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Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron
pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study
are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange
potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the
charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of
the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear
dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense
astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the
compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic
wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are
negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results
on the growth rate of the modulation instability is also presented.
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I. INTRODUCTION

Electron-positron (e-p) plasmas, also known as pair plas-
mas, are found in the early universe [1,2], in astrophysical
objects, e.g., pulsars [3], supernova remnants, and active
galactic nuclei [4,5] in γ -ray bursts [6], at the center of
the Milky Way galaxy [7], and even in the ultrashort laser
pulse-matter interactions [8]. In the astrophysical systems, the
e-p pairs can be created by collisions between particles that are
accelerated by electromagnetic and electrostatic waves and/or
by gravitational forces. In the pulsar environments, there is
also a possibility of pair creation through the high-energy
curvature radiation photons that are triggered by charged
particles streaming along the curved magnetic field [9,10]
with a resulting collection of positrons at the polar caps of
the pulsar [11–13]. Recent experiments have opened up the
possibility of creating e-p plasmas in the laboratory. High
energy laser-plasma interactions and fusion devices are also the
sources of e-p plasmas. Intense laser-plasma interaction exper-
iments have recently reported the production of MeV electrons
and also conclusive evidence of positron production [14–16]
through electron collisions [17]. Positrons have also been
created in large tokamaks [18] via collisions between MeV
electrons and the thermal particles. The developments of the
above experiments makes it possible to consider performing
laboratory experiments on the e-p plasmas [19–21].

The pair plasmas are composed of electrons and positrons
of equal mass and opposite charges. Due to the equal mass
of the pairs, there are fewer spatial and temporal scales on
which collective effects arise. Some of the unique features
of the neutral e-p plasma may be stated as follows. (i) Same
dynamical properties for electrons and positrons: Owing to the
same masses and electric charge magnitudes for the electrons
and positrons, their dynamical behavior is the same. This is
to be contrasted with the electron-ion (e-i) or electron-hole
(e-h) plasma. The dynamical time scales are different from
those in e-i and e-h plasmas. In the case of the e-i plasma,
for example, the relation among the electron-electron (ee),

ion-ion (ii), and electron-ion (ei) relaxation time scales τee,
τii , and τei is τee : τii : τei ∼ 1 : (mi/me)1/2 : mi/me, where
mi and me are the masses of the ion and electron, respectively.
Due to this hierarchy of the time scales the e-i plasma may
exist as a two temperature plasma. For the e-p plasma, on
the other hand, the electron-electron (−−), positron-positron
(++), and electron-positron (−+) relaxation time scales are
comparable: τ−− : τ++ : τ−+ = 1 : 1 : 1/2. Thus, it is not
possible to produce an e-p plasma with each component in
thermal equilibrium and either with T− � T+ or T− � T+.
Here, Tμ is the temperature of the species μ (− for electrons
and + for positrons). (ii) Coupling to electromagnetic waves in
the presence of a magnetic field: In the presence of a magnetic
field, the electron and positron perform gyromotion at the
same frequency in opposite directions. This is to be contrasted
to the case with e-i plasma. For a charge neutral e-p plasma,
the plasma couples to the left- and right-circularly polarized
waves equally, which is in contrast to the e-i plasma.

In most of the astrophysical plasmas, the electrons and the
positrons exist in relativistic regimes and therefore most of
the research works have been directed toward relativistic e-p
plasmas [22,23] (and references therein). The classical study of
collective behavior of e-p plasmas is important to understand
some aspects of astrophysical plasma situations because
e-p plasma radiates effectively by emission of cyclotron
radiations [24].

The theory of nonlinear wave propagation in a relativistic
electron-positron plasma with a strong external magnetic field
has been studied by Lominadze et al. [25], for possible
application to explain the radiation mechanism in pulsar
microstructure. In this study, a nonlinear wave theory is
presented for the excitation of low-frequency Alfven waves
by waves resonantly interacting with the electrons and the
positrons of the ultrarelativistic pair plasma that can explain
the high effective temperatures of pulsar radio emissions. Later
on, Stenflo et al. [26] investigated the nonlinear propagation of
electromagnetic waves in magnetized electron-positron plas-
mas. The nonlinear interaction of the external magnetic field-
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aligned circularly polarized electromagnetic radiation with a
cold electron-positron plasma has been considered in their
investigation. Modulational instabilities and wave localization
have been discussed after deriving a set of nonlinear equations
describing the coupling of the electromagnetic radiation with
the cold electrostatic oscillations.

Quantum plasma have attracted a renewed attention in
recent years. The inclusion of the quantum terms in the plasma
fluid equations—such as quantum diffraction effects, modified
equations of state, and the spin degrees of freedom—leads
to a variety of new physical phenomena. The study of
quantum plasma becomes important when the de Broglie
wavelength associated with the charged particles becomes
of the order or greater than the interparticle distance of the
system, and the plasma behaves like a Fermi gas and quantum
mechanical effects play a significant role in the dynamics [27–
30]. The quantum hydrodynamic (QHD) model is a useful
approximation to study the short-scale collective phenomena,
such as waves, instabilities, and nonlinear structures, etc.,
in dense plasmas [27,28,31]. The QHD model generalizes
the usual fluid model with the inclusion of the statistical
degenerate pressure and quantum diffraction (also known as
the Bohm potential) terms. The validity of the QHD model
is limited to those systems that are large compared to the
Fermi lengths of the species in the system. In most of
the earlier studies [27,29,30,32–35], it was shown that the
presence of positrons plays a significant role in the formation
of topological solitons, obtained from the solution of the
Korteweg–de Vries (KdV) equation in dense plasmas. The
low-frequency waves, such as ion-acoustic waves, drift waves,
etc., have been studied in quantum e-p-i plasmas with their
application to neutron stars and pulsars [36]. Furthermore, low
and arbitrary amplitude nonlinear structures have also been
studied in dense e-p-i plasmas and/or e-i plasmas [37–40].
However, in most of the recent investigations, quantum effects
are considered mostly involving electron-ion or dusty plasmas
without external magnetic field [41–50].

Recently, Shukla et al. [51] have carried out a study on the
electromagnetic solitary pulses in a magnetized e-p plasma.
They have considered a compressional electromagnetic wave
propagating perpendicular to the external magnetic field and
have developed a full set of nonlinear equations for the
propagation of the wave. They have found that solitary
electromagnetic pulses can exist within a definite velocity
range. It is also found in that investigation that a strong
localization of pulses occurs in the cold pair plasma. In
their study, they have not considered the Fermi degeneracy
pressure and the quantum diffraction effect. On the other hand,
Mahmood et al. [39] have recently investigated electrostatic
solitary waves in a nonrelativistic quantum e-p-i plasma with
Fermi degenerate electrons and positrons. They have derived
the Kadomtsev-Petviashvili (KP) equation and studied the
properties of localized acoustic solitary waves (topological
soliton) for parameters relevant to dense astrophysical objects,
e.g., the outer layers of white dwarfs, neutron stars, and
magnetars, etc. However, the effect of magnetic field is missing
in their study. Furthermore, their study excludes possible
electromagnetic wave perturbations. It is our understanding
that, for the consideration of parameter range of astrophysical
objects, the effect of external magnetic field should be included

in these investigations for the propagation of electrostatic and
electromagnetic waves.

In the present paper, we consider the model of Shukla
et al. [51] for the perpendicular propagation of a compressional
electromagnetic wave pulse in a strong external magnetic
field, with the inclusion of the degenerate quantum pressure
law [52,53] with external magnetic field, particle exchange
potential, Bohm quantum effects, and also dissipative effect
due to particle collisions. Thus, our model is to study the
propagation of an electromagnetic wave pulse (packet) in
a Fermi degenerate e-p collisional quantum plasma in the
presence of a strong external magnetic field. It should be
mentioned here that the study of quantum e-p plasma remains
in the nonrelativistic regime if the Fermi energies of electrons
and positrons are much smaller than their rest energies, and
this holds in our present study.

We study the linear properties of the compressional
electromagnetic pulse propagating in the degenerate e-p
quantum plasma in a strong external magnetic field. We also
study the amplitude modulation of the slow evolution of the
electromagnetic wave pulse. We apply the standard reductive
perturbation technique [54] to derive a modified-nonlinear
Schrödinger equation (modified-NLSE) for the propagation
of the compressional electromagnetic wave in the e-p pair
plasma. We also discuss the possible modulational instability
of the wave amplitude and carry out some parameter studies on
the dissipative nonlinear compressional electromagnetic wave.

We have become interested to study modulational instabil-
ity because it is one of the most ubiquitous types of instabilities
in nature and plays an important role in the formation of plasma
turbulence. It affects the spectrum of the turbulent oscillations,
the acceleration and heating of charged particles, the emission
of electromagnetic waves, and so on.

The paper is organized as follows. Section II describes
the hydrodynamical model of the quantum e-p plasma and
presents the set of highly nonlinear equations for the evolution
of the large amplitude compressional electromagnetic wave
pulse. In this section, a modified-NLSE is derived by applying
the reductive perturbation technique. A nonlinear dispersion
relation and hence an expression for the growth rate of
the modulational instability of the dissipative compressional
electromagnetic wave is derived in this section. Results are
discussed in Sec. III along with graphical representation.
Finally, Sec. IV concludes the paper.

II. MATHEMATICAL MODEL

We consider the propagation of a large ampli-
tude dissipative compressional electromagnetic wave, B′ =
ẑ δB exp [i(kx − ωt)], along the x direction of a three-
dimensional rectangular Cartesian geometry, in a degenerate
quantum e-p pair plasma in the presence of an external
magnetic field B0 = B0̂z: where B0 is the strength of the
external magnetic field, δB is the slowly varying modulated
compressional magnetic field of the electromagnetic pertur-
bation (k,ω), k and ω are respectively the wave number and
angular frequency of the carrier wave, and ẑ is the unit vector
along the z axis. Thus the total magnetic field along the z axis is
BT = B0 + δB exp [i(kx − ωt)]. The nonlinear propagation
of the compressional electromagnetic wave is then governed
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by the following quantum magnetohydrodynamics (QMHD)
set of equations:

∂nα

∂t
+ ∇ · (nαvα) = 0. (1)

m

(
∂

∂t
+ vα · ∇

)
vα = qαE + qα

c
vα × BT − 1

nα

∇Pα

+∇Vxcα + ∇VBα − mν0vα, (2)

∇ × E = −1

c

∂BT

∂t
, (3)

∇ × BT = 4π

c

∑
α

qαvα, (4)

where α = e (for electrons) and α = p (for positrons), qα =
eeα is the charge, m is the mass of an electron or a positron,
vα is the velocity of species α; E is the self-consistent electric
field of the compressional electromagnetic wave; eα = −1 for
electrons, eα = +1 for positrons, e is the magnitude of the
electronic charge, c is the speed of light in a vacuum, and
the quantity ν0 is the average effective collision frequency of
electrons (positrons).

In our model, we consider strong magnetic field with Lan-
dau quantization effect and therefore the following appropriate
quantum pressure law [53] is adopted:

Pα = 4|qα|B0(2m)1/2E
3/2
Fα

3(2π )2�2c

[
1 + 2

lm∑
l=1

(
1 − l�ωcα

kBTFα

)3/2
]
,

where the value of lm is fixed by the largest integer l that
satisfies kBTFα − l�ωcα � 0, ωcα = |qα|B0/mc, kB is the
Boltzmann constant, � = h/2π , and h is Planck’s constant.
EFα and TFα are respectively the Fermi energy and Fermi
temperature and are related to the particle number density
nα by the relation kBTFα ≡ EFα = �

2(3π2nα)
2/3

/2m. The
above expression for the quantum pressure with strong external
magnetic field was derived in detail earlier by Eiezer et al. [52].
After simplification, the expression for the quantum pressure
can be cast into the following form:

Pα = 1

2
�ωcαnα

[
1 + 2

lm∑
l=1

(
1 − l�ωcα

kBTFα0

)3/2
]
, (5)

TFα0 is given by kBTFα0 = EFα0 = �
2(3π2nα0)(2/3)/2m, nα0 is

the equilibrium particle number density of species α. We also
consider the exchange correlation potential of the electrons
and the positrons [55]:

Vxcα = −0.985e2n1/3
α

[
1 + 0.034

aBn
1/3
α

ln
(
1 + 18.37aBn1/3

α

)]
,

(6)

where aB = �
2/me2. The origin of this potential is the

following: The interaction of the plasma species can be
separated into a Hartree term due to the electrostatic potential
of the plasma particle number density and a particle exchange
potential [56]. The exchange-correlation potential energy can
be described as an unknown functional of the particle number
density, and was introduced by Kohn and Sham [57] in
the case of electrons. In ordinary circumstances, because of

the weak nature, the particle exchange-correlation effect is
usually neglected. However, the role of the particle exchange-
correlation effects become important when the particle number
density is high and the particle temperature is low, such as in
some astrophysical plasmas and plasmas involving modern
technologies [58–60].

We also consider the Bohm potential due to the tunneling
effect of the plasma particles [27]:

VBα = �
2

2m

(
1√
nα

∂2√nα

∂x2

)
. (7)

The above Bohm potential arises directly from the Schödinger
equation, and is responsible for typical quantumlike behavior
involving tunneling and wave-packet spreading and comes
from the nonlinear coupling between the scalar potential
associated with the space charge electric field and the particle
(electron or positron) wave function [28]. The importance
of this term increases for comparatively larger values of the
propagation wave number and the particle number density.

In a quasineutral electron-positron plasma, we assume
ne = np = n, where ne and np are the number densities
of the electrons and positrons in the plasma and thus we
can set nα0 = n0 and Pα = P . The continuity equations for
the electrons and positrons predict that the x components
of the electron and positron fluid velocities must be equal:
vex = vpx ≡ vx . Hence, the continuity equation, Eq. (1), for
both the electrons and positrons can be written as

∂n

∂t
+ ∂

∂x
(nvx) = 0. (8)

From Eq. (2), the x components of the electron and positron
momentum equations become

m

(
∂

∂t
+ vx

∂

∂x

)
vx = −eEx − e

c
veyBT − 1

n

∂P

∂x

+ ∂Vxc

∂x
+ ∂VB

∂x
− mν0vx, (9)

and

m

(
∂

∂t
+ vx

∂

∂x

)
vx = eEx + e

c
vpyBT − 1

n

∂P

∂x

+ ∂Vxc

∂x
+ ∂VB

∂x
− mν0vx. (10)

Eliminating Ex from Eq. (9) by using Eq. (10), we have

m

(
∂

∂t
+ vx

∂

∂x

)
vx = e

2c
(vpy − vey)BT − 1

n

∂P

∂x

+ ∂Vxc

∂x
+ ∂VB

∂x
− mν0vx. (11)

By using Ampere’s law, Eq. (4), Eq. (11) yields(
∂

∂t
+ vx

∂

∂x

)
vx = − BT

8πmn

∂BT

∂x
− 1

mn

∂P

∂x

+ 1

m

∂Vxc

∂x
+ 1

m

∂VB

∂x
− ν0vx. (12)
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Again from Eq. (2), the y components of the electron and
positron momentum equations are

m

(
∂

∂t
+ vx

∂

∂x

)
vey = −eEy + e

c
vxBT − mν0vey, (13)

and

m

(
∂

∂t
+ vx

∂

∂x

)
vpy = eEy − e

c
vxBT − mν0vpy. (14)

Subtracting Eq. (13) from Eq. (14), we have

m

(
∂

∂t
+ vx

∂

∂x

)
(vpy − vey)

= 2eEy − 2
e

c
vxBT − mν0(vpy − vey). (15)

The above equation can be rewritten using Ampere’s law,
Eq. (4), as

Ey = 1

c
vxBT − mcν0

8πe2

1

n

∂BT

∂x
− mc

8πe2

×
[(

∂

∂t
+ vx

∂

∂x

)(
1

n

∂BT

∂x

)]
, (16)

which after using Faraday’s law, Eq. (3), takes the following
form:

∂BT

∂t
+ ∂

∂x
(vxBT ) = mc2ν0

8πe2

∂

∂x

(
1

n

∂BT

∂x

)
+ mc2

8πe2

× ∂

∂x

[(
∂

∂t
+ vx

∂

∂x

)(
1

n

∂BT

∂x

)]
. (17)

Equations (8), (12), and (17) are the governing nonlinear
equations for the compressional electromagnetic wave in a hot
magnetized e-p plasma. We normalize quantities according
to the following prescription: N = n/n0, V = vx/CA, where
CA = B0/

√
8πn0m is the Alfven speed, B = BT /B0; t and

x are normalized by the cyclotron frequency, ωc = eB0/mc,
and the Alfven wavelength λA = CA/ωc, respectively, i.e.,
T = tωc and X = x/λA. The plasma β of the electron-
positron plasma is defined by βp = 8πn0kBTF /B2

0 (TF ≡
TFα, α = e,p). With these normalizations, the set of equa-
tions, given by Eqs. (8), (12), and (17), along with Eqs. (5)–(7),
becomes

∂N

∂T
+ ∂

∂X
(NV ) = 0, (18)

∂V

∂T
+ V

∂V

∂X
= − B

N

∂B

∂X
− βN−1 ∂N

∂X
− σN−2/3 ∂N

∂X

+ H 2

2

∂

∂X

(
1√
N

∂2

∂X2

√
N

)
− μV, (19)

∂B

∂T
+ ∂

∂X
(V B) = μ

∂

∂X

(
1

N

∂B

∂X

)
+ ∂

∂X

(
∂

∂T
+ V

∂

∂X

)(
1

N

∂B

∂X

)
, (20)

where μ = ν0/ωc,

β = 1

2

�ωc

mC2
A

[
1 + 2

lm∑
l=1

(
1 − l�ωc

kBTF0

)3/2
]
,

σ = 0.328n
1/3
0 e2

mC2
A

[
1 + 0.625

1 + 18.37aBn
1/3
0

]
,

and H = �ωc/2mC2
A.

A. Linear dispersion relation for the compressional
electromagnetic wave

For a small perturbation (ω̃,k), we consider N = 1 + δN ,
V = δV , and B = 1 + δB and letting δN , δV , and δB vary
as ∼ exp [i(kX − ω̃T )]; the linearized parts of Eqs. (18)–(20)
give the following dispersion equation:

(1 + k2)ω̃3 + iμ(1 + k2 + k2)ω̃2 − k2

× [1 + μ2 + (1 + k2)f ]ω̃ − iμk4f = 0, (21)

where f = β + σ + H 2k2. First, let us consider the collision-
less case by setting μ ≡ ν0/ωc = 0, then we get the following
dispersion relation from Eq. (21) with ω̃ ≡ ω:

ω2 = k2f + k2

1 + k2
. (22)

The dispersion relation, Eq. (22), can be rewritten as

ω2 = k2(β + σ + k2H 2) + k2

1 + k2
. (23)

We can identify the importance of different terms of the right
hand side of Eq. (23). The combination of the first three
terms of the right hand side of Eq. (23) gives the electrostatic
contribution and the last term gives the electromagnetic
contribution to the linear dispersion of the compressional
electromagnetic wave. Let us denote the first, second, third, and
fourth terms of the right hand side of Eq. (23) by TDP = k2β,
TXP = k2σ , TBP = k4H 2, and TEM = k2/(1 + k2). We also
define TES = TDP + TXP + TBP .

Next, we solve Eq. (21) numerically for a possible disper-
sion relation with nonzero linear damping (μ = ν0/ωc �= 0)
of the wave due to collisions. From the appropriate solution,
the real part of ω̃, ω = Re[ω̃] and the imaginary part of
ω̃ : γ = Im[ω̂] can easily be obtained. We plot ω and |γ | as
functions of the carrier wave number k in Figs. 3 and 4.

B. Derivation of the modified nonlinear Schrödinger equation

To derive the modified-NLSE, we apply the standard reduc-
tive perturbation technique [61] with the following stretched
coordinates: ξ = ε(X − v0T ) and τ = ε2T , where v0 is a
constant and will be determined later from the compatibility
condition of the reductive perturbation analysis and ε is a small
positive quantity less than 1, and is known as the perturbation
parameter. Expanding the dependent variables N , V , and B as

N = 1 +
∞∑

n=1

εn

∞∑
l=−∞

N
(n)
l (ξ,τ ) eil(kX−ωT ), (24)
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V =
∞∑

n=1

εn

∞∑
l=−∞

V
(n)
l (ξ,τ ) eil(kX−ωT ), (25)

B = 1 +
∞∑

n=1

εn

∞∑
l=−∞

B
(n)
l (ξ,τ ) eil(kX−ωT ), (26)

ω and k are the angular frequency and the wave number of
the carrier electromagnetic wave. The quantities N

(n)
l (ξ,τ ),

V
(n)
l (ξ,τ ), and B

(n)
l (ξ,τ ) are the lth harmonic of the nth order

slowly varying field variables N , V , and B respectively, and
these satisfy the reality condition A

(n)
−l ≡ A

(n)∗
l and the asterisk

denotes complex conjugation. We note that according to the
stretched variables and the expanded variables in Eqs. (24)–
(26), we have two coordinate systems: the (X,T ) coordinate
system, in which there is a rapid variation of the field quantities
of the carrier wave with wave number k and angular frequency
ω; and the (ξ,τ ) coordinate system, in which there is a slowly
modulated wave packet. In our derivation of the modified-
NLSE, the value of the normalized collision frequency μ is
very small compared to the electron cyclotron frequency ωc;
in this situation we can set [62]

μ = ηε2, (27)

where η is a finite quantity of the order of unity. If we now
substitute the above expansions, given by Eqs. (24)–(26) for the
field variables with Eq. (27) in the set of equations, Eqs. (18)–
(20), we can easily obtain the lth harmonic of the nth order
reduced equations. We omit listing the reduced equations here
as they are very lengthy and will not be much use to most of
the readers.

If we consider the first harmonic of the first order quantities
(n = 1 and l = 1) in the reduced equations, the following
linear dispersion relation of the compressional electromagnetic
wave is easily obtained:

ω2 = k2f + k2

1 + k2
, (28)

where f is defined below Eq. (21) and the quantities β, σ ,
and H are defined earlier. Equation (28) coincides with the
linear dispersion relation, Eq. (22), obtained earlier when the
value of the normalized collision frequency μ is set to zero.
Similarly, from the first harmonic of the second order quantities
(n = 2 and l = 1), and using Eq. (28), we obtain the following
compatibility condition:

(1 + k2)(kff1 + ωf2) + kf3 = 0,

where the expressions for f1, f2, and f3 are given in
the Appendix. This compatibility condition eventually gives
the following expression for the group velocity v0 of the
compressional electromagnetic wave:

v0 = [ω(1 + k2){(1 + k2)(f + f0) + 2} − 2k2ω]

×[k(1 + k2){1 + f (1 + k2) + ω2(1 + k2)/k2}]−1, (29)

where f0 = β + σ + 3H 2k2.
It should be mentioned here that we are particularly

interested in the low-frequency (ω < ωc) limit for the com-
pressional electromagnetic wave mode for long wavelength
perturbation (ω,k).

Here, we do not go into the detail derivation of the
modified-NLSE, but only state briefly the procedure. From
the l = 2 part of the second order (n = 2) reduced equations,
the second order harmonic mode B

(2)
2 of the carrier wave is

obtained in terms of B
(1)
1 B

(1)
1 , where B

(1)
1 is the first order mode,

obtained in deriving the linear dispersion relation, Eq. (28).
The mode B

(2)
2 comes from the nonlinear self-interaction.

Similarly, from the l = 0 part of the third order (n = 3)
reduced equations, the zeroth harmonic mode B

(2)
0 is obtained

in terms of |B(1)
1 |2. Its expression cannot be obtained from the

second order equations. Finally, substituting the expressions
for B

(2)
2 and B

(2)
0 into the l = 1 component of the third order

(n = 3) part of the reduced equations, we finally obtain the
following modified-NLSE for the nonlinear propagation of
the compressional electromagnetic wave:

i
∂a

∂τ
+ P

∂2a

∂ξ 2
+ Q|a|2a = −iϒa, (30)

where a ≡ B
(1)
1 and

P =
[
ω

k
(1 + k2)

{
f0

ω
(f3 − f1) + 3H 2k(1 + k2) − v0

f3

k

}
+ f (1 + k2)

{
f3

k
− v0

ω
(f3 − f1)

}
−

(
ω + 2kv0 − f3

k

)]
×

[
(1 + k2)

{
1 + f (1 + k2) + ω2

k2
(1 + k2)

}]−1

, (31)

Q = −
[
L1 + f F1(1 + k2) + ω

k
G1(1 + k2)

]
×

[
(1 + k2)

{
1 + f (1 + k2) + ω2

k2
(1 + k2)

}]−1

, (32)

and

ϒ = η

[
k2 + ω2

k2
(1 + k2)2

]
×

[
(1 + k2)

{
1 + f (1 + k2) + ω2

k2
(1 + k2)

}]−1

. (33)

The quantities f1, f2, f3, L1, F1, and G1 appearing in Eqs. (31)
and (32) are given in the Appendix.

The coefficients P and Q appearing in the modified-NLSE,
given by Eq. (30), are known as the dispersion coefficient
and nonlinear coefficient respectively. The signs of P and Q

determine whether or not the slowly varying wave amplitude
is modulationally stable. If the signs of P and Q are such that
PQ < 0, the wave amplitude is modulationally stable and the
corresponding solution of the modified-NLSE is called a dark
soliton [63] in the absence of collisions. On the other hand,
if PQ > 0, then the wave amplitude may be modulationally
unstable and the solution of the modified-NLSE in this case
is called a bright soliton [63] in the absence of collisions. The
question of dark soliton or bright soliton appears only when
the right hand side of Eq. (30) is zero, i.e., in the collisionless
situation. On the other hand, in the collisional case, i.e., if
there is dissipation in the system, the modified-NLSE does not
admit any stationary envelope solitonic solution. However, we
are particularly interested about modulation instability of the
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nonlinear dissipative compressional electromagnetic wave in
the long wavelength limit, and this is discussed next.

C. Modulation instability of the dissipative compressional
electromagnetic wave

Let us analyze the modulational instability of the dissi-
pative compressional electromagnetic wave described by the
modified-NLSE, Eq. (30), in the case of PQ > 0, where P

and Q are respectively the coefficients of the dispersive and
the nonlinear terms. We write the amplitude a(ξ,τ ) as [62]

a(ξ,τ ) = [a0 + δa(ξ,τ )] exp

[
−i

∫ τ

0
�(τ ) dτ − ϒτ

]
, (34)

where � is a possible nonlinear frequency shift, and a0 (real
constant) is the amplitude of the pump carrier wave. By
expanding δa(ξ,τ ) as

δa(ξ,τ ) = (U + iW ) exp

[
i

(
Kξ −

∫ τ

0
�(τ ) dτ

)]
,

where U and W are respectively the real and imaginary parts
of δa(ξ,τ ), the following nonlinear dispersion relation for
the modulation of the compressional electromagnetic wave
is obtained:

�2 = (PK2)2

(
1 − K2

c (τ )

K2

)
, (35)

where K2
c (τ ) = (2Q|a0|2/P ) exp (−2ϒτ ). From Eq. (35), the

local-instability growth rate is given by

� ≡ Im[�(τ )] = |PK2|
(

K2
c (τ )

K2
− 1

)
. (36)

We observe from the nonlinear dispersion relation, Eq. (35),
that if K2

c (τ ) � K2, then �2 � 0, there will be no growth
of the wave. However, when K2

c (τ ) > K2, then �2 becomes
negative, and there will be absolute growth of the wave. Thus
for absolute growth,

2Q|a0|2
P

exp (−2ϒτ ) > K2.

We observe that as τ increases, the left hand side of the above
inequality decreases and this will continue until τ = τmax,
when � becomes zero, and the growth of the wave ceases.
After τ > τmax, �2 � 0, and the wave becomes modulationally
stable. Thus, by equating K2

c (τ ) with K2, we have

2Q|a0|2
P

exp (−2ϒτmax) = K2,

from which we obtain

τmax = 1

2ϒ
ln

(
2Q|a0|2
PK2

)
.

The quantity τmax is the modulation instability period in the
collisional plasma [62]. This instability period is absent in
plasmas without collision. Thus, the instability growth will
cease when

τ � τmax = 1

2ϒ
ln

(
2Q|a0|2
PK2

)
. (37)

We observe from the above expression for τmax, that by
increasing the damping ϒ , the instability period decreases, and
we can say that by introducing some damping to the system,
the instability of the wave can be suppressed.

D. Solution of the modified-NLSE

Here we present the dissipative nonlinear compressional
electromagnetic rogue wave solution of the modified-NLSE,
Eq. (30), within the instability region, where the signs of the
dispersion coefficient P and the nonlinear coefficient Q of
the modified-NLSE are the same, i.e., PQ > 0. The required
solution can be easily obtained by substituting �(ξ,τ ) =
a(ξ,τ ) exp (ϒτ ) into Eq. (30) giving [64]

i
∂�

∂τ
+ P

∂2�

∂ξ 2
+ e−2ϒτQ|�|2� = 0. (38)

Since the damping (dissipative) coefficient ϒ is very small, we
have e−2ϒτ ≈ 1/(1 + 2ϒτ ) by the Taylor expansion. Using
this approximation, Eq. (38) can be written as

i
∂�

∂τ
+ P

∂2�

∂ξ 2
+ QσD|�|2� = 0, (39)

where σD = e−2ϒτ ≈ 1/(1 + 2ϒτ ). By substituting ζ (ξ,τ ) =
σD(τ )ξ , χ = σD(τ )τ , and �̂ = � exp [i(ϒσD(τ )ξ 2/2P )], we
can transform Eq. (39) into the following standard NLSE:

i
∂�̂

∂χ
+ P

∂2�̂

∂ζ 2
+ Q|�̂|2�̂ = 0. (40)

The above standard NLSE has a rational solution that is
localized on a nonzero background and localized both in ζ

and χ directions, that is, in ξ and τ directions and the ultimate
rogue wave solution for the dissipative NLSE, Eq. (30), is
obtained as [65]

a(ξ,τ ) =
√

2P

Q

[
4 + 16iPσD(τ )τ

1 + 16{PσD(τ )τ }2 + 4{σD(τ )ξ}2
− 1

]

× exp

[
− i

{
ϒσD(τ )ξ 2

2P

}]√
σD(τ ). (41)

The above solution (41) predicts the concentration of the
compressional electromagnetic wave in a small region due to
the nonlinear properties of the electron-positron pair plasma.
This solution is able to concentrate a significant amount of the
compressional electromagnetic wave energy into a relatively
small area in space [65]. In the next section, the dissipative
solution, Eq. (41), of the modified-NLSE, Eq. (30), is plotted
against the position coordinate ξ for a fixed value of τ , taking
ϒ (responsible for the dissipative effect) as a parameter.

III. RESULTS AND DISCUSSIONS

In this section, we analyze the linear as well as nonlinear
compressional electromagnetic wave dispersion relations. For
the numerical appreciation of our results, we consider the
following parameters of the outside layers of white dwarf
or neutron star (a compact star) as an e-p pair plasma
[39]: The external magnetic field, B0 ∼ 1011–1012 G; the
equilibrium particle (electron or positron) number density,
n0 ∼ 5 × 1027 to 2 × 1028 cm−3, the Fermi temperature TF0 is

033106-6



MODULATION OF A COMPRESSIONAL ELECTROMAGNETIC . . . PHYSICAL REVIEW E 92, 033106 (2015)

FIG. 1. Variation of the terms TES and TEM of the right hand side
of the linear dispersion, Eq. (23), vs k. The solid curve is for TES and
the dotted curve is for TEM . The parameters of the electron-positron
plasma are as follows: n0 = 1 × 1028 cm−3, B0 = 1.2 × 1012 G, and
μ = ν0/ωc = 0.

obtained from the relation EF0 = kBTF0 = �
2(3π2n0)

2/3
/2m,

which in the present case, ranges TF0 = 1.24 × 108 K to
TF0 = 3.12 × 108 K. The ratio of the Fermi energy and the
rest energy of an electron or positron, EF0/mc2, for the
particle number density under consideration, ranges 0.021–
0.053, which is much smaller than unity. Thus, our model
correctly describes the dense plasma in the nonrelativistic
regime occurring in outer layers of the white dwarf or compact
stars and even in the future laboratory experiments with high
power laser interactions. It is to be mentioned here that in the
astrophysical e-p environment where particle number density
is around 1028 cm−3, the pair annihilation can be ignored [39].

Figure 1 shows the variation of the terms TES and TEM with
respect to the carrier wave number k. The solid curve is for TES ,
which is the sum of the first three terms of the right hand side
of Eq. (23), that is, TES = k2β + k2σ + k4H 2, and the dotted
curve is for TEM , which is the last term, TEM = k2/(1 + k2),
of Eq. (23). As mentioned earlier, TES accounts for the electro-
static nature, whereas TEM accounts for the electromagnetic
nature of the compressional electromagnetic wave. The curves
are plotted for plasma β, βp = 4 × 10−3. We observe from
Fig. 1 that the wave preserves the electromagnetic character
for the values of the carrier wave number k ranging 0–2.

Figure 2 shows the variation of the individual terms of the
right hand side of Eq. (23) with respect to the carrier wave
number k. The solid curve is for the term TDP , which accounts
for the degenerate quantum pressure, the dotted curve is for
the exchange correlation term TXP , the dashed curve is for
the Bohm potential term TBP , while the dot-dashed curve
is for the electromagnetic term TEM . From this figure, we
notice that the electromagnetic term TEM and the degenerate
quantum pressure term TDP are the most important terms in
contributing to the linear dispersion while the effects of the
exchange correlation potential and the Bohm potential are
negligible for the compressional electromagnetic wave.

Figures 3 and 4 show the variation of the angular frequency
ω and the magnitude of the linear damping rate γ due to colli-

FIG. 2. Variation of the terms TDP , TXP , TBP , and TEM vs k.
The solid, dotted, dashed, and the dot-dashed curves are for the terms
TDP , TXP , TBP , and TEM respectively. The parameters of the electron-
positron plasma are as follows: n0 = 1 × 1028 cm−3, B0 = 1.2 ×
1012 G, and μ = ν0/ωc = 0.

sions with respect to the carrier wave number k taking external
magnetic field B0 as a parameter. The solid curve is for B0 =
1.4 × 1012 G, the dashed curve is for B0 = 0.5 × 1012 G,
while the dot-dashed curve is for B0 = 0.3 × 1012 G for both
figures. The plasma β, βp in these cases, are 3.49 × 10−3,
0.027, and 0.076 respectively. We observe that as we decrease
the external magnetic field, the plasma β increases, however
the wave is still electromagnetic in character. We also notice
from Fig. 4 that as the external magnetic field is decreased
the linear damping slowly decreases for comparatively higher
values of the carrier wave number k.

FIG. 3. The linear dispersion relation ω vs k taking external
magnetic field B0 as a parameter. The solid, dashed, and dot-dashed
curves are for the external magnetic field B0 = 1.4 × 1012 G, B0 =
0.5 × 1012 G, and B0 = 0.3 × 1012 G respectively. Other parameters
are as follows: n0 = 1 × 1028 cm−3 and μ = ν0/ωc = 0.04.
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FIG. 4. The linear damping rate |γ | vs k taking external magnetic
field B0 as a parameter. The solid, dashed, and dot-dashed curves
are for the external magnetic field B0 = 1.4 × 1012 G, B0 = 0.5 ×
1012 G, and B0 = 0.3 × 1012 G respectively. Other parameters are as
follows: n0 = 1 × 1028 cm−3 and μ = ν0/ωc = 0.04.

Figure 5 shows the variation of the ratio P/Q, of the
dispersive coefficient P and the nonlinear coefficient Q of
the modified-NLSE, given by Eq. (30), with respect to the
carrier wave number k, keeping all the nonlinear terms, viz.,
the terms due to the degenerate quantum particle pressure,
the exchange-correlation potential, and the Bohm potential
in the particle momentum balance equation, Eq. (19), with
n0 = 1 × 1028 cm−3 and B0 = 1 × 1012 G. We see from this
figure that the ratio P/Q becomes positive after the carrier
wave number assumes the value around 0.92 which is called
the critical wave number, indicating that the compressional
electromagnetic wave mode is modulationally unstable at and
above this value of the carrier wave number k. It could be

FIG. 5. The variation of the ratio P/Q of the coefficients of the
dispersive and the nonlinear terms of the NLSE, Eq. (30), vs the carrier
wave number k. The parameters of the electron-positron plasma are
as follows: n0 = 1 × 1028 cm−3 and B0 = 1 × 1012 G.

FIG. 6. The modulation growth rate � with respect to the carrier
wave number k. The solid and dotted curves are for B0 = 1.4 ×
1012 G and B0 = 0.3 × 1012 G respectively. Other parameters are as
follows: n0 = 1 × 1028 cm−3, modulation wave number K = 0.01,
a0 = 0.01.

shown that by changing the value of the external magnetic field
B0, the value of the critical wave number is slightly different
than the value shown in Fig. 5.

Figure 6 shows the variation of the modulational instability
growth rate � with respect to the carrier wave number k

keeping all the nonlinear terms in the momentum balance
equation of the carriers with n0 = 1 × 1028 cm−3 for two
different values of the external magnetic field B0. The solid
and the dotted curves are for the external magnetic field B0 =
1.4 × 1012 G and B0 = 0.3 × 1012 G respectively. We observe

FIG. 7. Variation of the modulus-square |a(ξ,τ )|2 of the am-
plitude of the nonlinear dissipative compressional electromagnetic
wave with respect to the position coordinate ξ taking τ = 40 with
damping ϒ as a parameter. The solid, dotted, and dashed curves
are for the normalized damping parameters ϒ = 0.74, 1.47, and 2.21
respectively. The other parameters of the electron-positron plasma are
the following: B0 = 1.4 × 1012 G, n0 = 1 × 1028 cm−3, and carrier
wave number k = 0.95.
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from this figure that the modulation growth rate is noticeable
for a domain of the values of the carrier wave number k. It is
observed from this figure that as the external magnetic field B0

decreases, the growth rate drastically decreases and the curve
is shifted to the right in the � vs k diagram.

Figure 7 shows the variation of the modulus square of the
amplitude of the dissipative compressional electromagnetic
wave with respect to the position coordinate ξ . The solid,
dotted, and dashed curves are for the dissipative parameter
ϒ = 0.736, 1.473, and 2.209 respectively for a particular time
τ = 40, with n0 = 1 × 1028 cm−3 and B0 = 1.4 × 1012 G. We
observe from this figure that the amplitude of the modulated
wave decreases with increasing the damping.

IV. CONCLUSION

We have investigated the linear and nonlinear wave
dispersions of a compressional electromagnetic wave in a
dense quantum e-p pair plasma in the presence of a strong
external magnetic field, usually found in some astrophysical
objects. A modified-NLSE is derived for the slow evolution
of the compressional electromagnetic wave amplitude. We
have discussed both the linear and nonlinear dispersions of
the wave propagating in the quantum electron-positron pair
plasma along with the dissipation effects due to collisions
of the charged particles. For the considered parameter set,
the compressional wave amplitude is unstable after a critical
value of the carrier wave number k. For the case of the
modulationally unstable wave, we have studied the modulation
instability including the effects of the particle degenerate quan-
tum pressure, exchange-correlation potential and the Bohm

potential on the amplitude modulation of the compressional
electromagnetic wave. There is a finite modulation period of
the unstable compressional wave because of the collisional
effect of the charge carriers. From the numerical results, it is
found that the carrier wave number and the external magnetic
field have profound effects on the dispersion properties of
the electromagnetic wave. Important ingredients introduced in
this investigation are the inclusion of the quantum statistical
degeneracy pressure, exchange-correlation force, and the
quantum diffraction effect via the Bohm potential. It is also
found that the quantum effects due to the particle exchange
potential and the Bohm potential are negligibly small in
comparison with the effects of the Fermi quantum degeneracy
pressure. The numerical results on the growth rate of the
modulation instability are also presented. In conclusion, we
stress that the dissipative compressional electromagnetic wave
and its stability investigated in this paper can be associated with
low-frequency electromagnetic disturbances that can occur in
nonrelativistic strongly magnetized pair plasmas, such as those
in the outer layers of white dwarfs, neutron stars, magnetars,
active galactic nuclei, and even in the future laser-plasma
laboratory experiments. Finally, new aspects of nonlinear
plasma waves and their role are to be explored with regard
to electron and positron acceleration in relativistic situations
with strong magnetic field as considered in this investigation.

APPENDIX

The parameters F1, G1, L1, and f1–f17 appearing in
Eqs. (31) and (32) during the derivation of the modified-NLSE,
Eq. (30), are listed below:

F1 = k(1 + k2)

[
f10 + f16 + ω

k
(f11 + f17)

]
, (A1)

G1 = k

[
f9 + f15 − f17 + (1 + k2)

{
1 − f9 − f17 + ω

k
(f10 + f16) − 7H 2k2f11 −

(
β + 2σ

3

)
(f11 + f17)

}]
, (A2)

L1 = k

[
ω

k
(1 + k2)(f9 + f15) + f10 + f16 + kω{2(1 + k2)f9 − f11 + f17}

+ k2

{
2ω

k
(1 + k2)f9 − f10 + f16

}
+ kω(1 + k2)2

]
, (A3)

f1 = −1

k
(1 + k2)(ω − kv0), (A4)

f2 = v0ω

k
(1 + k2) − (1 + k2)f0 − 1, (A5)

f3 = v0 + 2kω + k2v0 − ω

k
(1 + k2), (A6)

f4 = −ω(1 + k2)2, (A7)

f5 = β + σ + 4H 2k2, (A8)

f6 = −k

2

[
ω2

k2
(1 + k2)2 − k2 − (1 + k2)2

(
β + 2σ

3
+ H 2k2

)]
, (A9)

f7 = 1 + 4k2, (A10)

f8 = −ω(1 + k2)2, (A11)

f9 = − 1

ω

(
f7 − k2

ω2 − k2f5

)−1[
f8 + k(ωf6 + kf4f5)

ω2 − k2f5

]
, (A12)
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f10 = kωf9 − ωf6 − kf4f5

ω2 − k2f5
, (A13)

f11 = 1

ω
(kf10 − f4), (A14)

f12 = −2ω

k
(1 + k2)2, (A15)

f13 = −ω2

k2
(1 + k2)2 + k2 − k

ω
(f3 − f1) + (1 + k2)2

(
β + 2σ

3
+ 3H 2k2

)
, (A16)

f14 = −(1 + k2)

(
2ω

k
+ 5kω + k2v0

)
+ k2(2f3 − f1), (A17)

f15 = 1

v0
(
1 + β + σ − v2

0

)[
(β + σ )f12 + v0f13 − (

β + σ − v2
0

)
f14

]
, (A18)

f16 =
(

1

β + σ − v2
0

)
[(β + σ )f12 + v0f13 − v0f15], (A19)

f17 = 1

v0
(f16 − f12). (A20)
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