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Coherence and aberration effects in surface plasmon polariton imaging
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We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage
radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a
rigorous modal formalism based on scalar Whittaker potentials, we develop a systematic analytical and vectorial
method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes
geometrical aberrations due index mismatch which played an important role in the interpretation of recent
experiments using leakage radiation microscopy. We compare our theory with experiments using classical or
quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation
of the recorded optical images.
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I. INTRODUCTION

Leakage radiation microscopy (LRM) [1] has become in
the last years a versatile and powerful tool to image the
propagation of surface plasmon polaritons (SPPs) [2,3] along
a dielectric (air-)metal interface on top of a thin metal film.
It relies on the conversion of such SPPs into leaky light
modes in the dielectric (glass) substrate [3–5]. These coherent
leaky waves are subsequently recorded with an oil immersion
objective and imaged with a camera. Being a far-field imaging
method, LRM can be used to obtain information on SPPs
in the direct space as well as in the Fourier (i.e., in-plane
momentum) space [6]. It has been successfully applied to the
study of several plasmonic devices such as planar lenses and
waveguides, nanoholes and slits, interferometers, and photonic
crystals [7–16], where it is complementary to near-field
scanning optical methods [1,17,18] and scanning tunneling
electron microscopy (STM) [19,20]. Due to its high sensitivity,
LRM constitutes an ideal approach for optical metrology in
the Fourier space of phenomena such as spin-Hall effect,
SPP mode steering, and negative refraction [21,22]. Recently,
LRM has also been successfully applied to the new field of
quantum plasmonics involving single leaky SPPs generated
by individual photon emitters [23,24]. For practical reasons,
it was necessary to work with fused silica substrates instead
of the usual glass coverslips adapted to the oil immersion
objective. This induced geometrical aberrations which were
only qualitatively considered in the analysis of LRM images
[23,24].

Despite its long history and its growing importance in the
field of plasmonics, until now only few works focused on the
development of a rigorous theory of LRM. A general approach
taken in Refs. [7,18,20,25] is to consider the electromagnetic
field generated by a pointlike dipole located in the vicinity
of a metal film using the Green dyadic formalism [2] and the
transfer matrix method. However, a good understanding of
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LRM requires to take rigorously into account the properties
of high numerical aperture objectives needed for imaging the
SPP fields. This is particularly clear if we consider that leaky
SPPs are emitted at very high angles in a regime where the
paraxial optics approximation breaks down. This aspect of the
problem was not included in previous studies although it can
have strong impact of the interpretation of optical imaging as
we show in this work. Recently [26], we presented an analytical
theory of SPP imaging by LRM adapted to single dipolar
emitter near a metal film without including the geometrical
abberations. In Ref. [26], we focused our study more on the
physical mechanisms which lie at the heart of leakage radiation
than on the optical theory describing the imaging process
itself. The aim of this work is therefore twofold. On the one
hand, we give a complete and detailed analytical theory of
coherent imaging adapted to LRM and based on transverse
electric (TE) and transverse magnetic (TM) scalar Whittaker
potentials [27]. This approach is well adapted to a clear
description of coherent imaging and, in particular, reduces the
full vectorial description of the field to the knowledge of two
scalar functions �TE and �TM, the second one being the most
important for SPP imaging. We will show that using such scalar
potentials strongly simplifies the formalism adapted to LRM
since it allows a clear representation of optical observables
associated with TE and TM waves. Moreover, since LRM
involves mainly TM modes, the interpretation and discussion
of SPP propagation become easier and reduce to the knowledge
of only one complex number �TM � �SPP. On the other hand,
in this work, we analyze the effect of geometrical aberrations
due to defocusing to an index mismatch between the sample
and microscope objective on the image coherence. This is a
key ingredient for quantum plasmonics using LRM. We will
illustrate the theory with experimental images obtained using
a near-field scanning optical microscope (NSOM). We will
consider two kinds of NSOM tips, i.e., either a classical-like
aperture NSOM tip, or a quantumlike NV-based NSOM
tip. While the effect of geometrical aberrations on confocal
microscopy is already well documented, the implication of
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such imperfections on coherent imaging, in particular those
involving propagating SPPs, is still unsolved. Due to the long
propagation length of SPP mode in the optical regime, i.e.,
10–20 μm, the effect cannot be ignored even if the index
mismatch is small. Here, we show that the effect is indeed
detrimental to coherent imaging and can lead to strongly
distorted images.

II. COHERENT IMAGING THEORY

In order to describe LRM, one must consider light propaga-
tion through an oil microscope objective with high numerical
aperture NA ∼ 1.4 able to collect waves emitted at angles
larger than the critical value θc � 42◦. This imposes to work
beyond the usual paraxial approximation. Indeed, SPPs are
emitted at large angle θLR � arcsin (n′

SPP/n) where n′
SPP is the

real part of the SPP optical index defined from the SPP in
plane wave vector as kSPP = k0nSPP(λ) where k0 = 2π/λ and
λ is the optical wavelength [3–5]. For sufficiently thick films,
we have kSPP = k0

√
( εm

1+εm
), with εm the complex permittivity

of metal, which implies nSPP � 1 in the visible. This clearly
justifies the use of nonparaxial optics to describe LRM. We
first fix the geometry conventions (see Fig. 1). The thin metal
film of thickness d supporting propagating SPPs is located
on a substratum of optical index n � 1.5 (i.e., glass). The
superstratum is characterized by a permittivity ε1 � 1 (i.e.,
air). The z axis is identified with the optical axis of the
microscope and the different media, i.e., superstratum, metal,
substratum are labeled as media j = 1, 2, and 3, respectively.
Leaky waves emitted through the metal film propagate in the
+z direction through the objective (see Fig. 1). It is customary
when dealing with high numerical aperture lens to define a
reference sphere of radius f associated with the focal length
of the objective [28–31]. This sphere (labeled �1) has its
center (i.e., the objective focal point) on the plane z = d which
corresponds to the interface between media j = 2 and 3. This
plane denoted 	 defines the object plane of the microscope.
The wave front located on �1 evolves into a planar wave front
after propagating through the objective. We will denote in

FIG. 1. (Color online) Sketch of the optical microscope includ-
ing a high numerical aperture objective. Rays originating from the
focus F1 are collimated along the optical axis after crossing the
reference sphere �1. The plane 	 is mapped onto 	′. 	1 is the back
focal plane of the objective and 	2, �2 play for the ocular or tube
lens the same role played by 	1, �1 for the objective. The metal
sample of thickness d is located between the plane z = 0 and d

(object plane, 	).

the following 	1 this plane also identified (as it is usually
done) with the back focal plane of the objective. Clearly,
this mathematical treatment of the objective as a black box
does not actually consider the physical ray propagation in
the different lenses which constitute the objective microscope
(including in particular a Weirstrass spherical lens and a
meniscus lens). However, this model has shown its efficiency
in the past, in particular, through study of confocal microscope
setups [30–32]. Finally, light propagates through a tube lens
(labeled by the planes 	2 and �2) to reach the image plane
	′ conjugated with the object plane 	. However, as we will
see, it is actually sufficient to model mathematically this lens
in the paraxial regime where the standard textbook description
can be used.

Having defined the optical setup, we now start from
the vectorial Stratton-Chu formulation of Huygens-Fresnel
principle [33] in order to obtain an integral representation
connecting the electromagnetic field defined at any point M

(i.e., with coordinates X = [x,z = d]) of the bottom film
interface 	 to the field at point M1 (i.e., with coordinates
X1 = [x1,z1]) on the reference sphere �1. Here, we consider
the Maxwell displacement field D = ε3E with ε3 = n2 the
permittivity of the substratum medium (i.e., glass and oil:
n � 1.5) and the Stratton-Chu formula gives

D�1 (X1) =
∫

(	)

iωε

c
ẑ × B	(X)G0(R)d2x

+
∫

(	)
{[ẑ × D	(X)] × ∇G0(R)

+ [ẑ · D	(X)]∇G0(R)}d2x, (1)

which is equivalently written, following Franz [34,35], as

D�1 (X1) = ∇1 ×
∫

(	)
ẑ × D	(X)G0(R)d2x

+ i
1

k0
∇1 × ∇1 ×

∫
(	)

ẑ × B	(X)G0(R)d2x, (2)

where G0(R) = eik0nR/(4πR) is the usual scalar (Helmholtz)
Green function depending on the distance between points M

and M1: R = |X − X1|. Following the Fraunhofer “far-field”
approximation, one obtains since R ∼ f � λ

G0(R) = eik0nR

4πR
� eik0nf

4πf
e−ik0nx·x1/f . (3)

Therefore, after some calculations (detailed in Appendix A)
one deduces

D�1 (X1) � 2π

if
eik0nf k0n cos θ1D̃	

[
k0nx1

f
,d

]
, (4)

where the polar angle θ1 is defined by f cos θ1 = z1 − d

and f sin θ1 = |x1| = �1. Here, D̃	[ k0nx1
f

,d] is the bidi-
mensional Fourier transform of the field D	(X) defined
as D̃	[k,z] = ∫

d2x
4π2 D	(X)e−ik·x and calculated for k =

k0nx1/f = k0n�1�̂1/f and for z = d. Formula (4) is remi-
niscent from the work by Wolf [2,28,29] where it is obtained
using the stationary phase approach [36] (we will go back to
this point later). Equivalent calculations, not shown here, were
also done in the reverse case where a collimated light beam
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FIG. 2. (Color online) Sketch illustrating how rays originating
from F1 are transformed after crossing the reference sphere �1. The
unit vectors used in the text are indicated.

is entering the microscope objective (i.e., in −z direction). In
that case, we obtain the results of Refs. [37,38]. We point out
that D�1 is clearly transverse to the sphere radius joining the
focus to M1 as is should be since D̃	[k,d] is orthogonal to
k +

√
k2

0ε3 − k2ẑ = k0nr̂1.
In order to describe the propagation through the high NA

(aplanatic) objective, we apply the usual “sine” projection
which states that the spherical wave front �1 evolves into a
planar wave front 	1 after traveling through the objective.
In this description, every conical pencil of light emerging
from the objective focus region (and intersecting the reference
sphere on a surface element dS1) is therefore transformed
into a cylindrical pencil of light of section cos θ1dS1 = d2x1

propagating along a direction parallel to the optical axis (see
Fig. 2). Using the energy conservation and Poynting theorem,
one has

t1

n3

∣∣D�1 (X1)
∣∣2

dS1 = ∣∣E	1

(
x1,z	1

)∣∣2
d2x1, (5)

where t1 is the transmission of the objective, keeping in
mind that for a plane wave with pulsation ω propagating
along the direction defined by the unit vector k̂ the time
averaged Poynting vector in a medium with permittivity ε

and permeability μ is given by 〈Sω〉 = 2cRe{Eω × H∗
ω} =

2c
√

(ε/μ)|Dω|2/ε2k̂. The coordinate z	1 of the plane is here
supposed to be associated with the back focal plane of the
objective. Taking into account the vectorial orientation of
the (transverse) electromagnetic field, the “sine” condition is
written after separation into TM and TE polarization as

E	1

(
x1,z	1

) = T1√
(n3 cos θ1)

{[
D�1 (X1) · θ̂1

]
�̂1

+ [
D�1 (X1) · ϕ̂1

]
ϕ̂1

}
PNA(�1). (6)

In this formula, we introduce the effective (complex valued)
Fresnel transmission coefficient of the lens T1 = √

t1e
iτ1 which

we suppose isotropic and identical for s and p polariza-
tions. We also include the pupil function of the objective
PNA(�1) such as PNA(�1) = 1 if �1 � f sin θmax = f NA/n

and PNA(�1) = 0 otherwise. For practical application in the

Fourier space it is sometimes better to write Eq. (6) as

E	1

(
x1,z	1

) = 2πeik0nf

if

T1
√

k0k3(k)

n

×
{(

D̃	

[
k0nx1

f
,d

]
· θ̂1

)
�̂1

+
(

D̃	

[
k0nx1

f
,d

]
· ϕ̂1

)
ϕ̂1

}
, (7)

where k3(k) =
√

k2
0ε3 − k2.

The propagation between the objective and the tube lens
with focal length f ′ can subsequently be treated in the paraxial
approximation. Using the Stratton and Chu formalism, we
obtain the field E	2 (x2,z	2 ) in the plane 	2 in front of the
tube lens:

E	2

(
x2,z	2

) = k0e
ik0

2πi

∫
	1

d2x1E	1

(
x1,z	1

)

× e−ik0
x1 ·x2

 eik0
�2

1
2 eik0

�2
2

2 , (8)

where  = z	2 − z	1 is the the typical tube length of the
microscope.

The next step is to find the transmitted field through the
tube lens. Using a reasoning similar to the one done for the
objective, we get

E�2 (X2) = T2

√
(cos θ2)

{[
E	2

(
x2,z	2

) · �̂2
]
�̂2

+ [
E	2

(
x2,z	2

) · ϕ̂2
]
ϕ̂2

}
PNA′(�2), (9)

where PNA′(�2) is now defined for the entrance pupil of the lens
tube, with the orientation of the z axis θ̂2 = cos θ2�̂2 + sin θ2 ẑ
which should be compared to θ̂1 = cos θ1�̂1 − sin θ1 ẑ. The
final step of the imaging process is to use the Stratton-Chu
formula to describe the electromagnetic field in the region of
the image focus. We obtain the so-called vectorial form of the
Debye integral which reads as in our case

E	′(x′,z′) = k0e
ik0f

′

2πif ′

∫
�2

d2x2

cos θ2
E�2 (X2)

× e
−ik0

δz2 ·δz′
f ′ e

−ik0
x2 ·x′
f ′ e

ik0
(�′2+z′2)

2f ′ . (10)

In this formula, δz′ and δz2 are measured relatively to the image

focus, therefore, δz2/f
′ = −

√
1 − �2

2/f
′2 � −1 + �2

2
2f ′2 . In the

following, we will however set δz′ = 0 and work exclusively
in the image focal plane.

Rigourously speaking, Eqs. (4) and (6)–(10) are sufficient
to calculate the image field formation. Moreover, for practical
calculation it is possible to assume θ2 � θ1. Therefore, setting
θ2 = 0 in Eq. (9) leads to

E�2 (X2) = T2E	2

(
x2,z	2

)
PNA′(�2) (11)

and

E	′(x′) = k0e
ik0f

′
e
ik0

�′2
2f ′

2πif ′

∫
	2

d2x2E�2 (X2)e−ik0
x2 ·x′
f ′ . (12)

Grouping all of the equations and putting PNA′(�2) = 1 for the
range of �2 values considered lead to the final expression (see
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Appendix B for details)

E	′(x′) = N

∫
	1

d2x1

√
(cos θ1)PNA(�1)e−ik0

x1 ·x′
f ′

×
{(

D̃	

[
k0nx1

f
,d

]
· θ̂1

)
�̂1

+
(

D̃	

[
k0nx1

f
,d

]
· ϕ̂1

)
ϕ̂1

}
, (13)

where N is a constant (see Appendix A). The previous formula
is equivalently written as an explicit integral on k which will
be used in the rest of this work:

E	′(x′) = N ′
∫

|k|�k0NA
d2k

√
k3(k)e−ik· x′

M

×{(D̃	[k,d] · θ̂1)�̂1 + (D̃	[k,d] · ϕ̂1)ϕ̂1}, (14)

where N ′ = Nf 2

(k0n)5/2 , and M = nf ′/f ∼ 100 is the magnifica-
tion of the microscope.

All the results discussed insofar are very general and
only depend on the “sine” condition (6) valid for aplanatic
microscope objectives. In particular, it should be observed
that only TM modes are geometrically distorted in the imaging
process since the passage from the reference sphere �1 to the
plane 	1 implies a direct modification for the field. Therefore,
only a contribution of the TM field proportional to k will
survive in the 	1 plane. Furthermore, it can be noticed that
all TE waves satisfy already the symmetry requirement for
projection from a spherical to a plane wave and therefore
they are not modified by the aplanatic objective lens (up
to the transmission coefficient). This means that in this
nonparaxial microscopy, phases and directions of the fields
play a critical role when passing from the Fourier to the
image plane 	′. Clearly, since SPPs are TM waves emitted
at large θ angle, this means that we cannot ignore the wave
front transformation induced by the objective. This will be the
subject of the next section based on a discussion of Whittaker
potentials.

III. SURFACE PLASMON POLARITON IMAGING

A. Role of the scalar Whittaker potentials

We remind that following the pioneer work by Sommerfeld
[39], the generation process of leaky SPs (defined in Refs. [40–
43]) by pointlike dipoles or current located in the vicinity of
a thin metal layer has been theoretically studied long ago
[2,44–47]. This approach has been also recently applied to the
context of SP generation by STM [19,20,25]. Still, the imaging
procedure itself was essentially ignored partly because it was
observed that classical paraxial optics methods give already
a good quantitative understanding of the propagation [48].
This is nevertheless far from being obvious since leaky SPs
are coherently emitted at a specific angle [3,4] θLR > θc =
arcsin [1/n] � 42◦ (θc is the critical angle of total internal
reflection at a glass-air interface). This corresponds to a regime
where paraxial approaches are not supposed to be true and
where the vectorial nature of the electromagnetic field should
not be neglected. However, it was recently experimentally
suggested that LRM is intrinsically limited to the imaging

of in-plane components of the electric SPP field [18,49,50]
confirming apparently the intuitive features deduced from a
naive paraxial approximation method.

In this context, we remark that the point spread function
of the full microscope for a dipole emitting leaky SPs
through the metal film has been already considered [51]
to describe the so-called surface plasmon coupled emission
microscopy (SPCEM) [52–55]. SPCEM is actually a par-
ticular form of LRM which couples total internal reflection
fluorescence excitation (TIRF) of molecules through a metal
film and LRM in order to enhance the signal-to-noise ratio
of standard TIRF microscopy (i.e., on glass substrate). In
Refs. [54–56], SPCEM included a scanning confocal micro-
scope configuration [57] for which a precise knowledge of the
point spread function mentioned above [51] and involving SPP
contributions is required. For this purpose, the approach used
in Ref. [51] is based on a matrix transfer formalism applied
to a plane wave expansion describing propagation through the
metal film. Importantly, the model includes also a description
of the high NA aplanatic objective in terms of a reference
sphere and an integral representation of the electromagnetic
field near a focal point (as given in the general theory by
Richards and Wolf [2,28–30]). This vectorial formalism takes
into account the transformation of the spherical wave front
emitted by the fluorescent dipoles into a planar wave front
transmitted through the objective (i.e., traveling in the direction
of the tube lens or ocular).

For the present purpose we will, however, use the scalar
potential approach based on the Whittaker expansion proposed
in 1904 [27] which is, as we will show, more specifically
adapted to the analysis of LRM and of two-dimensional (2D)
coherent imaging. The first step is the description of the
SPP field using a planar modal expansion separating TE and
TM components in the three media j = 1,2,3 corresponding,
respectively, to air, metal, and substrate (i.e., glass or fused
silica). We write for the field in each medium (in a source-free
region)

Dj = ∇ × ∇ × [ẑ�TM,j] + ik0εj∇ × [ẑ�TE,j],
(15)

Bj = ∇ × ∇ × [ẑ�TE,j] − ik0∇ × [ẑ�TM,j]

with

[∇2 + k2
0εj

]
�TM,TE,j = 0, (16)

which indeed shows BTM · ẑ = DTE · ẑ = 0 for fields built only
with �TM or �TE, respectively. Now, we have in the glass
substrate

D = ∇ × ∇ × [ẑ�TM] + ik0n
2∇ × [ẑ�TE]

= {∇‖∂z − ∇2
‖}[ẑ�TM] + ik0n

2∇‖ × [ẑ�TE]. (17)

We introduce the notation A‖ = A − (A · ẑ)ẑ for any vector
(including the nabla operator) which will be constantly used in
this work. The two Whittaker potentials �TM,TE(X) obey the
Helmholtz equations

[∇2 + k2
0n

2
]
�TM,TE = 0. (18)
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Basic solutions of Eq. (18) are given by a Rayleigh-
Sommerfeld expansion

�TM,TE(x,z) =
∑
±

∫
d2k �̃±

TM,TE[k,z]eik·x with

�̃±
TM,TE[k,z] = A±

TM,TE[k]e±ik3(k)z. (19)

In our problem, the 2D Fourier transform gives therefore

D̃[k,z] = −{kk3(k) − k2ẑ}�̃+
TM[k,z]

− k0n
2k × ẑ�̃+

TE[k,z]. (20)

Remark that we here suppose a field having (real or
imaginary) a wave vector +k3(k) along the z axis (i.e.,
�̃−

TM,TE[k,z] = 0), in agreement with causality requirements
(Sommerfeld condition). Going back to Eq. (20), we
have also k3k − k2ẑ = k2

0n
2 sin (θ1)θ̂1 = k0nkθ̂1 and k × ẑ =

−k0n sin (θ1)ϕ̂1 = −kϕ̂1. Therefore, we obtain an explicit
separation of TM and TE waves as

D̃TM[k,z] = −{kk3(k) − k2ẑ}�̃TM[k,z]

= − k0nkθ̂1�̃TM[k,z],
(21)

D̃TE[k,z] = − k0n
2k × ẑ�̃TE[k,z]

= + k0n
2kϕ̂1�̃TE[k,z].

We now go back to the derivation of Eq. (4) and consider
more specifically the role of Whittaker potentials �TM,TE(x,z)
defined by Eq. (19). For this purpose, we write in the vicinity
of the metal layer for z � d (substratum side)

�TM,TE(x,z) =
∫

d2k �̃TM,TE[k,d]eik3(k)(z−d)eik·x, (22)

where causality involves only waves propagation along +z in
the direction of the observer. In a recent paper [26], we used the
Whittaker potentials to describe the transmitted field generated
by a pointlike dipole μ = μ⊥ẑ + μ|| located at z = −h < 0
in the air side. Using the 2D Fourier expansion and writing
�̃TM[k,d] = �̃TM,⊥[k,d] + �̃TM,||[k,d] we get

�̃TM,⊥[k,d] = iμ⊥
8π2k1

T̃ TM
13 (k)eik3deik1h,

�̃TM,‖[k,d] = −iμ‖ · k
8π2k2

T̃ TM
13 (k)eik3deik1h, (23)

�̃TE[k,d] = ik0μ‖ · (ẑ × k)

8π2k1k2
T̃ TE

13 (k)eik3deik1h,

where ki(k) =
√

k2
0εi − k2 and where we introduce the full

transmission Fresnel coefficient T̃
TM,TE

13 (k) for both the TM
and TE waves, which are defined for the thin metal layer
surrounded by air and glass by usual formulas [26]

T̃
TM,TE

13 (k) = T
TM,TE

23 T
TM,TE

12

1 + R
TM,TE
23 R

TM,TE
12 e2ik2d

ei(k2−k3)d , (24)

where

RTM
ij = ki/εi − kj/εj

ki/εi + kj/εj

,

T TM
ij = 2ki/εi

ki/εi + kj/εj

,

(25)

RTE
ij = ki − kj

ki + kj

,

T TE
ij = 2ki

ki + kj

.

We emphasize here the importance of boundary conditions
at the air-metal and metal glass interfaces in deriving these
results. Furthermore, the definition of the electromagnetic
fields in terms of Whittaker potentials outlined in Eq. (15)
was here given for the bulk medium in absence of current
and dipole sources. The complete theory with source terms
[26] shows that, for the pointlike dipole considered here, the
free space solution considered in Eq. (15) is rigorous. For the
present purpose concerned with fields in the substratum region
these subtleties are nonetheless not relevant.

Moreover, as explained in Ref. [26], the radiated far field
can be evaluated by using a contour deformation in the complex
plane following a method used by Sommerfeld [35,39]. The
application of this method to a thin layer system leads,
however, to much more intricate calculations than for the single
interface case treated by Sommerfeld due to the presence
of several possible branch cuts and poles which should be
clearly identified before making the analysis. The resulting
field involves a single leaky SPP mode and a lateral wave which
is associated with a Goos-Hänchen effect in transmission
[26]. Both contributions, however, can be neglected in the far
field where the main contributing term results from a steepest
descent calculation along a specified path [26]. We get

�TM,TE(x,z) � 2πk0n cos θ

ir
eik0nr�̃TM,TE[k,d], (26)

where r,θ are defined as in Sec. II by the relation |x| = r sin (θ ),
z − d = r cos (θ ), i.e., r =

√
(z − d)2 + x2 and θ ∈ [0,π ].

The wave vector k = k0n sin θ �̂ defines the far-field angular
spectrum of the pointlike source.

This formula can be alternatively obtained using the
Rayleigh scalar formula

�TM,TE(x,z) =
∫

(	)
d2x′�TM,TE(x′,d)∂z′GD(R,R′)|z′=d ,

(27)
where GD(R,R′) = eik0nR

4πR
− eik0nR′

4πR′ is the Dirichlet

Green function [R =
√

(x − x′)2 + (z − z′)2, R′ =√
(x − x′)2 + (z + z′ − 2d)2] such as GD(R,R′) = 0 if

z′ = d. Using the approximation [36] R � r − sin θ �̂ · x′ −
cos θ (z′ − d), R′ � r − sin θ �̂ · x′ + cos θ (z′ − d) naturally
leads to Eq. (26) quite generally (i.e., independently of any
hypothesis concerning plasmons and material properties).
Despite this alternative derivation, we emphasize the
importance for this work of the methods based on the
2D Fourier expansion, i.e., Eq. (22), which admits simple
generalization when using multilayered systems and when
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we consider geometrical aberrations (this problem will be
considered in the next subsection).

Whatever the method used for the derivation of Eq. (26),
we can easily obtain the electromagnetic far field as given by
Eq. (4). For this we consider the definitions DTM = ∇ × ∇ ×
[ẑ�TM], DTE = +ik0ε3∇ × [ẑ�TE], and use Eq. (26) with
the approximation that terms containing the radial derivative
of eik0nr oriented along r̂ dominate since they are inversely
proportional to the optical wavelength which is the smaller
typical length in the far field (the electromagnetic field is
locally equivalent to a plane wave in this regime). We get

DTM,TE � 2πk0n cos θ

ir
eik0nr�̃TM,TE[k,d]QTM,TE (28)

with QTM = −(k0n)2r̂ × (r̂ × ẑ) = −k0nkθ̂ and QTM =
−k2

0n
3r̂ × ẑ = k0n

2kϕ̂. Comparing with Eq. (21) we get
�̃TM,TE[k,d]QTM,TE = D̃TM,TE[k,d] and therefore we can
directly justify Eq. (4) from our definitions of the Whittaker
potentials.

From this modal description, all imaging relations obtained
in the previous section, in particular Eqs. (7) and (14), can
be easily translated in terms of Whittaker potentials. In-
deed, at z = d we get (D̃	[k,d] · θ̂1)�̂1 = −k0nk�̃TM[k,d] =
D̃TM,‖[k,d] k0n

k3(k) while (D̃	[k,d] · ϕ̂1)ϕ̂1 = D̃TE[k,d]. There-
fore, regrouping all these expressions we obtain

E	1

(
x1,z	1

) = 2πeik0nf

if

T1
√

k0k3(k)

n

×
{

D̃TM,‖[k,d]
k0n

k3(k)
+ D̃TE[k,d]

}
, (29)

i.e.,

E	1

(
x1,z	1

) = 2πeik0nf

if

T1
√

k0k3(k)

n

×{−k0nk�̃TM[k,d] + k0n
2kϕ̂1�̃TE[k,d]}.

(30)

Importantly, it can be checked that |D̃TM,3[k,d]|2 =
|D̃TM,‖[k,d] k0n

k3(k) |2. This implies that

∣∣E	1

∣∣2 = 4π2t1

f 2n2
k0k3(k)[|D̃TM,3[k,d]|2 + |D̃TE,3[k,d]|2]

(31)

and therefore that the intensity detected in the back focal
plane is proportional to the total Fourier field intensity for
TM and TE waves taken separately. The geometric coefficient
k3(k) shows also that the projection from an infinite plane to
a half-sphere (neglecting the finite NA) will lead to strong
geometrical aberrations at very large angle θ . Finally, in the
image plane, Eq. (14) now reads as

E	′(x′) = N ′
∫

|k|�k0NA
d2k

√
k3(k)e−ik· x′

M

×
{

D̃TM,‖[k,d]
k0n

k3(k)
+ D̃TE[k,d]

}
, (32)

FIG. 3. (Color online) Simulation of the SPP field imaged in the
	′ plane for, respectively, a radiating vertical dipole (a) or horizontal
dipole aligned with the x direction (b) and located on the air side on
top of a 50 nm thick metal film at a distance h = 20 nm of the air-gold
interface. The wavelength is λ = 633 nm and the optical constants
for gold are taken from [58]. The insets show zooms of the central
regions.

i.e.,

E	′ (x′) = N ′
∫

|k|�k0NA
d2k

√
k3(k)e−ik· x′

M

×{−k0nk�̃TM[k,d] + k0n
2kϕ̂1�̃TE[k,d]}. (33)

Equations (30) and (33) for the imaged field in, respectively,
the Fourier and direct planes, which are expressed in terms of
Whittaker potentials, are the principal result of this section.

In order to illustrate these results, we show in Fig. 3
the 2D map in the 	′ plane of the SP field radiated by a
pointlike electric dipole μ at the optical wavelength λ = 633
nm over a 50 nm gold film (the z coordinate of the dipole is
chosen such that the distance −z = h to the air-gold interface
equals 20 nm). We focus our interest on a purely vertical
dipole [Fig. 3(a)] and a horizontal dipole aligned in the x
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direction [Fig. 3(b)]. First, we observe that in the case of
the vertical dipole the intensity map shows a minimum at
the center corresponding to the dipole position projected
in the x-y plane. This feature is expected since a vertical
dipole cannot radiate energy in the z direction. Furthermore,
due to the axial symmetry, the electric field is radial in the
image plane 	′ (neglecting the z-field component in the
paraxial approximation). We have therefore a phase or vortex
singularity at the center of the image and the intensity has to
vanish in order to preserve the field continuity. In the case of
the in-plane dipole, the field is not radial but dipolar and we
do not observe this vortex anymore.

The second important kind of features observed in both
Figs. 3(a) and 3(b) are the various radial fringes with small
�s = 2π/(q1 + q2) or large �l = 2π/(q1 − q2) periodicities.
As explained in Ref. [18], these mainly result from beating
between wave components characterized by different spatial
frequencies q associated, respectively, with the Airy diffraction
pattern (dominated by q1 = k0NA) and with the plasmon
wave [with wave vector q2 = Re(kSP)]. The beating is more
pronounced for in-plane dipoles [see Fig. 3(b)] since the
contribution from TE waves is larger in this case compared
to the vertical dipole case. This TE contribution, which is not
associated with SPPs, is strongly delocalized in the Fourier
space and constitutes a background which interferes with the
SPP signal and contributes therefore to enhance the fringe
visibility associated with �s and �l . We show in Fig. 4 the
Fourier space images obtained for the vertical [Fig. 4(a)] and
horizontal [Fig. 4(b)] dipoles shown in Fig. 3. The plasmon
ring characterized by the wave vector q2 clearly dominates the
images. The weak contribution associated with TE waves is
also visible at large k corresponding to large emission angle
in Fig. 4(b) (for more details on the SPP emission profile, see
Ref. [26]).

In order to illustrate the physics of SPP launching by a point
dipole, we show in Fig. 5 the experimentally acquired LRM
image for a homemade NSOM aperture tip. The fabrication
of such a tip is well known and technical details can be
found for example in Refs. [2,59]. Here, the tip is made of a
chemically etched single mode fiber coated with a 100 nm thick
aluminum layer. The 100 nm radius circular aperture located
at the apex is the source of light used for near-field optical
microscopy. The fiber tip is glued on a quartz tuning fork
and the shear force coupled to a counter-reaction electronics
is used to bring the tip down in the near field and to keep
it around 40 nm from the gold surface (our methodology is
discussed in Refs. [60–62]). When light is guided through
the fiber down to the aperture (λ = 633 nm), the latter reacts
mainly as a pair of electric and magnetic dipoles located in
the aperture plane. This pair of orthogonal dipoles behaves
as a single equivalent dipole launching SPPs on a flat gold
film. Here, we show images obtained using a 50 nm thick film
evaporated on a glass substrate with optical index n � 1.52.
The SPP propagation is imaged with a NA = 1.4 microscope
objective using an immersion oil matching exactly the glass
index. Figure 5(a) shows the direct space image obtained using
a filter in the back focal plane for masking the low |k| in-plane
momenta corresponding to |k| < k0. This opaque mask allows
us to filter the directly transmitted light of nonplasmonic nature
which is created by the tip. The importance of this effect is case

FIG. 4. (Color online) Fourier space images associated with the
real space images of Fig. 3. (a) For the vertical dipole and (b) for the
horizontal one. The dashed white circle represents unit circle NA = 1.

sensitive and depends mainly on the tip aperture diameter and
shape. For diameter <100 nm, the effect is much smaller since
the dipolar approximation gets better and better. Here, we also
show in the inset the nonfiltered (saturated) image containing
all contributions. The Fourier space LRM image (without
the mask) is shown in Fig. 5(b) for comparison. We see on
these images the characteristic features of an in-plane electric
dipole launching SPPs on a gold film in good agreement with
the theory. In particular, the periodical fringes in the direct
space and the ring SPP diameter in the Fourier space agree
quantitatively with the model predictions.

The case of the vertical dipole has been already studied
experimentally using a STM tip [19,20] on top of a thin
metal film as a SPP launcher. Due to the cylindrical revolution
axis, the transition dipole is mainly vertical and LRM images
confirm this finding in agreement with theory. Here, we use
instead a nitrogen-vacancy- (NV-) based NSOM tip to illustrate
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FIG. 5. (Color online) Experimental LRM images obtained using
an aperture NSOM. (a), (b) Correspond to a perfect matching of the
glass optical indexes of substrate oil and objective while (c), (d)
are obtained when the glass substrate is replaced by a fused silica
substrate with the oil adapted to the new index. (a), (c) For the direct
space while (b), (d) stand for the Fourier space SPP images. (a) A low
k-filtered image showing only the SPP contribution [we included an
inset in (a) and (c) to show the unfiltered signal].

this vertical dipole feature. The principle of the NV-based
NSOM is to attach a diamond nanocrystal (25 nm diameter)
containing one or few NV centers whose fluorescence can be
excited using a laser (λ = 532 nm) guided through the fiber.
The complete protocol of fabrication and use of this system
is detailed in a recent review paper [61]. Now, the point is
that if the diamond contains several NVs the probability that a
dipole possesses a vertical component is higher. Additionally,
in the same conditions (height, film parameters, etc.) a vertical
dipole couples better to the SPP modes since the image
dipole (in the metal film) is stronger for such a configuration.
Therefore, in general the emission pattern is dominated by
the vertical dipole contribution [26]. From a strict theoretical
point of view, we can estimate the difference of efficiency
by calculating the ratio η = |k/k1|2 at the LRM angle [see
Eq. (23)]. This represents merely the ratio between the SPP
field intensity created by, respectively, a perpendicular and a
horizontal dipole. We obtain η � 13 which gives a good order
of magnitude of the SPP coupling ratio. This is qualitatively
what we show in Fig. 6 where a single nanodiamond containing
5 NVs [the second-order correlation function g(2)(τ ), not
shown here, which presents an antibunching dip characterizing
the quantum nature of our NV source [23,24,61–63]] has been
glued at the apex of a bare chemically etched tip (without metal
coating). The features observed, and in particular the minimum
in the direct plane LRM image, is clearly reminiscent of the
vertical dipole calculations shown in Fig. 3(a). We emphasize
that in this regime where the signal is extremely weak we
recorded the full broadband fluorescence emission of the NV

FIG. 6. (Color online) Experimental LRM images obtained with
a NV-based NSOM tip over a 50 nm gold film. (a) Shows the low
k-filtered direct space SPP image while (b) shows the Fourier space.

center centered in the range λ � 650–750 nm [24]. This lack
of temporal coherence clearly affects the low SPP spatial
coherence and therefore explains why fringes are hardly visible
after few wavelengths in Fig. 6(a). Still, the SPP propagation
length estimated from the Fourier space images is for the
film thickness d = 50 nm approximately LSPP � 5–6 μm, in
agreement with theory (see also Ref. [24]).

B. Problem of defocusing and geometrical aberrations

One of the main issues of this paper is to deal with
geometrical aberrations observed with LRM due to a mismatch
between the glass substrate optical index ng and the immer-
sion oil index no. Indeed, while commercialized immersion
microscopes provide their own immersion oil adapted to thin
glass cover slips, it can sometimes be useful to use other
glass substrates. This is especially the case in the NV-based
NSOM method where the NV fluorescence is excited by a laser
light in the λ ∼ 515–532 nm spectral region [23,24,61,62].
The problem here is that usual coverslips generate their own
fluorescence, in the same spectral band as NVs do, and it
becomes impossible to work in the quantum regime, i.e., to
build a g(2)(τ ) function presenting an antibunching g(2)(0) � 0
which is the signature of the single-photon emission process
[61]. To solve this issue, we therefore shifted to fused silica
coverslips with lower optical index n′

g � 1.46 than usual glass
ng � 1.52 but which in turn generates a much lower spurious
fluorescence background and are better adapted to microscopy
applications with NVs and NSOM.

However, while using a fused silica substrate with the good
immersion oil index n0 � n′

g = 1.46 ≡ n3 prohibits image
distortion due to geometrical aberration, it is, however, not
possible to eliminate the mismatch between the oil optical
index no = 1.46 and the glass constituting the microscope
objective itself ng = 1.52 ≡ n4. This mismatch is relatively
important and, as we will see, it is particularly disturbing for
LRM due to the high spatial coherence of SPPs. To understand
this problem, we will now provide a general study of LRM
imaging with defocusing and taking into account an index
mismatch between oil and microscope objective.

Consider first the problem of defocusing. If the glass sub-
strate and oil indexes match the optical index of the objective
glass (we will note this common value n3), general Whittaker
potentials characterizing the light transmitted through the
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metal film will be written as

�TM,TE(x,z) =
∫

d2k �̃TM,TE[k,d]eik3(z−d)eik·x, (34)

where z > d. Now, if we suppose that the microscope objective
is not focused on the z = 0 	 plane but on the z = zF 	F

plane, we can rewrite this expression

�TM,TE(x,z)

=
∫

d2k �̃TM,TE[k,d]e−ik3(d−zF ) × eik3(z−zF )eik·x

� 2πk3(θ3)

if
eik0n3f �̃TM,TE[k,d]e−ik3(θ3)(d−zF ). (35)

In the first line, we simply added and subtracted the phase k3zF

while in the second line we used a steepest descent method to
evaluate this integral in the far field, i.e., for z − zF � λ. The
angle θ3 in Eq. (35) is the angle made by the z axis and the
emitted ray FM originating from the focus point F at [xF =
yF = 0, zF ] and reaching the observation point M located at
[x, z]. The numerical factor e−ik3(θ3)(d−zF ) in the last expression
characterizes completely the geometrical aberration induced
on the fields. By including it into the analysis done in the
previous section, we can describe the effect of defocusing on
the image taken in the plane 	′ which is conjugated with the
focal plane 	F .

However, the problem of interest is the more general
one if there is an additional interface at z1 � d between
two media 3 and 4 representing the substrate and oil of
optical index n3 and the objective microscope glass of index
n4, respectively. Writing D = z1 − d, the thickness of the
substrate plus oil layer (typically D � 200 μm), the Whittaker
potentials become

�TM,TE(x,z) �
∫

d2k �̃TM,TE[k,d]ei(k3−k4)D

× T̃
TM,TE

34 (k)eik4(z−d)eik·x. (36)

Here, T̃
TM,TE

34 (k) is the Fresnel transmission coefficient for the
3
4 interface, and the only approximation is that we will neglect
the multiple reflections of light in the layer of thickness D.
Using the same trick as for Eq. (35), we now add and subtract
the phase k4zF and after using the steepest descent method we
obtain in the far field

�TM,TE(x,z) � 2πk4(θ4)

if
eik0n4f �̃TM,TE[k,d]

× e−ik4(θ4)(d−zF )ei[k3(θ3)−k4(θ4)]D. (37)

The exponentials on the second lines contain the total
additional phase

δ� = [k3(θ3) − k4(θ4)]D − k4(θ4)(d − zF ), (38)

which characterizes the geometrical aberration induced in this
optical configuration by the index mismatch and defocusing.
As before, θ4 defines the angle between the optical z axis and
the ray FP originating from the true objective focal point
F and reaching the observation point P . θ3 is linked to θ4

through the Snell-Descartes law n4 sin (θ4) = n3 sin (θ3). In
order to interpret geometrically δ� we refer to Fig. 7 and to
the following reasoning: First, suppose the source, located at

FIG. 7. (Color online) Sketch of the geometrical rays and inter-
face involved in the spherical aberration modeling (details in the
text).

S (at z = d), is emitting a bunch of propagating plane waves
traveling through the medium labeled 3. Considering one of
these plane waves, the phase accumulated during the straight
line propagation from S to the point M allows us to write
explicitly the wave phase �(M) at M as �(M) = k0n3SM =
k0n3D/ cos θ3. Now, using the triangle QPM shown in Fig. 7,
the phase at point P , which equals the phase at point Q, is
�(P ) = �(M) − k0n3QM = �(M) − k0n3PM sin θ3. Then,
since the plane wave is refracted at the 3

4 interface the angle
of the wave vector with the z axis is switched from θ3 to
θ4 through the Snell-Descartes law reminded before. The
phase at point P ′ on the reference sphere �1 is �(P ′) =
�(P ) + k0n4PP ′. This by definition gives the phase difference
δ� through the relation �(P ′) = δ� + k0n4FP ′, i.e., δ� =
�(P ) − k0n4FP . Taking into account the definition of �(P )
given earlier and the geometrical relations FP = (D + d −
zF )/ cos θ4, PM = D tan θ3 − (D + d − zF )D tan θ4 together
with the Snell-Descartes law leads directly to Eq. (38). Here,
the geometrical reasoning was done for d − zF > 0 but similar
deductions can be obtained in the opposite case.

There are other important features that we can obtain
from Fig. 7. Observe indeed that the refraction condition
at the 3

4 interface imposes that the wave fronts are in
phase at M and Q′. Therefore, from the definition of
the radius FP ′ perpendicular to �1 we know that the
waves are also in phase in M ′ and P ′. This is obtained
from the relation n3QM = n4Q

′P which implies �(P ′) =
k0[n3SM − n3QM + n4PP ′] = k0[n3SM − n4Q

′P +
n4PP ′] = k0[n3SM + n4Q

′P ′] = k0[n3SM + n4MM ′], i.e,
�(P ′) = �(M) + k0n4MM ′ = �(M ′). Importantly, by defi-
nition of the reference sphere �1 a quasi-plane-wave defined
as �(x,z = d) = eik0·x�(R − |x|), where �(u) is the unit
Heaviside function and R a large radius, will lead to �̃[k,d] =
(R2/4π ) 2J1(|k−k0|R)

|k−k0|R . From the results obtained in the first
section it means that the far field in the back focal plane will
be very much peaked on the wave vector k0 when R goes to
infinity. The equality �(P ′) = �(M ′) associated with such a
plane wave was therefore a prerequisite for the self-consistency
of the calculations.
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FIG. 8. (Color online) Recorded LRM intensity of a dipole in
the image plane (at the tip image position) as a function of the
defocusing FS. The maximum is obtained for a distance FS =
d − zF � 14.5 μm. Here, the dipole is along the x direction and
h = 20 nm while the gold film is 50 nm thick.

This is not all. From Fig. 7 we see that the ray emerging
from S is for an observer located at M ′ coming virtually
from the focus F ′ which exact location along the z axis is
varying with θ3. However, for low angles θ3, i.e., in the paraxial
regime, F ′ approaches asymptotically F , the true geometrical
focus of the objective. From geometrical considerations we
have indeed FF ′ = D n4

n3
( cos θ4

cos θ3
− 1) which cancels in the limit

θ3 � n4
n3

θ4 → 0. Rays in the paraxial regimes are represented
in green in Fig. 7 (see the ray SABC in Fig. 7). For a
usual NSOM pointlike source over a glass substrate, these
rays correspond to the light directly transmitted through the
sample and strongly contribute to the recorded signal. During
operation, when the tip is approximately at point O, very close
to the surface, the collected signal is optimized only if the
objective is translated such that point F is located as sketched
on Fig. 7, i.e., not on the interface but on the air side at a
distance FS from the surface. From geometrical optics, this
can be estimated as FS = d − zF = D( n4

n3
− 1). In order to

give an order of magnitude for FS we can use the fact that for
the appropriate oil and the appropriate glass substrate adapted
to the objective (n4 � 1.52) the focal length f is the sum of the
working distance Wd , the glass thickness tg , and the objective
thickness L: f = Wd + tg + L. For the example considered,
Wd = 130 μm and D = 170 μm. Now, when the oil and
quartz substrate of optical indexes n3 = 1.46 are used, the
working condition becomes f = W ′

d + t ′g + L + FS where
W ′

d is the new working distance for the quartz (fused silica)
substrate of thickness t ′g � 200 μm. Using the definition of
FS given earlier with D = W ′

d + t ′g leads after elimination of
f and L to W ′

d + t ′g = n4
n3

(Wd + tg) � 288.15 μm and FS �
4%(W ′

d + t ′g) � 11.8 μm. This gives an order of magnitude of
the z displacement with respect to the sample for an optical
index mismatch (n4 − n3)/n3 � 4%. However, in order to
estimate more rigorously this shift, we must go beyond the
geometrical optics approximation and use the full field as
given by Eq. (37). The field in the image plane 	′ can be
numerically obtained by using Eq. (33) and inserting the
phase shift δ� given by Eq. (38) in the integral. We show
in Fig. 8 the intensity I (FS) = |E	′ |2 recorded in the image
plane at the intersection with the z axis when a NSOM tip
represented by a pointlike horizontal dipole aligned with the
x axis is located at x = y = 0, z = −20 nm over the metal-air
surface (i.e., at z = 0). The gold film thickness is chosen to

FIG. 9. (Color online) Simulation of the LRM aberrated images
in the 	′ plane due to objective and glass-oil index mismatch (see
text). (a) For the vertical dipole case and (b) for the horizontal dipole
aligned with the x direction (b) and located on the air side on top
of a 50 nm thick metal film at a distance h = 20 nm of the air-gold
interface (compare with Fig. 3). The wavelength is λ = 633 nm and
the optical constants for gold are taken from [58]. The insets show
unsaturated zooms of the central regions.

be d = 50 nm in order to image SPP leakage radiation. The
maximum of intensity is obtained for FS = d − zF � 14.5
μm, which should be compared with the geometrical value
obtained before. The discrepancy is attributed to the fact that
in the regime considered here, SPPs are leaking at large angle,
i.e., far beyond the region where the paraxial regime can be
applied.

It is worth noting that similar analysis was done long ago to
understand confocal fluorescence imaging [30,31,64]. Here,
the introduction of a metal layer and the presence of SPPs
make the effect more visible. This is better appreciated if we
now image in the 	′ plane the SPP radiation launched by a
pointlike dipole while the microscope objective is positioned
at the maximum of intensity defined previously, i.e., for FS =
d − zF � 14.5 μm. We show in Fig. 9 the theoretical images
corresponding to either a vertical dipole (a) or an in-plane
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FIG. 10. (Color online) Sketch of the geometrical aberrations
involved in LRM when an index mismatch modifies the refraction
of light at the oil-objective interface (see also Fig. 7).

dipole along the x direction. The operating conditions are
similar to the ones shown in Figs. 3 and 4 (h = 20 nm, d =
50 nm). The Fourier space images are not shown since the
results are identical to the ones observed in Fig. 4. Indeed, the
common phase factor eiδ� does not contribute to the intensity
in the Fourier space. The most remarkable features of the
images in Figs. 9(a) and 9(b) are the large lobes appearing for
distances to the tip around 10–15 μm. The tip itself appears at
the center as a well defined “Airy” spot. Note, however, that
for the vertical dipole we observe again the well known donut
shaped vortex surrounding the geometrical image that arises
from the radial nature of the SPP field radiated by the dipole.

In order to compare these simulations with experiments,
we show in Figs. 5(c) and 5(d) the recorded NSOM image
obtained with an aperture tip over a 50 nm thick gold
film (the tip is approximately at h � 20–30 nm above the
surface). The oil and fused silica index is n3 = 1.46 while
the objective microscope is made of glass with n4 = 1.52. We
clearly observe in the direct space [see Fig. 5(c)] the tip Airy
spot together with the large annular wing surrounding the tip.
The Fourier space shows the same general features as already
visible in Fig 5(b) when there is no index mismatch. The
experimental images are in good qualitative agreement with
Figs. 9(b) and 4(b) corresponding to an in-plane dipole. Note,
however, that the exact geometry of the tip was unknown and
that several multipolar terms can contribute to the observed
signal. In order to understand qualitatively the physical origin
of the large wings observed in the image plane, we refer
to Fig. 10 which should be compared with Fig. 7. In the
configuration where a pointlike dipole near the air-metal
interface excites propagating SPPs along the film, leakage
radiation will go through the metal layer and produce a
conical wave pattern on the glass-oil side (medium 3). This
conical wave front presents a shadow zone for diffraction
angles below θ3,LR � arcsin (nSPP/n3) (see Ref. [26] for more
details). This means that the signal should ideally be very
low for angles below this value. However, due to refraction at
the 3

4 interface, this conical wave front is distorted and light
rays are now virtually coming from virtual planes located
before the plane 	F at z = zF . The geometrical plane 	F

corresponding to the Airy spot observed at the center of the
image plane in Fig. 9, the SPP field will start virtually at
a radius FE as visible in Fig. 10. Below this radius there
is no SPP field in the image. This radius can be estimated
from the triangle EFF ′ as FE = FF ′ tan θ4,LR where θ4,LR �
arcsin (nSPP/n4). Since the leakage angle is close to 45◦ we

have FE � FF ′ = D n4
n3

(
√

1−n2
SPP/n2

4√
1−n2

SPP/n2
3

− 1) � 11.6 μm. This is

in good qualitative agreement with the observed lobe radius
in both the experimental images and the simulations showing
that the reasoning picks up the essential parts of the underlying
physics.

A simple intuitive way to see how this will impact the
SPP imaged field is to consider the typical source field
�SPP(ρ) ∼ eiKSPPρ/

√
ρ where ρ is the planar distance to

the source on the air-metal interface. This kind of profile
characterizes the usual spatial dependency of the radiating
SPP field by a dipolar source. Without aberration, this field is
well imaged on the direct space plane 	′. Indeed, the fact that
the SPP ring in the Fourier space is well peaked on the wave
vector k′

SPP = k0n
′
SPP with a typical width k′′

SPP = 1/(2LSPP)
(where the propagation length LSPP � 20–50 μm in the visible
for gold and silver) implies that the diffraction-apodization
effect associated with the finite NA � n′

SPP is rather small
despite the fringes observed in Fig. 3 [48]. In particular, to
a good approximation the image field averaged over a SPP
period is equivalent to the real in-plane SPP field at the
air-metal interface [26]. In presence of geometrical-spherical
aberrations, this is of course not true anymore. Due to the radius
shift ρ → ρ − FE we obtain approximately the following
imaged field:

� ′
SPP(ρ) ∼ eiKSPP(ρ−FE)

√
(ρ − FE)

�(ρ − FE), (39)

where �(u) is the unit Heaviside function. This effect must be
taken into account in every LRM images in the 	′ plane using
an optical index mismatch.

IV. SURFACE PLASMON POLARITON SCATTERING

In the previous section, we considered the effect of
aberrations on SPP imaging through a thin film. Due to the
high spatial coherence of SPPs, image distortion can occur in
a very large area around the SPP source, i.e., for distances up
to typically ∼10–20 μm. However, the problem is not limited
to LRM on thin films but is also impacting the observation of
SPPs on thick metal films.

In a recent work [65], we observed SPP induced fringes in
the back focal plane of an objective by using a NSOM tip to
excite SPPs propagating on a thick film and diffracted by a
milled circular slit acting as a photon coherent source. In this
system, each point of the circular slit can be described as an
in-plane pointlike dipole normal to the slit. The coherent sum
of all these dipole fields generates optical fringes in the Fourier
plane. This experiment, which is reminiscent of Young’s
double slit experiments, allows us to exploit the coherence
of SPPs in order to tailor focused beam such as Bessel modes
or polarized vortices [65,66]. As for LRM, the Fourier plane
is insensitive to an index mismatch between the oil and the
objective microscope glass. This is, however, not true in the
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FIG. 11. (Color online) Experimental images of SPP scattering
by a circular slit (6 μm diameter) milled on a 200 nm thick gold
film. The SPPs are excited by a NSOM tip located at the center of
the structure (a) and (b) or at 12 μm outside the cavity (c) and (d).
(a), (c) The direct space images and (b), (d) the associated Fourier
space images. The inset in (a) shows a scanning electron image of
the structure (scale bar 1 μm). The white arrow indicates the tip
polarization effective dipole. The tip position T is visible in (c) the
distance AT = 9 μm (scale bar 5 μm).

direct space plane 	′. We compare in Fig. 11 the direct space
and Fourier space images for a NSOM aperture located inside
a circular cavity made of one slit (width = 150 nm) milled
using FIB on a 200 nm thick gold layer on top of a fused
silica substrate n3 = 1.46 (see [65] for more details). We show
two situations: either the tip is at the center of the cavity
[Figs. 11(a) and 11(b)], or located outside at 12 μm from
the center [Figs. 11(c) and 11(d)]. In both cases, we can see
physical fringes in the Fourier space [Figs. 11(b) and 11(d)],
which are clearly reminiscent of the work discussed previously
[65,66]. However, if we consider images taken in the direct
space, i.e., in the 	′ plane, we can also see optical fringes.
These fringes should not be present since the film is opaque
and SPPs cannot leak through the metal.

They are actually induced by the geometrical aberrations
discussed in Sec. III. Using the formalism developed in
Secs. II and III, we can justify the existence of these
complicated interference patterns. Considering an elementary
in-plane pointlike electric dipole μ located on the film we
can express the radiated field using a propagator in the fused
silica substrate. Indeed, neglecting the geometrical aberrations
discussed earlier, the displacement field D generated by μ on
the surface �1 is given by

D�1 (X1) = ∇ × ∇ ×
(

μeik0n3r

4πr

)

� k2
0n

2
3e

ik0n3r

4πr
[(θ̂1 · μ)θ̂1 + (ϕ̂1 · μ)ϕ̂1]. (40)

FIG. 12. (Color online) Simulations of the images obtained in
Fig. 11 using the aberration theory developed in this work. (a), (c)
The direct space images and (b), (d) the associated Fourier space
images. The parameters are the same as for Fig. 11.

From Eqs. (40), (4), (20), and (21) we can define the Whittaker
potentials associated with with μ as

�̃TE[k,d] = ik0n3

8π2 cos θ3
(ϕ̂1 · μ),

(41)

�̃TM[k,d] = −ik0n3

8π2
(�̂1 · μ).

In this formalism, we neglect the boundary conditions associ-
ated with the fact that the radiation pattern is modified by the
presence of the metal. In the case of a perfect metal screen we
can show that it is better to describe the emission pattern using
magnetic dipoles. However, a quantitative comparison (which
will not be shown here) proved that the different ways of
describing the field are not easily distinguishable in the regime
considered here. Therefore, we will continue to use the simple
electric dipole description in the following. Importantly, in
order to take into account the geometrical aberrations and the
index mismatch we can use the method discussed in Sec. III B.
In particular, from Eqs. (34)–(38) we can express the new field
in presence of aberrations by including the dephasing term
δ� given by Eq. (38). The resulting field can be calculated by
summing coherently over all dipoles located on the circular slit
and excited by the SPP field launched from the NSOM aperture
tip (see [65] for more details). The simulations corresponding
to Fig. 11 are shown in Fig. 12 and show a good agreement
between our model and the experiment.

V. CONCLUSION

In this work, we have provided a systematic theory of
optical imaging of coherent waves using a high NA objective.
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Through the use of two scalar Whittaker potentials for TE and
TM waves we were able to give transparent expressions for
the image fields in the direct and Fourier spaces. Applying this
methodology to LRM we described quantitatively SPP images
generated by point dipoles near a thin metal film and compared
the results with NSOM measurements provided with either
aperture tips or NV-based tips. The main experimental issue
of this work was to explain and interpret the LRM images ob-
tained when an optical index mismatch is introduced between
the oil and substratum on the one hand and the microscope
objective on the other hand. The theory developed in this work
is indeed able to include spherical aberrations generated by this
index mismatch, and therefore several questions concerning
the interpretation of LRM images obtained in the past are
now answered [18,23,24]. We also showed that aberrations
play a fundamental role for interpreting optical interference
images using slits milled on a thick metal film [65]. Again,
the theory leads to a clear understanding of the mechanism
involved in the experiments. We expect that the systematic
approach developed here together with powerful numerical
methods would lead to important progress in the quantitative
interpretation of coherent imaging involving SPPs in general
and in LRM in particular.
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APPENDIX A: STRATTON-CHU AND
THE WOLF FORMULA

Starting from

D�1 (X1) = ∇1 ×
∫

(	)
ẑ × D	(X)G0(R)d2x + i

1

k0
∇1

×∇1 ×
∫

(	)
ẑ × B	(X)G0(R)d2x, (A1)

we first evaluate the integrals A = ∫
(	) ẑ × D	(X)G0(R)d2x

using the Fraunhofer approximation and we get

A = eik0nf

4πf

∫
(	)

ẑ × D	(X)e−ik0n
x1 ·x
f d2x

= π

f
eik0nf ẑ × D̃	[k0nx1/f,d]. (A2)

We similarly compute the integral
∫

(	) ẑ × B	(X)G0(R)d2x.
To evaluate Eq. (A1) we use that fact that the derivative r̂1∂1

along the radial direction r1 dominates all the other terms,
which implies ∂1G0 � ik0nr̂1G0. After regrouping all the
contributions we get

D�1 (X1) = iπk0

f
eik0nf (nr̂1 × (ẑ × D̃	[k0nx1/f,d])

−r̂1 × {r̂1 × (ẑ × B̃	[k0nx1/f,d])}). (A3)

Using the fact that we have a transverse plane wave in the
Fourier space we have nB̃ = r̂1 × D̃ and, therefore,

D�1 (X1) = iπk0n

f
eik0nf r̂1 × (ẑ × D̃	[k0nx1/f,d]

− r̂1 × {ẑ × (r̂1 × D̃	[k0nx1/f,d])})
= i2πk0n

f
eik0nf cos θ1D̃	[k0nx1/f,d]. (A4)

APPENDIX B: MICROSCOPE PROPAGATOR

Using Eqs. (9) and (10) together with Eq. (8) leads to

E	′ (x′) = − k2
0

4π2f ′
T2e

ik0(f ′+)e
ik0

�′2
2f ′

×
∫

	1

d2x1E	1

(
x1,z	1

)
eik0

�2
1

2 I(x1,x′), (B1)

where

I(x1,x′) =
∫

(	2)
d2x2PNA′(�2)e−ik0x2·( x1


+ x′

f ′ )
eik0

x2
2

2 . (B2)

The calculation of I(x1,x′) will be explicitly done by sup-
posing PNA′(�2) = 1 over the region of interest in the plane
	2, which intersects the collimated beam propagating along
the +z axis between the objective and the lens tube. This is
justified since the radial extension of such a beam in 	2 is
approximately given by the radius R1 of the exit pupil of the
oil immersion objective. Actually, we have R1 = f sin α1 =
NAf ′/M where NA = n sin α1 is the numerical aperture of
the objective. Taking for example NA = 1.4, M = 100, and
f ′ = 200 mm, we deduce R1 = 2.8 mm which is in general
much smaller than the lens tube radius.

Moreover, diffraction of the beam by the exit pupil of the
objective leads also to a small angular divergence of the beam
δα1 ∼ λ/R1 and therefore to an increase of the beam radius
δR1 � δα1 = λ

f ′NA . If we take, as it is usually the case,  �
f ′, we have δR1 � λ

NA , which at optical wavelength leads to
a radius increase of few millimeters. Here, we will altogether
neglect the extension R1 + δR1 compared to the radius R2 of
the tube lens and we will explicitly integrate over x2 from −∞
to +∞ along the x2 and y2 directions.

For this we use the Gaussian integral formula

∫ +∞

−∞
dx eiαx2

e−iβx =
√(

iπ

α

)
e−i

β2

4α (B3)

and we get

I(x1,x′) = 2πi

k0
e
−i

k0

2 ( x1


+ x′
f ′ )2

. (B4)

Inserting Eq. (B4) into Eq. (B1) leads to

E	′ (x′) = k0

2πif ′ T2e
ik0(f ′+)e

ik0
�′2
2f ′ (1− 

f ′ )

×
∫

	1

d2x1E	1

(
x1,z	1

)
e−ik0x1·x′/f ′

(B5)
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and, finally, with Eq. (7) we obtain

N = − k2
0T1T2

ff ′√n
eik0(f ′++nf )e

ik0
�′2
2f ′ (1−/f ′)

. (B6)

We point out that if we relax the assumption δz′ = 0 made in
Eq. (10), the main effect would simply be to add an overall
phase factor δφ = k0nδz′ + k0δz

′2/2f ′.
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