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Wave-number spectrum of dissipative drift waves and a transition scale
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We study the steady state spectrum of the Hasegawa-Wakatani (HW) equations that describe drift wave
turbulence. Beyond a critical scale kc, which appears as a balance between the nonlinear time and the parallel
conduction time, the adiabatic electron response breaks down nonlinearly and an internal energy density spectrum
of the form F (k⊥) ∝ k−3

⊥ , associated with the background gradient, is established. More generally a dual power
law spectrum, approximately of the form F (k⊥) ∝ k−3

⊥ (k−2
c + k−2

⊥ ) is obtained, which captures this transition.
Using dimensional analysis, an expression of the form kc ∝ C/κ is derived for the transition scale, where C

and κ are normalized parameters of the HW equations signifying the electron adiabaticity and the density
gradient, respectively. The results are numerically confirmed using a shell model developed and used for the
Hasegawa-Wakatani system.
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I. INTRODUCTION

The standard Hasegawa-Wakatani (HW) equations [1] were
originally derived as a reduced nonlinear model to study
key physical aspects of dissipative drift wave turbulence. In
the “adiabatic limit,” the equations reduce to the Charney-
Hasegawa-Mima (CHM) equation [2,3], which is used in the
description of drift waves in magnetized plasmas and Rossby
waves in the atmosphere [4,5], while in the “hydrodynamic
limit” it reduces to the two-dimensional Navier-Stokes equa-
tion. The equation can be used to describe various physical
phenomena from geophysical fluids dynamics to basic two-
dimensional fluid turbulence in these limiting forms. Here we
study the wave-number spectra of the HW equations in various
limiting cases.

The coupled equations of the HW model, governing the
normalized electric potential � = e�/Te and density n =
n/n0 are

(
∂

∂t
− ∇� × ẑ · ∇

)
∇2� − C(� − n) = D�, (1a)

(
∂

∂t
− ∇� × ẑ · ∇

)
n + κ

∂�

∂y
− C(� − n) = Dn, (1b)

where C = (Tek
2
‖)/(e2n0ηωci) is a measure of parallel

electron conduction rate (sometimes called the adiabaticity
parameter), κ = −ρsd(ln n0)/dx is the normalized density
gradient, and D�,n are the dissipation of vorticity and density,
respectively. Independent variables t and x are normalized with
the ion cyclotron frequency ωci = eB/mi and the ion sound
gyroradius ρs = √

Te/miω
−1
ci . B, e, mi , Te, and η are the mag-

netic field, electron charge, ion mass, electron temperature,
and the plasma resistivity, respectively. The system consisting
of Eqs. (1a) and (1b) can be obtained from equations of plasma
vorticity and electron continuity, using the parallel Ohm’s law
to eliminate the parallel current. Note that Eqs. (1a) and (1b)
together imply potential vorticity (PV) conservation, where
the PV for the system can be defined as q ≈ ∇2� − ln n. Note
also that a modification for the vorticity equation is actually

necessary in order to account for zonal flows [6], and their
interaction with turbulence [7–10]. We do not consider this
variation here, since our motivation is to study the wave num-
ber spectrum implied by the Hasegawa-Wakatani system as is.

The limit C � 1 corresponds to the hydrodynamic regime
since ∇2� evolution reduces to the two-dimensional Navier-
Stokes equation, and the density n is advected as a passive
scalar. In general, the turbulence arising from the HW
equations is self-consistently driven by the instability and
including the dissipation D�,n is necessary in order to obtain
a steady state spectrum. In the limit of C 	 1 where the
electron response becomes adiabatic, the equations gradually
approach the CHM equation with n ≈ �, and the linear
instability disappears. In this limit one has to include forcing
as well as dissipation in order to obtain a steady state
spectrum.

For C � 1 the the spectral kinetic energy spectrum E(k)
is the well known Kraichnan-Kolmogorov spectra [11,12],
i.e., E(k) ∼ k−5/3 and E(k) ∼ k−3 for the inverse energy and
forward enstrophy cascades, respectively. Note that we use
k instead of k⊥ consistently in these expressions and in the
remainder of this paper, since k‖ is simply absorbed into C

and the considered system of equations is two dimensional.
The spectral density of internal energy F (k) evolves as a
passive scalar with the power law F (k) ∼ k−5/3 corresponding
to the Obukhov-Corrsin spectrum [13,14] and F (k) ∼ k−1

corresponding to the Batchelor spectrum [15]. For C 	 1 the
energy injection moves to smaller scales and the kinetic energy
spectrum becomes that of HM E(k) ∼ k−3 or F (k) ∼ k−5

for the forward enstrophy cascade roughly everywhere [2].
However, using dimensional analysis for the power balance
between the linear and nonlinear terms, we find that for
C 	 1 there is a shift in the balance for a scale k ∼ kc,
where kc ∼ C/κ . This results in a new spectrum of density
fluctuations for the HW in the C 	 1 limit. The spectrum is
associated with the background gradient and takes the form
F (k) ∝ k−3 for k > kc. Table I presents a summary of these
results in addition to the particle flux spectra �(k) that will be
discussed further.
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TABLE I. Summary of the various power law spectra for the
Hasegawa-Wakatani system. Here, ki indicates energy injection and
kc indicates the critical scale where the nonlinear turnover rate
balances parallel electron conduction.

Kinetic energy

k < ki k > ki

E(k) ∝ k−5/3 E(k) ∝ k−3

Internal energy

C � 1 k < ki k > ki

F (k) ∝ k−5/3 F (k) ∝ k−1

C 	 1 k < ki k > ki k > kc

F (k) ∝ k−11/3 F (k) ∝ k−5 F (k) ∝ κ2k−3

Particle flux

C � 1 k < ki k > ki

�(k) ∝ κk−7/3 �(k) ∝ κk−3

C 	 1 k < ki k > ki

�(k) ∝ κk1/3

(1+k2)
�(k) ∝ κk−1

(1+k2)

II. DERIVATION OF SPECTRA AND TRANSITION SCALE

To derive the power law spectra in Table I and the critical
scale kc, we start with the energy budget equation for the
density fluctuations

∂tF (k) + ∂

∂k
	(k) + 2κ�(k) − 2C

[
H (k)

k
− F (k)

]
= E(k).

(2)
Equation (2) results from multiplying the Fourier transform

of Eq. (1b) by n, integrating over spectral shells, and repre-
senting it in terms of E(k) = ∫ |�k|2k3dαk , the spectral kinetic
energy density; F (k) = ∫ |nk|2kdαk , the spectral internal en-
ergy density; H (k) = ∫

Re[�∗
knk]k2dαk , the spectral density

of the real part of the conserved cross-helicity term, �(k) =∫
sin αkIm[�∗

knk]k2dαk , the spectral particle flux density; and
E(k), the rate of dissipation. The nonlinear term is modeled
as a flux in k space, ∂

∂k
	(k), where 	(k) ∝ E(k)1/2F (k)k5/2

dimensionally. For C � 1, the fourth term, proportional to
C is negligible, we get the usual F (k) ∼ k−5/3,k−1 which
are the Obukhov-Corrsin and Batchelor spectra for the passive
scalar, respectively. On the other hand, for C 	 1 the expected
spectrum for the density is n2

k ≈ �2
k , which gives F (k) ∝

k−11/3 and F (k) ∝ k−5. Recall that EK (k) and EI (k), which are
usually defined for the Hasegawa-Mima system as the kinetic
and internal energies, are the limiting cases of E(k) and F (k),
respectively. However, the existence of κ modifies the balance,
and the fourth term in Eq. (2) becomes negligible relative to
the second and third terms for k > kc. The steady state solution
for this case is

F (k) ∝ κ2k−3,

which is the associated “anisotropic” spectrum in the presence
of a background gradient as first discussed (to our knowledge)
in Ref. [16] and later in Ref. [17]. Note that this is not a
“constant flux” solution for the fluctuations in the classical
Kolmogorov sense and is rather linked to the mixing length
spectrum [18,19]. Here we argue that the transition from the

F (k) ∝ k−5 to F (k) ∝ κ2k−3 take place at the critical scale
kc ∼ C/κ .

Notice that in general, Eq. (2) should be supplemented by
an equation for the kinetic energy and the real and imaginary
parts of the cross correlation. Even considering a completely
anisotropic spectrum [i.e., |�k|2 ≡ �(k,αk)] for any of these
quantities (including particle flux), one can define its angle
average [such as E(k) for spectral energy] and consider its
evolution since the local nonlinear transfer can still be modeled
as a flux in the k space (denoting scale rather than a directional
wave number). Using the Fourier transforms of Eqs. (1a)
and (1b), a simplified equation for the anisotropic correlation
〈�kn

∗
k〉 can be obtained:

τ−1
k 〈�∗

knk〉 − C

k2
(〈nk〉2 + k2〈�k〉2) + iκky〈�k〉2 ≈ 0 (3)

whose real and imaginary parts can be used to compute H (k)
and �(k) in Eq. (2). Notice that τk can be linear [i.e., τ−1

k ∼
C(1 + k2)/k2], or nonlinear (i.e., τk ∼ τn

k ) depending on the
value of C. While for an intermediate C, one would have to
solve the full linear propagator [20], the limiting cases are
dominated by these simpler τk . In any case the solution may
be written as

�(k) ≈ −τk

∫
sin2 αk(κ〈�k〉2k2)kdαk (4)

which gives

∂

∂k
	(k) ≈ κ2E(k)1/2k−3/2

for C � 1 [where we used τk ∼ τn
k ∼ [u(k)k]−1 ∼

E(k)−1/2k−3/2]. For κ � 1, we get the usual Obukhov-Corrsin
and Batchelor spectra, while for substantial κ , we get the case
discussed in Ref. [17] for the passive scalar with background
gradient. Notice that the particle flux spectrum implied by
�(k) ≈ −κE(k)1/2k−3/2 for the Obukhov-Corrsin case is
consistent with the three-dimensional results in Refs. [21]
and [22] in contrast to the results in Ref. [23].

In the opposite limit C 	 1, we can first compute H (k) by
taking the real part of Eq. (3), H (k) = k(E(k)+F (k))

(1+k2) , and using

τ−1
k ∼ C(1 + k2)/k2 in Eq. (4) we get

∂

∂k
	(k) = 2C

{
κ2

C2

k2

(1 + k2)
E(k) +

[
E(k) − F (k)k2

(1 + k2)

]}
.

Now considering E(k) ∝ k−3, and F (k) ∝ k−5 at the low k

part of the spectrum [i.e., the scalar spectrum F (k) being
determined by a balance between E(k) and F (k)k2], as k

slowly increases, one will reach a point where (κ2/C2)E(k) ∝
k2
c k

−3 take over the other two terms which go as k−5. This point
is defined as the critical scale kc, discussed in our paper. Noting
that at this point the nonlinear flux also becomes nonzero [i.e.,
�k �= nk ⇒ ∂

∂k
	(k) �= 0], it is in fact a scale at which a linear

term is balanced by a nonlinear term. In other words, beyond
this scale one can drop the E(k) as opposed to E(k)k2/k2

c

further assuming that kc 	 1 (so that k2 	 1 as well) we get

C
∂

∂k
	(k) ≈ 2

{
κ2

C2
E(k) − F (k)

}
.
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Using 	(k) ∝ E(k)1/2F (k)k5/2 and E(k) ∝ β2/3k−3, where
β is the enstrophy dissipation, we get F (k) ∝ κ2k−3 as the
solution.

The two solutions can be written approximately in the
form F (k) ∝ β2/3k−3(k−2

c + k−2), where the limiting forms
are captured nicely. Obviously, however, the form of the
transition cannot be described accurately by this expression.

III. VERIFICATION USING A SHELL MODEL

In order to verify the prediction for the power spectra,
capture the details of the transition, and demonstrate the
parametric dependency that we derive for kc, a shell model
is introduced for the HW equations [24]. Note that direct
numerical simulations of the Hasegawa-Wakatani system
become expensive relatively rapidly with increasing value of
C [25,26], and it becomes very difficult to have sufficient
resolution in order to resolve a dual power law spectrum,
let alone to see the scaling of the transition point of such
a spectrum. Note also that the transition may appear at
unphysical scales, much smaller than the ion Larmor radius,
for which the use of a Hasegawa-Wakatani equation may not
be justified. However, since we consider a pure Hasegawa-
Wakatani system in slab geometry (instead of a modified
one in a sheared torus), and consider homogeneous isotropic
turbulence (apart from the background inhomogeneities which
appear as constant coefficients), we do not claim the model is
physically relevant for tokamaks. Our aim here is to study the
nonlinear implications of this model as is.

In order to derive a shell model, the HW equations for � and
n in Fourier space are rewritten in terms of the shell variable
�n = [ 1

k2
n

∫ kn+1

kn
E(k)dk]1/2 and nn = [

∫ kn+1

kn
F (k)dk]1/2 where

the spacing between the discrete shells follows kn = k0g
n

where g > 1 and k0 is the wavelength of the largest scale.
Following the Gledzer-Okhitani-Yamada [27] prescription for
a finite representation of the nonlinear term, the nth shell
is allowed to interact nonlinearly only with the neighboring
shells n + 1, n + 2, n − 1, and n − 2. Using the conservation
of kinetic energy E = ∑ |�n|2k2

n, internal energy N =∑
n2

n, enstrophy W = ∑ |�n|2k4
n, and effective helicity H =∑

k2
n�nnn [28], the HW Eqs. (1) are written as a set of ordinary

differential equations in the shell variables:

d�n

dt
= αk2

n(g2 − 1)

[
1

g7
�∗

n−1�
∗
n−2

− g2 + 1

g3
�∗

n−1�
∗
n+1 + g3�∗

n+1�
∗
n+2

]

+ C(�n − nn)

k2
n

− (
ν�k−6

n + ν ′
�k4

n

)
�n, (5a)

dnn

dt
= αk2

n

[
1

g3
(�∗

n−2n
∗
n−1 − �∗

n−1n
∗
n−2)

− 1

g
(�∗

n−1n
∗
n+1 − �∗

n+1n
∗
n−1)

+ g(�∗
n+1n

∗
n+2 − �∗

n+2n
∗
n+1)

]

+C(�n − nn) + iκkn�n − (
νk−6

n + ν ′k4
n

)
nn. (5b)

Choosing N = 60 shells, we look for the steady state
solution of HW Eq. (5) for different choices of the parameters
C and κ . The power spectra for the shell variables �n,nn

in this steady state are related to spectral energy densities as
E(kn) ∼ 〈�2

n〉kn and F (kn) ∼ 〈n2
n〉k−1

n , where 〈n2
n〉 and 〈�2

n〉
are averaged over 100 steady state solutions for Eq. (5).
Similarly H (kn) ∼ Re〈�∗

nnn〉 and �(kn) ∼ Im〈�∗
nnn〉. We

drop the n subscript from here on keeping in mind that the
results presented are those from the shell model.

There is no need to force the system in the case of C � 1
since the HW equations have a self-consistent drive for low
C. For C 	 1, the self-consistent instability is very weak,
therefore we apply a small forcing on two shells at the scale
of the instability to achieve the steady state spectrum at a
reasonable computational time. We choose a magnitude for
the forcing that is small enough such that the power law of the
spectrum is independent of it. In both limits of C, dissipation
factors ν = 10−18 and ν ′ = 10−24 are used to achieve a steady
state turbulence cascade.

Figure 1 is a log-log plot of E(k), F (k), and �(k) in both
limits C � 1 (C = 0.001) to the left and C 	 1 (C = 4) for
κ = 0.1 to the right. Note that for C � 1 the shell model
does not capture exactly the Kraichnan-Kolmogorov dual
cascade for the potential, E(k) ∼ k−5/3, k−3. This is due to
the equipartition theorem [29] where the steady state solution
to the shell model is found at a local minimum of k−1 for
the inverse cascade. The Obukhov-Corrsin and Batchelor
passive scalar spectra for the density, F (k) ∼ k−5/3, k−1 are
therefore modified according to the modification in E(k).
Following the dimensional argument for F (k) given E(k) ∼
k−1 results in F (k) ∼ k−2 instead. Furthermore, since the shell
model does not capture the phase information, the resulting
particle flux spectrum is simply �(k) ∼ √

E(k)F (k). Indeed
the resulting power spectra for the particle flux in the shell
model simulation are �(k) ∼ k−3/2, k−2. The shell model
results for C 	 1, however, agree with the analytic predicted.
We get the adiabatic spectrum for E(k) ∼ k−3 and demonstrate
the existence of kc where F (k) ∼ k−5 for k < kc and F (k) ∼
k−3 for k > kC . For the adiabatic case, �(k) ∼ k−5/3, k−3

also as theoretically predicted. Since we are interested in
investigating the new transition scale for the internal energy
and the predicted scaling in the case of C 	 1, we use the shell
model which is shown to reliably capture the internal energy
cascade and depict kc. We numerically compute the value of
kc as a function of C and κ to confirm the relation we derived
for the scale kc ∝ C/κ at which the bifurcation occurs.

One interesting observation is that the internal energy
spectrum in the high-k limit, k > kc, gradually transitions from
the passive scalar F (k) ∼ k−1 in the hydrodynamic regime to
that associated with a background gradient F (k) ∼ k−3 in the
adiabatic regime as C is varied. Since our analytical derivations
were constrained to the asymptotic limits of C, we use the shell
model to study the transition of the spectra of F (k) from k−1

for C � 1 to k−3 for C 	 1 for k > kc. We plot in Fig. 2
the spectra and the power χ of the internal energy spectrum
F (k) ∼ kχ where k > kc, κ = 10, and values of C vary from
1 to 60 at increments of five.

We find that the transition that the internal energy power
spectrum F (k) undergoes, has a universal form as a function
of C which is similar for all κ but spans increasingly larger
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FIG. 1. (Color online) Log-log plot of the power spectra of E(k) (top), F (k) (middle), and �(k) (bottom) where κ = 1.0 and C � 1
(C = 0.01) on the left and C 	 1 (C = 100) on the right, using the shell model.
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FIG. 2. (Color online) Log-log plot of the high-k spectra of the
internal energy F (k) ∼ kχ for κ = 10 and different values of 0.1 <

C < 60. The value of χ is plotted in the smaller figure on the bottom
right. The transition is steeper closer to the limit C � 1 and becomes
more gradual for larger C.

regions in C for larger κ . We denote the value of C for
a given κ for which the transition for k > kc occurs from
the hydrodynamic regime, F (k) ∼ k−1, to the intermediate
regime as Ct1(κ) and from the intermediate regime to the
adiabatic regime, F (k) ∼ k−3, as Ct2(κ). We find that Ct1,t2(κ)
are straight lines in (C,κ) parameter space with slopes
approximately 1.6 and 0.12. The behavior of the transition
of χ where F (k) ∼ kχ for different κ is a universal function
of C between Ct1(κ) and Ct2(κ) with χ ≈ −1 at Ct1(κ)
and χ ≈ −3 at Ct2(κ) for a given κ . We plot in Fig. 3 the
value of χ , such that F (k) ∼ kχ , in the parameter space
(C,κ).

These results are validated qualitatively against an open
source plasma fluid solver called BOUT++ [30] that has the
Hasegawa-Wakatani model as an example. BOUT++ captures
the transition to k−3 in F (k) and the results are found to agree
with the isotropic shell model (except that the details had to
be modified to capture the differences in the way the system
was driven).

We have also developed an anisotropic version of the
shell model which separates three directions x, y, and x = y

directions as introduced in Ref. [31]. The results also agree
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FIG. 3. (Color online) Scan of the power χ in parameter space
(κ,C) of the internal energy spectrum F (k) ∼ kχ . For a given κ

the value of the power χ in the power spectrum transitions from
a value χ ≈ −1 at C1t to χ ≈ −3 at Ct2 in the universal form as
presented in Fig. 2 for κ = 10. The lines Ct1(κ) and Ct2(κ) separate the
intermediate regime in the parameter space from the hydrodynamic
(red) and adiabatic regime (blue), respectively.

rather well with the isotropic model. The transition takes place
for the nonzonal directions only; however, taking the integral
over angles in phase space, since the scale k−3 	 k−5 the
resulting spectrum agrees with the isotropic shell model. It
could be argued that kc(αk) ∝ C/κ sin αk which is consistent
with an anisotropic kc computed from Elperin’s results in
Ref. [17]. This would imply that the kc becomes infinite for
αk = 0, explaining therefore that the transition does not take

place for the zonal direction. However, this is difficult to verify
numerically.

IV. CONCLUSION

Based on dimensional analysis of the Hasegawa-Wakatani
equations, a dual power law spectrum for the density fluc-
tuations of the form F (k⊥) ∝ β2/3k−3

⊥ (k−2
c + k−2

⊥ ) has been
predicted with kc ∝ C/κ . A shell model has been developed
for the HW equations and validated by reproducing the
expected spectra of E(k) and F (k) in the hydrodynamic
regime C � 1 and the adiabatic regime C 	 1 (see Table I
for a summary). This model was then used to verify the
parametric dependence of the predicted critical scale kc ∝ C/κ

numerically. The transition of the density spectrum from
F (k) ∼ k−1 for C � 1 to F (k) ∼ k−3 for C 	 1 for high
k is found in the simulations to be of a universal form scalable
with κ . Studying the intermediate regime numerically reveals
a universality in the transition from the hydrodynamic limit
(C � 1) to the adiabatic limit (C 	 1). Further study should
be made to incorporate zonal flows that arise from turbulence
in an anisotropic shell model [31].
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