas model precisely matched the theoretically
predicted behavior in test cases.
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APPENDIX

The matrix representation of the eight SU(2) Gell-Mann generators that we use above are

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

λ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, λ7 =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (A1)
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[2] P. Schlatter and R. Örlü, J. Fluid Mech. 659, 116 (2010).
[3] S. Pirozzoli and M. Bernardini, Phys. Fluids 25, 021704

(2013).
[4] I. Bermejo-Moreno, J. Bodart, J. Larsson, B. Barney, J. Nichols,

and S. Jones, in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis (ACM, New York, 2013).

[5] J. Koplik and J. R. Banavar, Annu. Rev. Fluid Mech. 27, 257
(1995).

[6] K. F. Ludwig and M. Micci, Atomization Sprays 21, 275
(2011).

[7] U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56,
1505 (1986).

[8] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y.
Pomeau, and J.-P. Rivet, Complex Syst. 1, 649 (1987).

[9] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511
(1954).

[10] E. P. Gross and E. A. Jackson, Phys. Fluids 2, 432 (1959).
[11] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics

and Beyond (Clarendon Press, Oxford, 2001).
[12] S. S. R. Benzia and M. Vergassola, Phys. Rep. 222, 145 (1992).
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