
PHYSICAL REVIEW E 92, 033105 (2015)

Enhanced generation of a second-harmonic wave in a composite of metamaterial and microwave
plasma with various permittivities
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The generation of a second-harmonic wave, which is one typical nonlinear feature, is enhanced in a composite
of plasma and metamaterial. When we generate plasma by an injection of microwaves, whose frequencies are
fundamental, we observe intensified second-harmonic waves in the cases of negative-refractive-index states in
which both metamaterial permeability and plasma permittivity are negative for the fundamental waves. We
performed the measurements at multiple levels of microwave input power up to 300 W to regulate permittivity in
the negative polarity for the fundamental wave and in the transient region, including the positive-zero-negative
values, for the second-harmonic wave. We clarified that the observed enhancement results from high electron
density in negative-permittivity plasma, the propagating fundamental frequency wave not being attenuated in
the negative-refractive-index state, and partial phase matching between the fundamental and second-harmonic
waves.
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I. INTRODUCTION

Second-harmonic wave generation has attracted much
attention in nonlinear optics since the 1960s, when laser
technology was established and enabled us to obtain highly
intense electromagnetic wave sources [1]. The generation
of harmonic radiation is derived from the quiver motion
of electrons [2]. This generation occurs not only at a high
frequency range but also at a low frequency, or the microwave
range. The electric response of general homogeneous materials
is linearly proportional to electric field amplitude, and this
property can be shown as electric permittivity ε. In this linear
case, ε is a real and constant value. However, high power wave
incidence into materials in a nonlinear process induces some
specific reactions, one of which is harmonic wave generation.
In this nonlinear case, ε has the following expression in the
Taylor series: ε = ε0(A1 + A2E + A3E

2 + · · · ) [3], where ε0

is the permittivity in a vacuum, E is the electric field intensity,
and An is the coefficient of the (n − 1)th-order component.
Crystals with this nature have been called nonlinear crystals,
which many experiments have addressed [3], but the crystals
are in solid configuration with fixed electric parameters. In
contrast, plasma, which is nonlinear and an experimental
target for harmonic generation instead of crystals, has a
reconfigurable shape and variable permittivity. For such views,
a number of reports have reviewed harmonic generation in
plasma with positive permittivity [4–9] and other nonlinear
features with hysteresis [10,11].

Plasma permittivity depends on one of the plasma param-
eters, electron density ne, which is mainly enhanced by the
field power of E. However, if ne exceeds the threshold value,
which is referred to as the cutoff density, ε becomes a negative
value and wave propagation into plasma is forbidden; the
refractive index N = √

εrμr [12] and plasma can only control
εr, where εr is relative permittivity and μr is relative magnetic
permeability. Therefore, μr must be negative for efficient
interaction between negative-ε plasma and a propagating
electromagnetic wave when we focus on cases of overdense
plasma or negative-ε effects.

Since the 1990s, metamaterials, which are artificial di-
electrics composed of metal components and play another
important role in this study, have been focused on in general
physics because they have special electric properties that nat-
ural materials cannot realize [13]. The resonance of individual
metal patterns induces abnormal reactions to electromagnetic
waves, and second-harmonic generation from metamaterials
has been reported, including asymmetric circuits with el-
ements like diodes [14–16] and conventional metamaterial
patterns with magnetic force [17]. Double split ring resonators
(DSRRs), which Pendry et al. experimentally and theoretically
proposed [18], have negative magnetic permeability μ. The
properties of both negative μ and nonlinearity are significant
in our study.

Another typical artificial periodic structure concept is a
photonic crystal, which has an extraordinary response to
electromagnetic waves [19]. In this case, the replacement of
dielectrics and metals with plasmas gives the photonic crystal
dynamic controllability [20–22]. Our group experimentally
realized plasma photonic crystals with microplasmas [23,24].

In our next study, we proposed plasma metamaterials to gain
dynamic properties [25]. We clarified the ε of plasma metama-
terials with a bifurcation feature in numerical simulation using
an analytical model [26] and experimented on the generation
of high density plasma [27,28] and the nonlinearity of plasma
metamaterials [29]. In our previous report [29], we referred
to second-harmonic generation from plasma metamaterials,
although that report failed to show observations in various
conditions and comparable results that are required to confirm
the causal relationship between second-harmonic generation
and the nonlinearity of plasma metamaterials.

Until this research, there have been very few studies
on second-harmonic generation in negative-ε plasmas at an
electron plasma frequency higher than fundamental wave
frequencies. In this report, we demonstrate enhanced second-
harmonic generation with the details of parameter depen-
dencies and investigate the effects of the following three
factors: high electron density, negative N at the frequency
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of fundamental waves, and phase matching. High electron
density, which leads to overdense plasma, may enhance
second-harmonic generation. Negative ε with positive μ

prevents the fundamental wave from propagating, but its
propagation is possible in a negative-refractive-index state
in which both ε and μ are negative. The phase matching
condition is suitable for detection and potential applications of
second-harmonic waves.

II. EXPERIMENTS

A. Experimental setup

To observe second-harmonic generation, we made a
plasma-metamaterial composite; DSRRs were embedded by
microwave plasma. The experimental setup is shown in Fig. 1.
The rectangular waveguide (WR-430), in which microwaves
from 1.7 to 2.6 GHz can propagate as the dominant mode [30],
was installed in a vacuum chamber. This chamber, which was
pumped to 10−4 Pa in advance, was filled with Ar gas at 100 Pa.
The wave source systems were composed of a signal generator
(Hewlett Packard, 8664A), an amplifier (Kyoto-Micro-Densi,
MA-02400C), and a function generator for wave modulation
(NF Corp., CDF-1906). A 2.45-GHz microwave modulated in
a pulse with a duty ratio of 0.5% was launched from this system
through the waveguide into the plasma generation space with
DSRRs. The 2.45-GHz microwave has two essential roles:
one is the energy source for microwave plasma generation,
and the other is the fundamental wave component for second-
harmonic generation. The geometric figure and the overview
are illustrated in Fig. 1. Our DSRRs were fabricated in a wet
etching process using thin Cu films on glass-epoxy substrates,
and the Cu side was laminated by a Kapton layer with εr ∼ 3.
We measured μr of the DSRRs by a vector network analyzer
(Anritsu, MA2028B) with the parameter retrieval method [31]
and the Thru-Reflect-Line method [32].

The details of the derived μr are shown in our previous
paper [29] and μr = −2.6 − 0.3j at 2.45 GHz while μr ∼ 1
at a higher frequency range than 3 GHz (including 4.9 GHz,
the second-harmonic frequency). In comparison with a model
equation of the Lorentz type, μ(ω) = μ0[1 + Fω2/(ω2

0 −

FIG. 1. (Color online) Experimental setup for microwave plasma
generation in negative-μr space. The shape of the DSRRs was
designed to fit the inner scale of the vacant waveguide.

FIG. 2. (Color online) Plasma emission and DSRRs with detec-
tive position (circles). Broken lines indicate the inner frame line of
the waveguide.

jγω − ω2)], where ω is the angular frequency and μ0 is the
magnetic permeability in a vacuum, the estimated values are
larger by a factor of ∼3 than the prediction (−0.85 − 0.09j)
when we set typical parameters like oscillator length F of 0.22
and damping coefficient γ of 2π × 14 MHz with resonance
frequency ω0 of 2π × 2.3 GHz [33]. However, the negative-μ
region is very similar (2.3–2.5 GHz), and its estimation with a
negative refractive index in the results in the following section
remains valid.

Second-harmonic waves (4.9-GHz) and fundamental
(2.45-GHz) signals were measured by a monopole antenna
that was connected to a spectrum analyzer (Aaronia Spectran,
HF-60100 V4 X) by an impedance matched cable. The
antenna was made from a 2.1-mm-outside-diameter and a
1-mm-diameter center core coaxial cable, whose 3-mm-length
end was bare. We set this antenna 5 mm from the end of
waveguide (z = 5 mm in Fig. 1), and the positions in the cross
section of the waveguide are illustrated in Fig. 2. We replaced
the antenna with the Langmuir probe when we monitored ne.
This setup closely resembles our previous work [28,29].

The absolute values of ne, which are measured by
Langmuir probes [34], may include errors by a factor of ∼2 in
comparison with those measured by the other methods using
microwave and optical instruments that provide more accurate
values [35]. The validity of the absolute-value estimation
of ne making the refractive index zero might be doubtful
in the following sections because of possible errors in the
measurement by the probe method, but the relative values and
the data trends are invariant.

B. Experimental principle

In the case of Ar, the elastic scattering cross section for
momentum transfer produces a Ramsauer minimum at about
0.1 eV [36]. Microwaves excite electrons with electron tem-
perature T ∼ 4 eV [29] in this experiment, and the Ramsauer
effect is negligible in this high energy range; the cross section
σ becomes large. The elastic collision frequency ν is expressed
as ν = σnNvth [37]. Here nN is the neutral particle density and
vth is the thermal velocity, vth = √

8kBT/πme, which is the
net electron velocity in plasma as a function of T , where kB

is the Boltzmann constant and me is the electron mass. When
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the electron energy is 4 eV in Ar gas at 100 Pa, the elastic
collision frequency ν becomes 1.7 GHz [36]. We assume that
the incident electric field has oscillation component ej(kz−ωt),
where k is the wave number, z is the location in the propagation
direction, and t is time. εr of this experimental condition has
the following form, as shown in the Appendix:

εr = 1 − 1

ω2
(
1 + j ν

ω

) e2ne

meε0
− c2

μrω2

(
π

a

)2

, (1)

where e is an electron charge, ne is the electron density, ε0

is the permittivity in the vacuum, c is the light velocity in
the vacuum, μr is the relative permeability of the DSRRs,
and a is the wider inside dimension of the waveguide. In
this paper, ω/2π = 2.45 GHz and ν/ω ∼ 0.1, which indicates
that ν hardly influenced ε. As a result, we assume collisionless
plasma in this condition and εr is approximately

εr = 1 − 1

ω2

e2ne

meε0
− c2

μrω2

(
π

a

)2

. (2)

C. Experimental results

To control εr and N in plasma that becomes 2.45-GHz
wave media and 4.9-GHz signal generation, we varied the
input microwave power up to 300 W in the DSRR space. From
Eq. (2) and the measurement results of ne [Fig. 3(a)], we get
Figs. 3(b), 3(c), and 4.

FIG. 3. (Color online) (a) ne as a function of incident microwave
power at several positions in Fig. 2 with DSRRs. (b), (c) Different
behaviors of εr over positions based on ne profiles. Broken lines
express εr = 0. (b) At 2.45 GHz, the imaginary part has constant
value −0.01j. (c) At 4.9 GHz, εr is a real number because μr = 1 and
the third term in Eq. (2) is a real number.

FIG. 4. (Color online) Refractive index N derived from εr and
μr as a function of incident power with DSRRs. Real and imaginary
parts of N are expressed as Re(N ) and Im(N ). Real components
affect wave propagation, and imaginary ones significantly influence
wave attenuation. Broken lines express N = 0: (a) real part and
(b) imaginary part.

Figures 3(b) and 3(c) show the differences of local ε over the
spatial positions. ε mainly depends on ne beyond the threshold
power, and the second term of Eq. (2) becomes the dominant
component. ε at 2.45 GHz becomes negative at every position
with plasma, which indicates the overdense plasma that occu-
pies the waveguide. Although ε is negative, ne increases as the
increment of input power at central positions A and B. This is
supported by the synthesized effects of negative-ε plasma and
negative-μ DSRRs. The input microwave that is lower than the
lowest ignition power induces very simple ε, which is decided
by Eq. (2) where its second term is negligible. In the free space,
the microwave has a TEM mode and propagates in the disper-
sionless media with εr = 1. On the other hand, DSRRs and
a rectangular waveguide, which are dispersive media, affect
wave propagation in this experimental condition. Therefore,
εr without plasma is a function of ω and μr and does not equal
1 exactly. Moreover, there is a small imaginary part: −0.01j.

In Fig. 4, we define the local refractive index N as a
product of the square roots of εr (local permittivity) and
μr (macroscopic permeability). Plasma generation reverses
the relationship between the real and imaginary parts of N

at 2.45 GHz. The double negative parameters make N a
real and negative value after plasma ignition. In contrast,
without plasma, the square root of μr,

√
μr = 0.1 − 1.6j,
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FIG. 5. (Color online) (a), (b) Detected signals of 2.45 and 4.9
GHz when antenna was at position A in Fig. 2: (a) without DSRRs and
(b) with DSRRs. (c) Detected signals when antenna is at other
positions, B, C, and D, in Fig. 2.

mainly determines N because εr ∼ 1, and N becomes a
purely imaginary value and forbids fundamental waves from
propagating. N at 4.9 GHz has a different profile from the
one for 2.45 GHz. After plasma ignition, negative-ε plasma
makes N imaginary at positions A and B, and positive-ε
plasma makes N real at positions C and D. In contrast, the case
without plasma shows a very similar value to the free space.
This difference is based on the following facts. In Fig. 3(c), ε at
4.9 GHz has an opposite sign at positions A and B and positions
C and D because ne is not beyond the cutoff electron density
for the 4.9-GHz wave at positions C and D.

For various parameter sets of εr and N shown in Figs. 3
and 4, we measured the wave signals of the fundamental
and second-harmonic components. Figures 5(a) and 5(b) show
the different behaviors of the 2.45- and 4.9-GHz signals as a
function of the incident microwave power at position A (Fig. 2)
with or without DSRRs.

With DSRRs, plasma ignition clearly enhances the 4.9-GHz
component and only slightly changes the 2.45-GHz signals (or
provides a slight increase) in Fig. 5(b); without DSRRs, both
frequency signals decrease by plasma generation in Fig. 5(a).
The difference of the 4.9-GHz signal intensity in Figs. 5(a)
and 5(b) is explained as follows. DSRRs cancel the plasma
effect (imaginary N by overdense ne), which forbids wave
propagation. After plasma ignition, we observe no decrement

of the 2.45-GHz signals in Fig. 5(b), but the others decrease
from 55 to 70 W in Fig. 5(a) because of negative-μ DSRRs.
However, the fundamental wave energy is dissipated in the
higher-density-plasma generation and in the more intense
second-harmonic wave generation in a nonlinear process,
which leads to a similar intense detection on 2.45 GHz in spite
of the existence of DSRRs [red squares in Figs. 5(a) and 5(b)].
From 20 to 55 W in Fig. 5(a), the incident power increments
boost the 4.9-GHz signal but not the 2.45-GHz signal, which
indicates that the interaction between the plasma without
DSRRs and the electric field just induces a slight second-
harmonic wave generation. Second-harmonic generation in
pure plasma is reviewed in the Appendix. However, plasma
with DSRRs can give more intense second-harmonic wave
signals.

Without plasma (Fig. 4), εr ∼ 1, N = √
μr = 0.1 − 1.6j,

and the attenuation factor, which is the imaginary part of
N , becomes the dominant component of N . The 2.45-GHz
microwave evanescently enters the negative-μr space, and
weaker signals are detected before plasma generation, contrary
to the case without DSRRs [black squares in Figs. 5(a)
and 5(b)]. The detected 4.9-GHz signals have certain values
before the generation of plasma [black circular outlined plots
in Figs. 5(a) and 5(b)], and we refer to this in the description
of Fig. 6.

When we changed the in-plane positional condition of
the waveguide [Figs. 5(b) and 5(c)], both frequency signals
had similar profiles as the functions of the incident power;
plasma ignition boosts the 4.9-GHz signal power and immedi-
ately triggers second-harmonic wave generation. Plasma with
DSRRs maintains 2.45 GHz around −10 dBm when the input
power exceeds 100 W, indicating that negative-ε plasma and
negative-μ DSRRs are synthesized in the 2.45-GHz range
not only at the center of the waveguide but also near the
edge. Even though the 4.9-GHz signals start from about
−20 dBm at every position when the incident power is beyond
the plasma-ignition power, they have two contractive profiles:
at positions A and B and at positions C and D. In the former
case, the incident power increment attenuates the detected
signal power, but the latter profile hardly has any variation
in the incident power. These results can be explained by N in
Fig. 4 and suggest that the second-harmonic wave is attenuated
only at positions A and B, and the 4.9-GHz wave becomes the
evanescent one at positions A and B and the propagating one
at positions C and D.

Figure 6(a) has two axes with the same scale size. If the
2.45-GHz signals have linear relationships to the 4.9-GHz
signals, straight lines can be drawn with slope angle 45◦.
However, the plots in the case without plasma are on a
line whose angle is about 60◦, which is clearly beyond
45◦. This indicates that, besides plasma and DSRRs, these
experimental systems include a certain amount of nonlinearity
for incident electric fields, and the evaluation of second-
harmonic wave generation from the net plasma effects requires
careful treatment.

In cases with DSRRs after plasma ignition, open symbols
exist on the upper side from this line [in chain-outlined area
in Fig. 6(a)]. Along the line, plots are for cases without
plasma. These facts indicate that DSRRs enhance the absolute
intensity of second-harmonic waves, although the detected
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FIG. 6. (Color online) Change of 2.45- and 4.9-GHz signals from input power. Squares, circles, triangles, and upside-down triangles
indicate measurement results with DSRRs at positions A, B, C, and D, respectively. For DSRRs, gray-shaded symbols (input power is under
100 W) indicate results without plasma generated beyond 100 W. (b) Enlarged figure of chain-outlined area in (a). Diagonals are lines on
which the ratio R is constant between 2.45- and 4.9-GHz detected signal power R = 10(P4.9 GHz−P2.45 GHz)/10. P2.45 GHz and P4.9 GHz are 2.45- and
4.9-GHz detected signal power for identical input power. Numbers from 1 to 7 indicate levels of incident power after plasma ignition.

fundamental frequency signals still have similar values. In
contrast, without DSRRs, cross plots are found on the straight
line, and the first two ×-mark plots are on the same line after
plasma generation. Such a tendency implies that the original
nonlinearity of plasma does not induce second-harmonic wave
generation when the incident power is slightly above the lowest
ignition power for the generation of plasma. Even if the input
microwave power increases, the second-harmonic wave power
hits a comparatively low ceiling because of the overdense
plasma.

We cannot simultaneously observe the fundamental and
second-harmonic wave signals because of this experimental
system and repeat discharge shots to acquire both signals.
But the ratio between 2.45- and 4.9-GHz R [Fig. 6(b)]
becomes a reliable measure to check how efficiently second-
harmonic wave generation occurred since it is generated by the
interaction between a fundamental wave and plasma at each
spot.

As shown in Fig. 6(b), the presence of DSRRs puts the
plots in a higher R area. The results at positions C and D have
very similar profiles and keep the signals around −18 dBm
and R ∼ 0.03. The data points at positions A and B have large
changes including similar and opposite features. The similar

feature is the decrement of the 4.9-GHz intensity and R when
the input power increases because N is imaginary at 4.9 GHz.
The opposite one is that the blue circles (input power is 118 W
at position B) are in a special high R area, which is caused by
a unique phase condition. In the next section, we survey this
event from the aspect of phase matching, which is based on
conventional nonlinear optics.

III. DISCUSSION

Fundamental waves induce a double-frequency-oscillating
dipole that leads to second-harmonic wave radiation in plasma.
Inherent plasma dispersion creates a phase difference between
nonlinear-dipole oscillation and second-harmonic waves and
induces destructive interference [Fig. 7(a)]. Conversely, ef-
ficient frequency conversion requires a reduction of this
difference, and this condition is called “phase matching” [38].
From Eq. (A15) in the Appendix, the dispersion relationship
has the following form:

k = ω

c
N. (3)

To satisfy the phase matching in the second-harmonic wave
generation process, it is required that 2kf = ks, where kf is
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FIG. 7. (Color online) Phase condition on each index relation.
Bold purple lines indicate overlap of red, orange, and light gray lines.
(a) Second-harmonic wave radiation from each dipole passively obeys
dispersion. (b) Each radiation wave has the same phase and a coherent
interference is derived. (c) There is no phase because of group or
plasma oscillation.

the wave number of the fundamental wave and ks is that of
the second-harmonic wave. Substituting this relationship into
Eq. (3) results in Nf = Ns [Fig. 7(b)].

A general nonlinear crystal has constant N for each
polarization and requires a simple phase matching condition.
However, our experimental plasma with scale limitation has
spatial N variation, which requires that each positional phase
matching be fulfilled. Phase mismatch, which is defined
as �k = ks − 2kf , is the essential parameter of a nonlinear
process because 2π/�k (the coherence length) is the period
of the amplitude oscillation of the generated second-harmonic
waves [3]. Based on Eq. (3),

�k = ωf

c
(Ns − Nf), (4)

where ωf/2π = 2.45 GHz. Here we do not have to consider
the imaginary part of N because it is associated only with
the spatial attenuation of the wave amplitude. Figure 4 shows
Ns − Nf � 3 and indicates

2π

�k
� 20 mm. (5)

Our experimental setup generates plasma with a z directional
length of about 20 mm [28], and the coherence length is less
than the plasma spatial length. This experiment includes the
spatial power variation of second-harmonic wave generation
in plasma space by phase mismatch and has no positions that
satisfy phase matching; however, it does have the following
unique feature.

When the input power is ∼120 W, the electron density of
positions A and B is very close to the 4.9-GHz cutoff density
(2.8 × 1011 cm−3) and N at 4.9 GHz is near 0. It is possible
that the plasma metamaterials work in a zero-index condition
[Fig. 7(c)]. The second-harmonic wave has no phase mismatch,
and this condition can induce constructive interference. In fact,
the real part of N at 4.9 GHz is 0 at positions A and B, and
the increment of the imaginary part induces attenuation. For

example, if N = −0.8j, the skin depth is about 12 mm, which is
smaller than the plasma size of this experiment (∼20 mm), and
the attenuation from imaginary N is not negligible; therefore,
an efficient process requires that both the real and imaginary
parts of N are 0.

As mentioned above, in these experimental results, the
phase-mismatch-free condition can occur under the following
three conditions: (1) at positions A and B, (2) when the input
power is around 120 W, which is the lowest power after plasma
ignition, and (3) with DSRRs.

In Figs. 5(a), 5(b), and 6, the ratio between the 4.9- and
2.45-GHz signal intensities without DSRRs exceeds that with
DSRRs at the highest incident power. However, this fact does
not indicate efficient second-harmonic generation in plasma
without DSRRs because the 2.45-GHz wave was attenuated in
overdense plasma and the denominator of the ratio decreases
solely as the input power is raised.

In our experimental plasma, ne depends on spatial uni-
formity sensitively [39] and we could not simultaneously
measure the signal intensity and ne in our current experi-
mental setup. Perhaps there was a slight spatial difference
between the monopole antenna and the Langmuir probe in
our experiment at position A. In other words, the zero-index
condition sensitively depends on the spatial variation; however,
Fig. 5(b) shows a tendency for results at position A that
satisfy the zero-index condition when input power is ∼120 W
because a large decrement of the 4.9-GHz signal occurs as
the input power is increased beyond 120 W and the phase
of the 4.9-GHz signal is far from the phase-mismatch-free
point.

One may be skeptical about the collaboration of continuum
plasma and the discrete structures of the DSRR array. However,
this enhancement of second-harmonic signals is well under-
stood by the effective refractive index for ε by the plasma and
for μ by the DSRRs array. In other words, the state of the
negative-ε plasma and the space under the cutoff condition
of the microwave waveguide make a similar macroscopic
condition for propagating an electromagnetic wave [40]. We
conclude that we successfully synthesized μ by a DSRR array
established under the metamaterial concept and ε from positive
to negative values mainly controlled by ne in plasma.

IV. CONCLUSION

We experimentally verified the enhanced generation of
second-harmonic waves with negative-ε plasma and μ by
metamaterial (DSRR array). Based on the inherent nonlin-
earity in a general plasma, the efficient generation of second-
harmonic waves was induced by the three features: high ne,
propagation of fundamental waves in the negative-refractive-
index state, and partial phase matching. In particular, ε is
closely controlled by varying ne, and the properties shown
in the experimental data are well understood by the complex
values of the refractive index.
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APPENDIX A: PLASMA PERMITTIVITY IN WAVEGUIDE

The following are Maxwell’s equations:

∇ × H = J + ∂D
∂t

, (A1)

∇ × E = −∂B
∂t

, (A2)

∇ · B = 0, (A3)

∇ · D = ρe. (A4)

Here H is the magnetic field vector, J is the current density
vector, D is the electric flux density vector, E is the electric
field vector, B is the magnetic flux density vector, and ρe is
the charge density in the unit volume. We assume that plasma
is an isotropic medium and that μr only depends on DSRRs,
which gives the following formations:

D = ε0E, (A5)

B = μrμ0H, (A6)

where μ0 is the permeability in a vacuum. The dominant mode
of the incident microwave electric field is the TE10 mode
in our experimental waveguide, which gives the following
formation [41]:

E =
⎛
⎝ 0

A sin
(

πx
a

)
ej(kz−ωt)

0

⎞
⎠, (A7)

where z is the wave propagation direction and the wide and
narrow sides of the waveguide are along the x and y axes.
According to Eqs. (A1) and (A2),

∇ × (∇ × E) = −μrμ0
∂J
∂t

− μrμ0ε0
∂2E
∂t2

. (A8)

E has only a y axis component Ey, which is a function of x, z,
and t . As a result,

∇ × (∇ × E) =
⎛
⎝ 0

− ∂2Ey

∂x2 − ∂2Ey

∂z2

0

⎞
⎠. (A9)

Ohm’s law and the conductivity of plasma, σ , give

J = σE. (A10)

Finally we have the following expression from Eqs. (A8)–
(A10): (

π

a

)2

+ k2 = jμrμ0ωσ + μrμ0ε0ω
2. (A11)

We can also get the plasma’s momentum balance equation
by considering the electric field and the elastic collision:

me
dv
dt

= −eE − meνv. (A12)

Here v is an electron velocity vector. The electron oscillation
by the electric field and current density J = −enev make the

following expression for σ :

σ = e2ne

me(ν − jω)
. (A13)

Substituting Eq. (A13) for Eq. (A11) induces the following
dispersion relation of this condition:

k2 = ω2

c2
μr

{
1 − 1

ω2
(
1 + j ν

ω

) e2ne

meε0
− c2

μrω2

(
π

a

)2}
. (A14)

In the general dielectric case, the dispersion relation has this
form:

k2 = ω2

c2
μrεr. (A15)

Consequently, εr of this experimental condition is

εr = 1 − 1

ω2
(
1 + j ν

ω

) e2ne

meε0
− c2

μrω2

(
π

a

)2

. (A16)

APPENDIX B: GENERATION OF SECOND-HARMONIC
FIELD IN PLASMA

Even though the following discussion is based on previous
work [42], we treat ne with spatial variation as ne(x) in this
paper. Here x is a spatial position. The plasma’s momentum
balance equation, which includes nonlinear terms in the
collisionless case, is

me
∂v
∂t

+ me(v · ∇)v = −eE − e(v × B). (B1)

In Eq. (B1), v, E, and B are represented by a Fourier series in
the following form:

v =
∑

i

vie
−j(iω)t , (B2)

E =
∑

i

Eie
−j(iω)t , (B3)

B =
∑

i

Bie
−j(iω)t . (B4)

From Eqs. (B1) and (A2), the first-order components of v and
B are expressed as follows:

v1 = e

jωme
E1, (B5)

B1 = 1

jω
∇ × E1. (B6)

Inserting these equations into Eq. (B1) produces a second-
order equation:

−2jωmev2 + eE2 = e2

2ω2me
∇(E1 · E1) ≡ Fpf . (B7)

The center part of Eq. (B7) is called the ponderomotive force,
which we defined as Fpf . If ne has quiver variation n′ by
the electromagnetic waves, the electron flux continuity and
Gauss’s law equations have the following expressions:

∂n′

∂t
+ ∇(nev2) = 0, (B8)

− en′ = ε0∇ · E2. (B9)
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Substituting Eqs. (B7) and (B9) for Eq. (B8) produces the
following form:

(∇ne)eE2 =
(

e2ne

ε0
− 4ω2me

)
n′ + ∇(neFpf). (B10)

If we assume that n′ ∼ 1012 m−3, the ratio be-
tween |E2| (∼1 V/m for |∇ne| ∼ 1021 m−4) and |E1|
(∼100 V/m) resembles the experimental results in Fig. 5(a).
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