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Transport of and radiation production by transrelativistic and nonrelativistic particles
moving through sub-Larmor-scale electromagnetic turbulence
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Plasmas with electromagnetic fields turbulent at sub-Larmor scales are a feature of a wide variety of high-
energy-density environments and are essential to the description of many astrophysical and laboratory plasma
phenomena. Radiation from particles, whether they are relativistic or nonrelativistic, moving through small-scale
magnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The
radiation, carrying information on the statistical properties of the magnetic turbulence, is also intimately related
to the particle diffusive transport. We have investigated, both theoretically and numerically, the transport of
nonrelativistic and trans-relativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic
turbulence, and its relation to the spectra of radiation simultaneously produced by these particles. Consequently,
the diffusive and radiative properties of plasmas turbulent on sub-Larmor scales may serve as a powerful tool to
diagnosis laboratory and astrophysical plasmas.
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I. INTRODUCTION

High-amplitude sub-Larmor-scale electromagnetic turbu-
lence is a phenomenon largely associated with high-energy-
density environments. Such turbulence is a common feature
of astrophysical and space plasmas, e.g., at high-Mach-
number collisionless shocks in weakly magnetized plasmas
[1–3], upstream regions of quasiparallel shocks [4,5], sites
of magnetic reconnection [6,7], and others. Additionally,
these sub-Larmor-scale, or “small-scale,” fields play a critical
role in laboratory plasmas; especially in high-intensity laser
plasmas,as observed in facilities such as the National Igni-
tion Facility (NIF), OmegaEP, Hercules, Trident, and others
[8–11]. Experimental and numerical studies of nonrelativistic
collisionless shocks also show that they are mediated by
small-scale electromagnetic turbulence [12,13]. Thus, studies
of plasmas and turbulence in these environments are important
for the fusion energy sciences and the inertial confinement
concept [8,11].

Small-scale electromagnetic turbulence can be of various
origin and thus have rather different properties, from being
purely magnetic (Weibel) turbulence [14–16] to various types
of electromagnetic turbulence (for example, whistler wave
turbulence or turbulence produced by filamentation/mixed
mode instability [17,18]) to purely electrostatic Langmuir
turbulence [19,20].

Despite substantial differences, these small-scale fields
share one thing in common: They vary on scales much
smaller than the characteristic curvature scale of the particles
traversing the field, i.e., the plasma inertial length (skin
depth), which are on the order of the particle Larmor radius.
The particle trajectory through these turbulent fields will,
consequently, never form a well-defined Larmor circle.
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If the electromagnetic fields are random, which is usually
the case of turbulence because of the random phases of
fluctuations, the paths of the particles diffusively diverge due
to pitch-angle diffusion. Radiation simultaneously produced
by these particles is neither cyclotron nor synchrotron (for
nonrelativistic or relativistic particles, respectively) but, in-
stead, carries information about the spectrum of turbulent
fluctuations. Here we stress that we strictly consider the case
of turbulence in vanishing mean field plasma 〈B〉 = 0.

In our previous work, see Ref. [21], we found the relation
between the transport of relativistic particles in isotropic
three-dimensional (3D) small-scale magnetic turbulence and
the radiation spectra simultaneously produced by these par-
ticles. In particular, we found that the radiation spectrum
agrees with the small-angle jitter radiation prediction in
the small-deflection-angle regime [13,22–25]. Furthermore,
we demonstrated that the pitch-angle diffusion coefficient
is directly related to, and can readily be deduced from, the
spectra of the emitted radiation. This inter-relation between
radiative and transport properties provides a unique way
to remotely diagnose high-energy-density plasmas, both in
laboratory experiments and in astrophysical systems.

We extend our previous work to now consider nonrela-
tivistic (v � 0.1c) and transrelativistic (i.e., mildly relativistic:
0.1c � v � 0.5c) particles moving through three-dimensional
sub-Larmor-scale magnetic turbulence. We demonstrate, once
more via numerical and theoretical analysis, that an analogous
inter-relation holds in these regimes as well, which naturally
generalizes the relativistic small-angle jitter radiation regime
and the pitch-angle diffusion coefficient.

This transrelativistic regime is applicable to laboratory
plasmas, particularly high-intensity laser plasmas—where
bulk plasma motion is below v � 0.5c. Multidimensional
relativistic particle-in-cell (PIC) simulations and laboratory
experiments have revealed that nonrelativistic collisionless
shocks, mediated by Weibel-like instabilities, can occur in
an overcritical plasma via interaction with an ultraintense
laser pulse [10,12]. In the laboratory setting, laser-produced
supersonic counterstreaming plasmas have been observed
to give rise to self-organized electromagnetic fields [26].
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Recently, the formation of filamentary structures indicative
of Weibel-like magnetic fields, fully consistent with the
shock model offered by 3D PIC simulations and theoretical
instability analysis, has been directly observed in a scaled
laboratory experiment [27]. Consequently, given the role of
transrelativistic particle motion in these environments, the
study of the small-scale electromagnetic turbulence may be
aided by the diagnostic tool offered via this inter-relation
between the transport and radiative properties.

The rest of the paper is organized as follows. Section II
presents the analytic theory. Sections III and IV describe the
numerical techniques employed and the obtained simulation
results. Section V is the conclusions. All equations appear in
cgs units.

II. ANALYTIC THEORY

A. Pitch-angle diffusion

Consider a transrelativistic electron moving (with velocity,
v) through a nonuniform, random, mean-free (i.e., 〈B〉 = 0),
small-scale magnetic field (and assume that this magnetic
“microturbulence” is statistically homogeneous and isotropic).
Because the Lorentz force on the electron is random, its
velocity and acceleration vectors vary stochastically, leading to
a random (diffusive) trajectory. We define the field turbulence
to be “small scale” when the electron’s Larmor radius,
rL = γβmec

2/e〈B2
⊥〉1/2 (where β = v/c is the dimensionless

particle velocity, me is the electron mass, c is the speed of
light, e is the electric charge, 〈B2

⊥〉1/2 is the rms component
of the magnetic field perpendicular to the electron’s velocity
vector, and γ is the electron’s Lorentz factor) is greater than,
or comparable to, the characteristic correlation scale of the
magnetic field, λB , i.e., rL � λB .

For small deflections, the deflection angle of the velocity
(with respect to the particle’s initial direction of motion)
is approximately the ratio of the change in the electron’s
transverse momentum to its initial transverse momentum. The
former is ∼FLτλ, where FL = (e/c) v × B is the transverse
Lorentz force, and τλ is the transit time, which is the time
required to traverse the scale of the field’s inhomogeneity, i.e.,
the field correlation length, λB . This is, τλ ∼ λB/v⊥, where
v⊥ is the the component of the velocity perpendicular to the
magnetic field. The change in the transverse momentum is,
thus, �p⊥ ∼ FLτλ ∼ e(B/c)λB . Given that the particle’s total
transverse momentum is p⊥ ∼ γmev⊥, the deflection angle
over the field correlation length will be αλ ≈ �p⊥/p⊥ ∼
e(B/c)λB/γmev⊥. The subsequent deflection will be in a
random direction, because the field is uncorrelated over scales
greater than λB , hence the particle motion is diffusive. As
for any diffusive process, the ensemble-averaged squared
deviation grows linearly with time. Hence, for the pitch-angle
deviation, we have

〈α2〉 = Dααt. (1)

The pitch-angle diffusion coefficient is, by definition, the ratio
of the square of the deflection angle in a coherent patch to the
transit time over this patch, that is,

Dαα ∼ α2
λ

τλ

∼
(

e2

m2
ec

3

)
1

〈β2
⊥〉1/2

λB

γ 2
〈B2〉, (2)

where a volume-averaged square magnetic field, 〈B2〉 and
perpendicular rms velocity, 〈β2

⊥〉1/2 have been substituted for
B2 and β⊥ ≡ v⊥/c. Note that the diffusion coefficient depends
on both statistical properties of the magnetic field, namely its
strength and the typical correlation scale.

Although the assumption that αλ � 1 is valid in the
ultrarelativistic limit: β → 1 (see Ref. [21]), it is not evident
that it holds for transrelativistic and nonrelativistic velocities.
As we will demonstrate via numerical simulation, pitch-angle
diffusion will occur in accordance with Eq. (2), so long as the
magnetic turbulence is sub-Larmor scale, i.e., rL � λB .

The average square magnetic field, 〈B2〉 is related to 〈B2
⊥〉

by a multiplicative factor. For isotropic magnetic turbulence,
〈B2

x 〉 = 〈B2
y 〉 = 〈B2

z 〉. Thus, 1
3 〈B2〉 = 〈B2

x 〉. Alternatively, B
may be expressed as a linear combination of parallel and
perpendicular components. Given isotropy, 〈B2

⊥〉 = 〈B2
x 〉 +

〈B2
y 〉, so

〈B2
⊥〉 = 2

3 〈B2〉. (3)

Recognizing that v⊥B = vB⊥ allows the expression of the rms
perpendicular velocity as

〈β2
⊥〉1/2 =

√
2

3
β, (4)

Next, the correlation length, λB , lacks a formal definition. It
is, nonetheless, commonplace in the literature, e.g., Ref. [28],
to define the two-point autocorrelation tensor,

Rij (r,t) ≡ 〈Bi(x,τ )Bj (x + r,τ + t)〉x,τ , (5)

with the formally path and time-dependent correlation length
tensor defined as

λ
ij

B (r̂,t) ≡
∫ ∞

0

Rij (r,t)
Rij (0,0)

dr. (6)

Note that we make no distinction between covariant and
contravariant components; the usage of upper and lower
indices is only for convenience.

Since the component of the magnetic field perpendicular
to the particle trajectory alters the motion, we choose an
integration path along v⊥ and only consider a transverse
magnetic field component. In accord with standard practice
(see, for example, Ref. [29]), we choose r = zẑ and i = j = x.
Thus, we define the magnetic field correlation length as

λB ≡ λxx
B (ẑ,t) =

∫ ∞

0

Rxx(zẑ,t)
Rxx(0,0)

dz. (7)

The correlation length has a convenient representation in
Fourier “k space” and “� space.” Let Bk,� be the spatial and
temporal Fourier transform of the magnetic field, i.e.,

Bk,� =
∫

B(x,t)e−i(k·x−�t) dxdt, (8)

where k and � are the corresponding wave vector and
frequency, respectively. We may define a complementary
spectral correlation tensor 	ij (k,�), such that

Rij (r,t) = (2π )−4
∫

	ij (k,�)eik·r−i�t dk d�, (9)

033104-2



TRANSPORT OF AND RADIATION PRODUCTION BY . . . PHYSICAL REVIEW E 92, 033104 (2015)

Isotropy, homogeneity, time independence, and ∇ · B = 0
require that the spectral correlation tensor take the simple form
[28]

	ij (k,�) = 1

2V
|Bk|2(δij − k̂i k̂j )2πδ(�), (10)

where V is the volume of the space considered, k̂ is the
unit vector in the direction of the wave vector, and δij is the
Kronecker δ. The normalization has been chosen such that∑

Rii(0,0) = 〈B2〉x,τ = 〈B2〉. Given Eqs. (9) and (10), the
correlation length may be reformulated as

λB =
∫ ∞

0

∫ |Bk|2k−2
(
k2 − k2

x

)
eikzz dk∫ |Bk|2k−2

(
k2 − k2

x

)
dk

dz. (11)

By assuming isotropic turbulence, the magnetic field has
azimuthal and polar symmetry in k space, hence Bk is only
a function of |k| ≡ k. After the integration over z and all
solid-angles in Fourier space, Eq. (11) becomes

λB = 3π

8

∫ ∞
0 k|Bk|2 dk∫ ∞

0 k2|Bk|2 dk
. (12)

It may be noted that λB ≈ k−1
B , where kB is the characteristic

(dominant) wave number of turbulence.
Thus, with Eqs. (2), (4), and (12), the pitch-angle diffusion

coefficient is

Dαα ≡ 3π

8

√
3

2

(
e2

m2
ec

3

) ∫ ∞
0 k|Bk|2 dk∫ ∞

0 k2|Bk|2 dk

〈B2〉
γ 2β

. (13)

To continue, we must specify a magnetic spectral distribution,
|Bk|2. As in our previous work (Ref. [21]), we assume the
isotropic three-dimensional magnetic turbulence has a static,
i.e., time-independent, power-law turbulent spectrum:

|Bk|2 = Ck−μ, kmin � k � kmax

|Bk|2 = 0. otherwise.
(14)

Here the magnetic spectral index, μ, is a real number and

C ≡ 2π2V 〈B2〉∫ kmax

kmin
k−μ+2 dk

(15)

is a normalization, such that

V −1
∫

B2(x)dx = (2π )−3
∫

|Bk|2 dk. (16)

It should be noted that our principal results strictly apply
only to static turbulence. One should, in principle, consider
time-dependent fields as well. However, if the transit time
of a particle over a correlation length is shorter than the
field variability time scale, then the static field approximation
is valid. Additionally, plasma instabilities generally produce
random fields in a preferred direction, leading to anisotropic
turbulence. Nonetheless, isotropy may arise in an advanced
stage of development. Magnetic turbulence of this kind
is a natural outcome of the nonlinear Weibel-filamentation
instability, which occurs at relativistic collisionless shocks and
in laser-produced plasmas [13,22,23].

B. The ultrarelativistic jitter theory

Now we consider the radiative properties of these sub-
Larmor-scale plasmas. First, the ultra-relativistic radiation
regime in sub-Larmor-scale magnetic turbulence is well
understood. This regime is characterized by a single parameter,
the ratio of the deflection angle, αλ, to the relativistic beaming
angle, �θ ∼ 1/γ . The ratio [21–23]

αλ

�θ
∼ eB⊥λB

mec2
∼ 2π

e〈B2〉1/2

mec2kB

≡ δj (17)

is known as the jitter parameter. From this, we recover four
distinct radiation regimes. First, if δj → ∞, then the regime is
the classical synchrotron radiation regime; the particle orbits
are circular in the plane orthogonal to a perfectly homogeneous
magnetic field. Second, with δj > γ , the regime is very similar
to synchrotron, but the particle’s guiding center is slowly
drifting, due to slight inhomogeneity in the magnetic field.
The produced spectrum is well represented by the synchrotron
spectrum, and it evolves slowly in time due to the particle
diffusion through regions of differing field strength. This
regime may be referred to as the diffusive synchrotron regime.

Third, when 1 < δj < γ , the particle does not complete
its Larmor orbit because the B field varies on a shorter scale.
In this case, an onlooking observer would see radiation from
only short intervals of the particle’s trajectory (i.e., whenever
the trajectory is near the line-of-sight), as in synchrotron,
but these intervals are randomly distributed. This is the case
of the large-angle jitter regime. The radiation is similar to
synchrotron radiation near the spectral peak and above but
differs significantly from it at lower frequencies, see Ref. [22]
for details.

Finally, if δj � 1, then a distant observer on the line of sight
will see the radiation along, virtually, the entire trajectory of
the particle (which will be approximately straight with small,
random, transverse deviations). This is known as small-angle
jitter radiation [13,22,23]. The resulting radiation markedly
differs from synchrotron radiation, although the total radiated
power of radiation, Ptot ≡ dW/dt , produced by a particle in
all these regimes, e.g., jitter and synchrotron, is identical:

Ptot = 2
3 r2

e cγ 2〈B2
⊥〉, (18)

where re = e2/mec
2 is the classical electron radius.

For ultrarelativistic electrons, the radiation spectra are
wholly determined by δj and the magnetic spectral distri-
bution. It has been shown [13,22,24,25] that monoenergetic
relativistic electrons in the sub-Larmor-scale magnetic turbu-
lence given by Eq. (14) produce a flat angle-averaged spectrum
below the spectral break and a power-law spectrum above the
break, that is,

P (ω) ∝
⎧⎨
⎩

ω0, if ω < ωj ,

ω−μ+2, if ωj < ω < ωb,

0, if ωb < ω,

(19)

where the spectral break is

ωj = γ 2kminc, (20)
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which is called the jitter frequency. Similarly, the high-
frequency break is

ωb = γ 2kmaxc. (21)

C. Nonrelativistic jitter radiation

In contrast, radiation from nonrelativistic particles is not
beamed along a narrow cone of opening angle, �θ . The
jitter parameter is, consequently, without meaning in the
nonrelativistic radiation regime. Instead, the “dimensionless
scale” (or “gyro number”), i.e., rLλ−1

B , is the only meaningful
parameter:

rLλ−1
B ∼ kBrL = kB

γmevc

e〈B2〉1/2
≡ ρ. (22)

Given the magnetic spectral distribution exhibited by Eq. (14),
kB ∼ kmin, so

ρ = kminrL. (23)

As we shall see below, the radiation spectrum in this
regime markedly differs from the single-harmonic cyclotron
spectrum. We call this radiation “pseudocyclotron” radiation
or “nonrelativistic jitter” radiation.

Regardless of the regime, the radiation spectrum (which is
the radiative spectral energy, dW ; per-unit frequency, dω; and
per-unit solid angle, dη) seen by a distant observer is obtained
from the equation [30,31]

d2W

dω dη
= e2

4π2c

∣∣∣∣
∫ ∞

−∞
Ak(t)eiωt dt

∣∣∣∣
2

, (24)

where

Ak(t) ≡ n̂ × [(n̂ − β) × β̇]

(1 − n̂ · β)2
e−ik·r(t). (25)

In this equation, r(t) is the particle’s position at the retarded
time t , k ≡ n̂ω/c is the wave vector which points along n̂
from r(t) to the observer, and β̇ ≡ dβ/dt . Since the observer
is distant, n̂ is approximated as fixed in time to the origin of the
coordinate system. This fully relativistic equation is obtained
from the Liénard-Wiechart potentials. If v � c, then Eq. (24)
simplifies to

d2W

dω dη
= e2

4π2c

∣∣∣∣
∫ ∞

−∞
n̂ × (n̂ × β̇)eiωt dt

∣∣∣∣
2

, (26)

Next, integrating Eq. (26) over all solid angles gives the
radiated energy per frequency

dW

dω
= 2e2

3πc3
|wω|2, (27)

where wω is the Fourier component of the electron’s accel-
eration with frequency, ω. Equation (27), valid for v � c, is
known as the dipole approximation [30]. This expression may
also be obtained from the Larmor formula, i.e.,

Ptot = 2

3

e2

c3
|w|2, (28)

using the identity [30],

1

2

∫ ∞

−∞
|w(t)|2 dt = (2π )−1

∫ ∞

0
|wω|2 dω. (29)

To proceed further, we use our previous assumption that
the particle deflection angle over a field correlation length is
small (i.e., αλ � 1). This condition implies the validity of
the “perturbative” approach, whereby the particle trajectory
is approximated as a straight line. For a particle moving in
a magnetic field, |wω|2 is given by the Lorentz force. In this
limiting case of small deflections, we may write

|wω|2 =
(

eβ

me

)2

(δij − v̂i v̂j )Bi∗
ω Bj

ω, (30)

where Bω is the temporal variation of the magnetic field along
the trajectory of the electron, i.e.,

Bω = (2π )−4
∫

eiωt dt

∫
Bk,�eik·r(t)−i�t dkd�. (31)

Since the trajectory is approximately straight, r(t) ≈ r0 + vt ,
consequently,

Bω = (2π )−4
∫

eik·r0 Bk,� dk d�

∫
ei(ω+k·v−�)t dt. (32)

After the time integration, this becomes

Bω = (2π )−3
∫

δ(ω + k · v − �)eik·r0 Bk,� dk d�. (33)

Now, since the magnetic turbulence is assumed to be homo-
geneous (at least over a time scale greater than the particle
transit time), the product of Bi∗

ω B
j
ω along a particular trajectory

starting at r0 is representative of the magnetic field as a whole
[22]. Thus, we may consider only the volume average of
Bi∗

ω B
j
ω. Performing the integration leads to

〈
Bi∗

ω Bj
ω

〉
r0

= (2π )−3V −1
∫

δ(ω + k · v − �)Bi
k,�B

j∗
k,�dkd�.

(34)

The quantity, Bi∗
k,�B

j

k,�, is proportional to the Fourier image
of the two-point autocorrelation tensor, i.e., Eq. (10). Thus,
with Eqs. (27), (30), (34), and (10), the angle-averaged
radiation spectrum of a nonrelativistic electron moving in
static, statistically homogeneous, and isotropic sub-Larmor-
scale magnetic turbulence is

dW

dω
=

(
T r2

e β2c

12π3V

) ∫
δ(ω + k · v)[1 + (k̂ · v̂)2]|Bk|2dk,

(35)

where T is the duration of the observation and where we have
used

δ(ω + k · v) =
∫

δ(ω + k · v − �)δ(�) d�. (36)

We see that the radiation spectrum is fully determined by
the magnetic spectral distribution, |Bk|2. It is instructive to
consider one of the simplest such distributions—the isotropic
spectrum of a magnetic field at a single scale, kB , i.e.,

|Bk|2 = (2π )3V 〈B2〉δ(k − kB)

4πk2
B

. (37)
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Substitution of Eq. (37) into Eq. (35) produces the radiation
spectrum

dW

dω
=

{
T

3kB
r2
e β〈B2〉

(
1 + ω2

ω2
jn

)
, if ω � ωjn

0, if ω > ωjn,
(38)

where ωjn = kBv. Given the magnetic spectral distribution of
Eq. (14), the corresponding nonrelativistic jitter spectrum, is

dW

dω
∝

⎧⎪⎨
⎪⎩

A + Dω2, if ω � ωjn

Fω−μ+2 + Gω2 + K, if � ωbn

0, if ω > ωbn,

(39)

where μ 
= 2 and

A ≡ v

2 − μ

(
k−μ+2

max − k−μ+2
min

)
, (40)

D ≡ − 1

vμ

(
k−μ

max − k−μ
min

)
, (41)

F ≡ vμ

v

(
1

μ − 2
+ 1

μ

)
, (42)

G ≡ − v

μ
k−μ

max, (43)

K ≡ v

2 − μ
k−μ+2

max , (44)

with the jitter frequency given by the characteristic, and largest,
spatial scale

ωjn = kminv. (45)

Finally, the break frequency is indicated by the smallest spatial
scale, i.e., the maximum wave number

ωbn = kmaxv. (46)

Notice the structural similarity between the spectrum at
frequencies less than ωjn and the δ function spectrum in
Eq. (38).

Next, the total radiated power may be obtained by inte-
grating Eq. (35) over all frequencies and dividing by the total
observation time, yielding

Ptot = 2
3 r2

e β2c〈B2
⊥〉, (47)

where we have used Eq. (3). Compare this to the total
power radiated by a nonrelativistic electron moving through a
uniform magnetic field,

Ptot = 2
3 r2

e β2cB2
⊥, (48)

which follows directly from Eq. (28). Evidently, the total
power of nonrelativistic jitter radiation is identical to the total
power of cyclotron radiation—with B2 → 〈B2〉; this is exactly
analogous to the relation between synchrotron and relativistic
jitter radiation.

The radiation spectrum, generalized to any velocity, may be
obtained by a formal Lorentz transformation to the electron rest
frame. Consider a relativistic electron moving with velocity
β in the (unprimed) laboratory frame. By employing the
Lorentz invariant phase-space volume, d3k/ω(k), the radiation

spectra between the two frames can readily be related by the
equality [31]

1

ω2

d2W

dωdη
= 1

ω′2
d2W ′

dω′dη′ . (49)

Thus, the angle-averaged laboratory radiation spectrum is
obtained by integration over all solid angles (in the laboratory
frame) of the electron rest frame spectrum, i.e.,

dW

dω
=

∫
ω2

ω′2
d2W ′

dω′dη′ dη. (50)

We consider, once more, that the electron moves along
a straight path, experiencing only small deviations in its
trajectory. Consequently, we consider a Lorentz boost of the
laboratory coordinates along the trajectory (z axis). In the
electron’s rest frame, the field turbulence has both a time-
dependent magnetic and an electric component. However,
since the electron is at rest in this frame, only the electric
field contributes to the instantaneous particle acceleration. Via
Lorentz transformation of the laboratory magnetic field, the
comoving electric field is simply

E′(x′,t ′) = γβ × B(r), (51)

where r(t) = r0 + vt . Since the electron is instantaneously at
rest in this frame, we may choose x′ = 0; thus, t = γ t ′. The
corresponding equation of motion, for the electron, is then

mew′(t ′) = eE′(0,t ′) = eγβ × B(r). (52)

As before, the radiation spectrum in the rest frame is given
by the Dipole approximation, Eq. (26). Substitution of these
results into Eq. (50) leads to

dW

dω
= e2

4π2γ 2c3

∫ |w′
ω′ |2sin2�′

(1 − βcosθ)2
d(cosθ ) dφ, (53)

where �′ is the angle between the wave and acceleration
vectors in the electron rest frame, and we have used the
relativistic Doppler formula ω′ = γω(1 − n̂ · β). Next, given
the equivalent form of Eq. (52) to the laboratory frame
equation of motion, Eq. (30), the acceleration term is given
by the nonrelativistic jitter spectrum with the substitution,
ω′ → ω′/γ = ω(1 − βcosθ ).

The final task is to perform the integration. However,
the angle �′ must first be related to the laboratory θ and
φ coordinates, which are derived from the angle between
the wave vector and the velocity, and the azimuthal angle
with respect to the boost axis, respectively. With a transverse
acceleration, these angles are related by [32]

sin2�′ = 1 − sin2θcos2φ

γ 2(1 − βcosθ)2
, (54)

with φ′ = φ. Thus, the angle-averaged (velocity-independent)
jitter spectrum is given by the following integration of the
nonrelativistic jitter spectrum:

dW

dω
= 3

8γ 2

∫ 1

−1
dx

[
1

(1 − βx)2
+ (x − β)2

(1 − βx)4

]
I (ω0), (55)

where I (ω0) is the nonrelativistic jitter spectrum, e.g., Eq. (35),
evaluated at ω0 ≡ ω(1 − βx). This result leads to the tradi-
tional, ultrarelativistic, jitter spectrum in the limit of β → 1
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(or, equivalently, γ → ∞). In the transrelativistic regime, the
characteristic frequencies, Eqs. (20) and (21), generalize to

ωjn ≡ γ 2kminv (56)

and

ωbn ≡ γ 2kmaxv, (57)

which are the (transrelativistic) jitter and break frequencies,
respectively. It is noteworthy that ωbn is not a proper break
frequency in the mildly relativistic regime. The spectrum
quickly falls to zero following ωbn; however, the drop is not
instantaneous (as it is in the ultrarelativistic limit). In the
transrelativistic regime, γ � 1, of course. With this in mind,
and for the sake of convenience, we retain the n subscript for
both the transrelativistic and nonrelativistic expressions.

From Eqs. (39), (55), and (13), we see that an inter-relation
between the diffusive and radiative properties of transrel-
ativistic and nonrelativistic plasmas with sub-Larmor-scale
magnetic turbulence exists. Furthermore, this inter-relation
owes its existence to the statistical properties of the magnetic
turbulence (e.g., 〈B2〉 and λB). We note, however, that our
radiation treatment assumes small deflections; an assumption
that allowed the use of the so-called perturbation theory.
Recent work (see Ref. [33]) has considered a formal treatment
of the perturbation theory that exclusively requires that the
deflection angle over a correlation length is small, i.e., αλ � 1.
Due to continued diffusive scatterings of the electron, its path
will eventually deviate strongly from its initial trajectory. The
traditional perturbative approach, regardless, remains valid so
long as the trajectory remains approximately straight over
the radiation formation length, at least for the considered
domain of frequencies (i.e., lower frequencies will, inevitably,
require a nonperturbative treatment). In the nonrelativistic
limit, the formation length is ∼k−1. This must be less
than, or comparable to, the magnetic correlation length λB .
With the characteristic frequency ωjn, this length is ∼λB/β.
Consequently, as long as the particle velocity is not arbitrary
small, the perturbative approach will be valid; if αλ is, indeed,
small. By way of numerical simulation, we will demonstrate
that this condition holds as long as ρ > 1 (i.e., the turbulence
is sub-Larmor in scale).

Finally, our results do not consider the dispersive effect of
the surrounding plasma. An account of dispersion will modify
the radiation spectrum by a multiplication of Eq. (27) by the
square root of the frequency-dependent scalar permittivity,
ε(ω). The scalar dielectric permittivity at high frequencies is
[31,32]

ε(ω) = 1 − ω2
pe

ω2
, (58)

where ωpe is the plasma frequency. Equation (58) holds
formally for ω2 � ω2

pe in any dielectric medium; although
it holds for cold, nonmagnetized, isotropic plasmas for a
wide domain of frequencies—including ω < ωpe [32]. In a
magnetized plasma, additional terms including the ambient
“mean” magnetic field appear in the permittivity tensor. As
previously mentioned, the Weibel-like magnetic turbulence
can occur in a nonmagnetized environment, thus we ignore
any “mean” field here. Hence, we will consider an extension
of Eq. (58) to low frequencies (ω ∼ ωpe).

The plasma dispersion effect is only important for fre-
quencies ω � γωpe, below which suppression of relativistic
beaming (due to the Razin effect) occurs [31,32]. Electron-
driven Weibel-like turbulence occurs on a very small scale,
with λB ∼ de (where de ≡ c/ωpe is the electron skin depth)
[16,25]. Consequently, in the ultrarelativistic regime, the jitter
frequency is many orders of magnitude larger than the plasma
frequency by a factor ∼γ 2. However, in the nonrelativistic and
transrelativistic regimes, dispersion can play a considerable
role. This will especially be so for β � 1. In this case,
a considerable portion of the radiation spectrum may fall
below ωpe and thus be unobservable. For simplicity and
convenience, we have ignored the plasma dispersion in our
numerical simulations. However, we consider a few cases with
plasma dispersion intact, both numerically and theoretically,
in Appendix D.

III. NUMERICAL MODEL

Using the method from our previous work (see Ref. [21]),
here we explore the inter-relation between the diffusive and
radiative properties of these plasmas and thereby test our
theoretical predictions. As before, this was done via sim-
ulations of particle dynamics in sub-Larmor-scale magnetic
turbulence. In our simulations, only first principles were used.
Nonrelativistic and transrelativistic electrons are test particles
moving in preset magnetic fields defined over a 3D simulation
box, with periodic boundary conditions in all directions. The
particles do not interact with each other, as in collisionless
plasmas, nor do they induce any fields. Additionally, any
radiative energy losses are neglected. An individual electron’s
motion is, consequently, determined only by the Lorentz force
equation given by:

dβ

dt
= − 1

γ
(β × �B), (59)

where �B ≡ eB/mec. For simplicity, we define our simulation
magnetic field as B ≡ �B . In this manner, our arbitrary
simulation units are always related to a physical magnetic
field via the definition of �B . Notice that the purely magnetic
Lorentz force conserves particle energy; hence, the velocity
vector varies in direction but has a constant magnitude.

The simulation can be divided into two principle stages
(see Ref. [34] for a detailed description of the numerical
implementation). First, the turbulent magnetic field is created
using a predetermined spectral distribution in Fourier space.
This field is generated on a cubic lattice that is then interpolated
to represent a “continuous” field. The interpolation imple-
ments divergenceless matrix-valued radial basis functions (see
Ref. [35] for a discussion). This interpolation method starts
with a radial function—in our case, one of the simplest, φ(r) =
e−εr2

(where ε is a scaling factor and r2 = x2 + y2 + z2). Then
a set of divergence-free matrix-valued radial basis functions is
obtained from the transformation [35]:

	(r) = (∇∇T − I3×3∇2)φ(r), (60)

where ∇∇T is the second-order, 3×3-matrix differential
operator and I3×3 is the 3×3 identity matrix.

These interpolants are then applied to the interior of each
lattice “cell” (the significance of the interpolant’s divergence
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is explored in Appendix B). The second stage in our model
involves the numerical solution of the equation of motion for
each particle, i.e., Eq. (59). From the solution, 〈α2〉 and the
radiation spectra are obtained. We first turn our attention to the
generation of the magnetic field.

As discussed previously (see Ref. [21]), generation of the
magnetic field distribution is more convenient in Fourier space.
There are two principal reasons for this.

First, it is an easier task to specify a particular spectral
distribution in Fourier space directly, rather than attempting to
approximate the corresponding field in real space. Second, any
physically realizable field should satisfy Maxwell’s equations,
thus its divergence must be zero. This divergenceless condition
is more readily met in Fourier space, because Gauss’s law,
∇ · B = 0, is an algebraic equation there; k · Bk = 0, for each
Fourier component. Although our code can handle a wide
variety of magnetic spectral distributions, we limit our study
to isotropic magnetic turbulence, described in Eq. (14), leaving
more sophisticated models for the future.

After the magnetic field is generated, the next step is
the numerical solution of the equation of motion, Eq. (59).
This was done via a fixed step fourth-order Runge-Kutta-
Nyström method. With all the particle positions, velocities,
and accelerations calculated, the radiation spectrum is obtained
from Eq. (24).

Next, the total radiation spectrum is obtained by “summing”
over the spectra of the individual particles. There are two,
usually equivalent, methods for doing the summation. First,
one can add the spectra coherently by summing over each
particle’s Ak and then performing a single integration via
Eq. (24). This is a more physical method. In the second method
we add the spectra incoherently (i.e., by integrating each
particle’s Ak separately and then summing the results of each
integration). As discussed in Ref. [36], both methods will result
in the same spectra, since the wave phases are uncorrelated.
However, an incoherent sum will produce spectra that are
less noisy for a given number of simulation particles than
the coherently summed spectra. Hence we use the incoherent
approach in our study.

IV. NUMERICAL RESULTS

In Sec. II we made a number of theoretical predictions
concerning the transport and radiation properties of plasmas
with small-scale turbulent magnetic fields. Additionally, we
anticipated that an interconnection between the transport and
radiative properties of nonrelativistic and transrelativistic par-
ticles moving through sub-Larmor-scale magnetic turbulence
exists, as it does for ultrarelativistic particles [21]. Here we
check our predictions and further explore the radiation spectra.

First, we explore how the pitch-angle diffusion coefficient
depends on various parameters, cf. Eq. (13), namely the
particle’s velocity, β; the magnetic field strength, 〈B2〉; the
field correlation scale, λB ; and the “gyro number,” ρ.

To start, we tested our fundamental assumption that the
particle velocity vector only varies slightly over a correla-
tion length, λB . This is the key assumption that underlies
our theoretical predictions for pitch-angle diffusion and the
radiation spectra. If this assumption were to not hold (i.e., if
αλ � 1), then pitch-angle diffusion would break down, and
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FIG. 1. (Color online) Average square pitch-angle vs time (in
simulation units). Relevant parameters are Np = 2000, kmin = 4π/5,
kmax = 8π , 〈B2〉1/2 = 0.01, and μ = 3. The particle velocities in
each case range from 1

8 c to 1
512 c (by multiples of two). The curves

appear with increasing average slope as β decreases. As β decreases,
eventually ρ ∼ 1 (at β = c

128 , i.e., the fifth most sloped, green line),
after which the deflection angle becomes large, and pitch-angle
diffusion breaks down.

the plot of 〈α2〉 vs time will deviate from linear behavior. In
Fig. 1, 〈α2〉 is plotted as a function of time for seven different
cases. In each run, 〈B2〉, kmin, and Np (number of simulation
particles) are fixed to the values of 0.01, 4π/5 (both in arbitrary
simulation units), and 2000, respectively. The particles are
monoenergetic and are isotropically distributed in their initial
velocities. Each case differs in particle velocities, which range
from 1

512c to 1
8c. As can be seen, the curves begin as straight

lines that increase with slope as β decreases. Eventually, the
linear behavior breaks down as β decreases. A decrease in ρ

occurs concurrently, in accordance with Eq. (22). As expected,
the breakdown in linear behavior, and hence diffusion, occurs
when ρ ∼ 1. Later, we did the same experiment, only this time
we varied 〈B2〉 in such a way as to keep ρ constant (ρ = 24.5).
In this way, each case is securely in the small-scale regime.
In Fig. 2, we see that the linear behavior of 〈α2〉 vs time is
preserved for all velocities, as anticipated. Consequently, our
assumption of a small αλ is valid, as long as ρ > 1. With
the existence of pitch-angle diffusion established, we then
proceeded to compare the slope of 〈α2〉 vs time (the numerical
pitch-angle diffusion coefficient) to Eq. (13). In Fig. 3, the
numerically obtained diffusion coefficients from Fig. 2 are
compared to the analytical result of Eq. (13). In each, the
theoretical and numerical results differ only by a small factor
of O(1).

Next, we tested the correlation length dependence, i.e.,
whether or not the numerical simulations agree with Eq. (6).
With kmin = π and kmax = 8π , we varied the magnetic
spectral index, μ, from 2 to 5. This is plotted in Fig. 4,
where the numerical diffusion coefficient closely matches the
analytical result.

In Fig. 5, the numerical diffusion coefficient is plotted
against the analytical coefficient for the same range of μ

values, but now the kmin, kmax, and β values differ among
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FIG. 2. (Color online) Average square pitch-angle vs time (in
simulation units). Relevant parameters are Np = 2000, kmin = π ,
kmax = 8π , and μ = 3. 〈B2〉1/2 ranges from 5 × 10−4 to 0.032 by
multiples of 2. The particle velocities range (in the opposite order)
from 1

256 c to 1
4 c. These two parameters, 〈B2〉 and β, vary in such a

way as to keep ρ = 24.5. The curves appear with increasing slope as
β decreases. Clearly, the linear form of the curves is retained in all
seven cases.

the three (with ρ fixed to 24.5). Included are the results
of Fig. 4. All three cases give a nearly linear relationship
between the numerical and analytical coefficients, with slopes
approximately equal to unity. Another concern worth address-
ing is the dependence of the numerical diffusion coefficient
on the total number of simulation particles. In Fig. 6, a test
case was repeated with an increasing number of simulation
particles. The number of particles was increased from 500 to
64 000 by factors of 2. There is little variation to be seen in
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FIG. 3. (Color online) Pitch-angle diffusion coefficient, Dαα vs
the logarithm (base 2) of the inverse normalized particle velocity,
log2(β−1). The (blue) empty “squares” indicate the Dαα obtained
directly from simulation (as the slope of 〈α2〉 vs time), while the (red)
filled “triangles” are the analytical, given by Eq. (13), pitch-angle
diffusion coefficients. Simulation parameters are identical to those
used in Fig. 2.
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FIG. 4. (Color online) Pitch-angle diffusion coefficient, Dαα vs
the magnetic spectral index, μ. The (blue) empty squares indicate the
Dαα obtained directly from simulation, while the (red) filled triangles
are the analytical, given by Eq. (13), pitch-angle diffusion coefficients.
Relevant parameters are Np = 2000, kmin = π , kmax = 8π , 〈B2〉1/2 =
0.064, β = 0.5, and ρ = 24.5. The magnetic spectral indexes are
2, 3, 4, and 5. Notice that the numerical results have nearly the
same functional dependence on μ as the analytical triangles, as given
by Eq. (13).

the numerical result, as the number of particles is increased.
Next, we explored the transrelativistic jitter radiation regime by
calculating the radiation spectra, using Eq. (24), with variable
simulation parameters. We aimed to test the radiation spectra’s
dependence on the key turbulent parameters: kmin, kmax, 〈B2〉,
and μ, as well as the particle velocity, v. To start, we considered
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FIG. 5. (Color online) Numerical pitch-angle diffusion coeffi-
cient vs the analytical pitch-angle diffusion coefficient for three
different cases. In each case, the magnetic spectral index has been
varied from 2 to 5 by intervals of unity. Relevant parameters are
kmin = π/2 (red) circles and (blue) triangles, π (green) diamonds,
kmax = 5.12π (red) circles; kmax = 8π (green) diamonds and (blue)
triangles; 〈B2〉1/2 = 0.016 (red) circles, 0.032 (blue) triangles; 0.064
(green) diamonds; β = 0.25 (red) circles, 0.5 (blue) triangles and
(green) diamonds. In each case, a line of best fit is applied. The
slopes are 0.979 (circles), 0.972 (diamonds), and 1.06 (triangles).
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FIG. 6. (Color online) Pitch-angle diffusion coefficient, Dαα vs
the total number of simulation particles, Np . The blue squares indicate
the Dαα obtained directly from simulation, while the red dotted line is
the analytical result, given by Eq. (13). Relevant parameters are kmin =
π/2, kmax = 8π , 〈B2〉1/2 = 0.032, β = 0.5, and ρ = 24.5. There
appears to be no strong dependence of the numerical pitch-angle
diffusion coefficient upon the total number of simulation particles;
nevertheless, there appears to be some convergence to the analytical
result.

the kmin dependence. In Fig. 7, we have plotted spectra for
an initially isotropically distributed, monoenergetic ensemble
of transrelativistic electrons (v = 0.5c) moving through sub-
Larmor-scale magnetic turbulence with three different values
of kmin. The key parameters are ρ = 18.1, 36.3, and 72.6,
with kmin = π/5, 2π/5, and 4π/5, respectively (see Table I
for a complete listing of simulation parameters used in every
figure). The spectra of Fig. 7, at least superficially, resemble
our theoretical prediction; cf. Eq. (39). We have normalized the
dW/dω and ω axes by λB and kmin, respectively. As expected,
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FIG. 7. (Color online) Radiation spectra given variable kmin, with
all other parameters fixed. The number of simulation particles, Np ,
is 2000, and v = 0.5c in each case. In each trial, the particles moved
for a total simulation time of T = Tg , where Tg ≡ 2πγmec/e〈B2〉1/2

is the “gyroperiod.” Here the axes are in arbitrary, simulation units.
We see that the frequency scales as kmin and dW/dω scales as λB .

TABLE I. Table of parameters used for the radiation spectra
figures. Here and elsewhere �t is the simulation time step, the
simulation time is denoted in multiples of the “gyroperiod” (i.e.,
Tg = 2πγmec/e〈B2〉1/2), and Np is the total number of simulation
particles.

No. ρ �t β μ kmin kmax

√
〈B2〉 Np Tg

7 18.1 0.005 0.5 3 π/5 10.24π 0.02 2000 1
7 36.3 0.005 0.5 3 2π/5 10.24π 0.02 2000 1
7 72.6 0.005 0.5 3 4π/5 10.24π 0.02 2000 1
8 15.8 0.050 0.125 3 4π/5 10.24π 0.02 1000 10
8 32.4 0.050 0.25 3 4π/5 10.24π 0.02 1000 10
8 72.6 0.050 0.5 3 4π/5 10.24π 0.02 1000 10
9 6.18 0.005 0.125 4 π 8π 0.064 8000 1
9 6.18 0.005 0.125 5 π 8π 0.064 8000 1
10 6.34 0.005 0.25 5 π/2 4π 0.064 2000 1
10 6.34 0.005 0.25 5 π/2 8π 0.064 2000 1
11 12.4 0.05 0.125 100 π 8π 0.032 8000 10
12 7.9 0.05 0.125 4 2π/5 8π 0.02 4000 10
15 6.2 0.005 0.125 5 π 8π 0.064 5000 1
17 14.2 0.00125 0.5 4 8π 400π 1.024 1000 10
18 14.2 0.00125 0.5 4 8π 400π 1.024 1000 10

the frequency of the spectral peak scales by kmin. The precise
scaling of the peak frequency is revealed in Fig. 8. In this
figure, we have varied the particle velocities, keeping all other
parameters fixed. Three velocities appear: v = 0.125c, 0.25c,
and 0.5c. Clearly, the overall shape of the spectra is not strongly
dependent on the particle velocities. We have identified the
proper scaling on the horizontal axis. With this result, and
Fig. 7, we may conclude that the frequency of the peak of
the radiation spectrum is ω ∼ γ 2kminv = ωjn. This is jitter
frequency given in Eq. (39).
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FIG. 8. (Color online) Radiation spectra given variable v. In each
trial, 1000 particles move for a total simulation time of T = 10Tg ,
where Tg ≡ 2πγmec/e〈B2〉1/2 is the “gyroperiod.” We see that the
overall shape of the spectra is not appreciably altered with decreasing
v. The spectra are normalized by T γ 2v, vertically. Given Fig. 7, we
may conclude that the peak frequency of these spectra is ω ∼ γ 2kminv,
cf. Eq. (56).
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FIG. 9. (Color online) Radiation spectra given two different val-
ues of the magnetic spectral index: μ = 5 (red) “thick” line and
μ = 4 (blue) “thin” line. Included are the analytical solutions given
by Eq. (39). Note that the μ = 5 solution has been multiplied by
an overall factor of 2 for easier visualization. For frequencies near
ω ∼ γ 2kminv, the numerical spectra agree decently with the analytical
results. However, for frequencies near the break, ω ∼ γ 2kmaxv, there
is considerable deviation between the predicted and numerical spectra
for both values of the magnetic spectral index. The origin of this
discrepancy is explored in Appendix B.

Next, we tested the μ dependence. In Fig. 9, μ = 4,5.
For each spectrum, v = 0.125c, and the total simulation time
was Tg , where Tg = e〈B2〉1/2/γmec is the gyroperiod. The
numerical and analytical spectra show close agreement for
frequencies less than the break frequency, ω ∼ γ 2kmaxv. In
Fig. 10, we have plotted two spectra that differ in their kmax

values (all other parameters kept fixed). The kmax values
employed differ by a factor of 2. We see that, roughly, the
spectra approach zero near ω ∼ γ 2kmaxv. The proceeding
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FIG. 10. (Color online) Radiation spectra with differing kmax.
Some other relevant parameters are v = 0.25c, ρ = 6.34, Np = 2000,
and μ = 5 (for a complete listing, see Table I). The two spectra differ
by a factor of 2 in kmax, with kmin the same between them. Roughly,
the spectra transition to the “tail” feature near ω ∼ γ 2kmaxv = ωbn.

power law “tail” feature is a numerical artifact that arises from
a steep drop to zero power (this fact is more readily apparent
in a linear plot, see Appendix A). Next, we examined the
apparent structure in the radiation spectra for ω < ωjn. This is
most clearly seen in Fig. 8, where it appears as a distinctive
“bump.” According to Eq. (39), this bumplike feature has
a functional form of A + Dω2. To assure that this form is
correctly identified, we considered a large magnetic spectral
index of μ = 100 with β = 0.125c. Such a large μ makes the
feature more prominent, helping to magnify it. As can be seen,
the curve that best fits the bumplike feature at ω < ωjn is given
by a function of the form A + Dω2.

One may consider the magnetic correlation tensor and its
relation to the shape of the radiation spectra. Anisotropic
turbulence will alter the shape but so will a change to the
topology of the magnetic field. Motivated by pure curiosity,
we consider turbulence that is generated by a distribution of
magnetic monopoles. This will result in a magnetic field that
is curl free but has a divergence given by Gauss’s law for
monopoles. This topological change will alter the correlation
tensor for isotropic and homogeneous turbulence to [37]

Bi∗
k B

j

k = |Bk|2k̂i k̂j , (61)

which is the form required for an irrotational vector field.
Substitution of this correlation tensor into Eq. (27) will give a
slightly different radiation spectrum for the magnetic spectrum
in Eq. (14). The principal change will be to the quadratic
prefactor A + Dω2. The “monopolar” field will result in a
sign change to D. In Figs. 11 and 12, this difference is
clearly indicated. Notice the apparent lack of the quadratic
peak feature at ωjn.

The altered correlation tensor will affect the particle
diffusion coefficient as well. In fact, as can be seen in Fig. 13,
the pitch-angle diffusion coefficient of particles moving in the
monopolar field is twice as large as the divergenceless field
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FIG. 11. (Color online) Radiation spectrum with μ = 100 (β =
0.125c). Evidently, the spectral feature presented directly prior to
ωjn has a functional form given by A + Dω2 (dashed line). This is
consistent with Eq. (39).
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FIG. 12. (Color online) Radiation spectrum of nonrelativistic
electrons moving through small-scale magnetic turbulence generated
by a distribution of magnetic monopoles (thick blue), superimposed
with the radiation spectrum given a magnetic spectrum (thin red)
produced by standard means (i.e., Ampere’s law). For each run, μ = 4
and β = 0.125c. Each curve is accompanied by its corresponding
analytical solutions (dashed black). The spectral shape for frequencies
less than ωjn is A + Dω2 and A − Dω2 for the “divergenceless” field
and “monopolar” field, respectively.

equivalent. This follows from the fact that

λ
monopole
B = 2λdiv. free

B , (62)

which results from substitution of Eq. (61) into Eq. (7). It
is a noteworthy observation that the preceding results are
identical, up to overall multiplicative factors, to the radiation
spectra and pitch-angle diffusion coefficient for the more
physically plausible situation of a transrelativistic monopole
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FIG. 13. (Color online) Average square pitch-angle growth as
a function of time for non-relativistic electrons moving through
small-scale magnetic turbulence generated by a distribution of
magnetic monopoles dashed (blue), superimposed with the otherwise
equivalent curve solid (red) produced by standard means (i.e.,
Ampere’s law). For each run, μ = 6, Np = 15420, 〈B2〉1/2 = 0.032,
kmin = π , kmax = 8π , and β = 0.125c. Note that the slope of the
“monopolar” curve is very nearly twice the slope of the standard
curve, in accordance with Eq. (62).

moving through “small-scale” electrostatic turbulence, such as
Langmuir turbulence.

V. CONCLUSIONS

In this paper we explored nonrelativistic and transrela-
tivistic particle transport (diffusion) and radiation production
in small-scale electromagnetic turbulence. Principally, we
demonstrated that in the regime of small deflections, i.e.,
when the particle’s deflection angle over a correlation length
is small αλ � 1, the pitch-angle diffusion coefficient and
the simultaneously produced radiation spectrum are wholly
determined by the particle velocity and the statistical and
spectral properties of the magnetic turbulence; which is a result
most transparently offered by Eqs. (12) and (35). Additonally,
we showed that the condition of a small deflection angle is
satisfied if ρ > 1, i.e., if the magnetic turbulence is small scale.

These results generalize the ultrarelativistic regime first
discussed in Ref. [21]. In fact, the pitch-angle diffusion
coefficient remains unchanged in both the nonrelativistic and
relativistic regimes. Significantly, just as small-angle jitter
radiation strongly differs from synchrotron radiation, so, too,
does the analogous nonrelativistic jitter radiation distinguish
itself from cyclotron radiation. Given the isotropic 3D power-
law magnetic spectral distribution from Eq. (14), the resulting
trans- and nonrelativistic radiation spectrum is a piecewise
function of a quadratic equation in frequency, ω up to the
characteristic (jitter) frequency, ωjn = γ 2kminv, after which it
is the sum of a power law and a quadratic term up to the break
frequency, ωbn = γ 2kmaxv, where it then quickly approaches
zero, see Eq. (39). We have, further, confirmed our theoretical
results via first-principles numerical simulations.

Last, we have considered the change in the radiative
and transport properties of transrelativistic particles moving
through magnetic turbulence due to a topological change in
the field. Namely, we supposed the generation of sub-Larmor-
scale magnetic turbulence from a distribution of magnetic
monopoles. We showed that the radiation spectra and pitch-
angle diffusion coefficient are modified; i.e., the pitch-angle
diffusion coefficient doubles in magnitude, à la Eq. (62), and
the shape of the radiation spectrum is dramatically altered for
frequencies less than the jitter frequency, ωjn. These results,
furthermore, generalize to the case of a magnetic monopole
moving through “small-scale” electrostatic turbulence.

Finally, the applicability of our model will depend heavily
on the plasma environment. The turbulence dissipation time
scale, growth rate, time evolution, and spatial scale are
important considerations. We have highlighted the Weibel-like
turbulence, in particular, because of its favorable properties.
As stated previously, the Weibel instability can produce
strong, small-scale magnetic fields in a nonmagnetized plasma.
Furthermore, the instability is aperiodic (i.e., real frequency
�r ∼ 0) and thus allows for the static field treatment. More
precisely, the growth rate γ � �r . Typically, the growth
rate is governed by a characteristic plasma frequency. Last,
the magnetic fluctuations are long-lived in the case of the
Weibel-filamentation instability, dying out only when the
driving free energy (provided by the kinetic energy of
streaming particle filaments) of the system is converted by
particle isotropization (i.e., the depletion of the anisotropy
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in the streaming particle distribution function). In short, the
generated fields are approximately stationary on a time scale
which exceeds the growth and stabilization rate times [38].
Consequently, there appears to be adequate time for radiation
production in the jitter regime, given by our prescription, in
these “quasistatic” Weibel magnetic fields.

Via subsequent nonlinear evolution, the electron-generated
Weibel magnetic fields may grow to larger spatial scales—
including the ion skin depth. Additionally, the Weibel fields
may “seed” the growth of further MHD turbulence via a
process of inverse cascade, once more, residing at larger spatial
scales. Thus, in the nonrelativistic regime, the jitter radiation
spectrum may be effectively screened out when the turbulent
magnetic fields predominantly exist at scales much larger
than the electron skin depth. Consequently, nonrelativistic
jitter radiation, as a diagnostic of Weibel turbulence, may
have a limited applicability. However, kinetic instabilities in
magnetized plasma can produce turbulent magnetic spectra
at the appropriate length scales as well. One such scenario
may be provided by a turbulent magnetic field generated in
a cold, magnetized background plasma. We then imagine the
existence of a “hot” population of sub-Larmor-scale electrons
that will serve as our test particles. To this end, anisotropic
whistler turbulence may provide a promising candidate. In fact,
the (low beta) collisionless Whistler spectrum (perpendicular
to the mean magnetic field) may be rather broadband—a
(stationary) piecewise set of power laws extending to scales
much smaller than the electron skin depth [39]. Naturally, our
model requires modification to suit a magnetized plasma, the
case to be considered elsewhere.

To conclude, the obtained results, coupled with our
previous work, reveal strong inter-relation of transport and
radiative properties of plasmas turbulent at sub-Larmor scales,
whether they are relativistic or nonrelativistic. We have
demonstrated how spectral information can be a powerful
tool to diagnose magnetic microturbulence in laboratory and
astrophysical plasmas.

ACKNOWLEDGMENTS

This work was supported by DOE Grant No. DE-FG02-
07ER54940 and NSF Grant No. AST-1209665.

APPENDIX A: THE SPECTRAL TAIL

As can be seen in Figs. 7 and 10, there is additional structure
to the radiation spectra beyond the break frequency, ∼γ 2kmaxv.
This feature is, in fact, a numerical artifact that is magnified
by the use of a log-log plot. Here we have plotted Fig. 7 on
a linear scale and have normalized the frequency axis by the
spectral break frequency ωbn = γ 2kmaxv.

APPENDIX B: INTERPOLATION
OF THE MAGNETIC FIELD

One might consider the importance of using a divergence-
less set of interpolants for the magnetic field. In Figs. 14
and 15, we show a spectrum obtained via the divergenceless
radial-basis interpolants of Eq. (60) with a spectrum obtained
using a simple, nondivergenceless, trilinear interpolation of
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FIG. 14. (Color online) Radiation spectra of Fig. 7 with linear
abscissa. We see that the power spectrum quickly approaches zero
around the “break” frequency, γ 2kmaxv, in accord with Eq. (39). This
numerical approach to zero, since it is not instantaneous, appears
readily in a log-log plot which magnifies features on orders of
magnitude scale.

the magnetic field. For small frequencies, there is little
disagreement between the two spectra. However, as the curves
approach the break frequency ωbn = γ 2kmaxv, considerable
deviation between the trilinear and radial basis interpolants
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FIG. 15. (Color online) Radiation spectra given two different
interpolations of the magnetic field and a “continuous” field. Relevant
parameters are v = 0.125c, ρ = 24.7, Np = 2000 (for a complete
listing, see Table I). The number of wave modes employed to
produce the “continuous” magnetic field was Nm = 10 000. For small
frequencies, there is little deviation between the spectra. It is only
near the “break” frequency (i.e., ωbn = γ 2kmaxv) that the three differ
considerably. Both of the interpolation derived spectra largely deviate
from the analytical solution at the high-frequency end; however,
the “continuous”-field-derived spectrum differs noticeably only at
the outermost frequencies. Whether or not this deviation is solely
to blame on the quality of the interpolant or the discrete nature
of lattice derived field has let to be determined. At any rate, both
interpolants fail to preserve the slope of the spectra up to ωbn, and there
is considerable difference between the divergence-free and trilinear
cases.
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occurs. In our previous work on the relativistic small-angle
jitter regime (see Ref. [21]), little deviation in these spectra
was observed in our test runs. One possible explanation is
that, since the particle velocities were ∼c, the total distance
traveled by a particle in one time step was �x ∼ c�t . The
spacing between lattice points is, typically, within an order of
c�t . In this case, the interpolant should not play an important
role in determining the particle trajectories. If, however, v

is much less than c, then the difference may be significant.
In Fig. 15, v = 0.125c, thus �x ∼ 0.125c�t (an order of
magnitude smaller). In this case, frequencies in the radiation
spectrum at scales comparable to the grid resolution (i.e., large
k’s) will suffer the most from this deviation.

Another question worth addressing is the influence of the
discrete implementation of the magnetic field on the spectral
shape. Recall that the random magnetic field is initially
generated on a lattice in k space, after which it is subsequently
transformed by FFT to real space. The interpolation is then
applied on the lattice of points. Due to memory limitations,
the lattice dimensions are limited to ∼5003; this can be a very
severe limitation on the spatial resolution of the magnetic field.

An alternative generation of the magnetic field, which is
gridless and, therefore, not requiring interpolation, employs a
large sum of sinusoidal wave modes which are evaluated at
each time step (as needed). Thus, the magnetic field is effec-
tively “continuous” in this representation. Each wave mode
is constructed with a random phase and random polarization
vector (which is constrained to the plane perpendicular to k,
thus satisfying Gauss’s law). The polarization vector may be
generated by a variety of methods, but we have chosen the im-
plementation described by Ref. [40]. This representation of the
polarization vectors is designed specifically to simultaneously
satisfy the required properties of isotropic, homogeneous, and
divergence-free magnetic turbulence. Additionally, the wave
numbers, ranging from kmin to kmax, are logarithmically spaced.

In Fig. 15, we also included a radiation spectrum obtained
by electrons moving in the “continuous” magnetic field (with,
otherwise, identical properties). Evidently, the “continuous”
field derived spectrum closely matches the analytical solution,
Eq. (39), preserving the high-frequency end better than the
interpolation derived spectra.

APPENDIX C: COMMENT ON PITCH-ANGLE DIFFUSION
IN THE ULTRARELATIVISTIC REGIME

We wish to address an error in our previous paper on
relativistic pitch-angle diffusion in sub-Larmor-scale magnetic

TABLE II. Corrected table of parameters used in Figure 7 of
Ref. [21], and Fig. 16. The correction is as follows: #2 → #1, #3 →
#2, and #1 → #3; in what was previously #1, kmin has been changed
from 1.3 to 0.6 and 〈B2〉1/2 has been changed from 0.024 to 0.047.

No. δj �t γ μ kmin kmax 〈B2〉1/2 Np

1 0.63 0.0100 8 3 1.0 16.1 0.100 2000
2 0.47 0.0100 7 3 0.6 16.1 0.047 500
3 0.12 0.0025 5 3 0.6 32.2 0.047 4000
4 0.47 0.0100 3 3 0.6 16.1 0.047 500
5 0.94 0.0100 5 3 0.3 16.1 0.047 500
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FIG. 16. (Color online) Modified figure of Dαα vs the frequency
of ωj = γ 2kminc from Ref. [21]. Once more, the (blue) empty squares
indicate the Dαα obtained directly from simulation while the (red)
filled triangles are the analytical Dαα , given by Eq. (13). The analytical
solution from Ref. [21] appears as (green) filled circles. Notice that the
redefined analytical Dαα’s (red) empty triangles eliminate the wider
variance seen in the cruder approximation (green) filled circles.

turbulence, Ref. [21]. The paper contains a table for a plot
(Fig. 7) of the diffusion coefficient vs the corresponding
radiation spectral peak for relativistic particles moving through
a small-scale magnetic field. The magnetic field has identical
properties to those employed in this paper. The table contains
some errors, which we address here by providing a corrected
table (see Table II).

Additionally, we have opted to reproduce Fig. 7 from
Ref. [21] to recalculate the analytical pitch-angle diffusion
coefficient. In our previous paper, we used Eq. (2), as we
have here, but with cruder approximations for λB and 〈β2

⊥〉1/2,
namely 〈β2

⊥〉1/2 ≈ 1 and λB ≈ k−1
min.

Now the refined definition for Dαα , Eq. (13), eliminates the
wider variance between the theoretical and numerical results
(see Fig. 16). There continues to exist a small difference
between the analytical and numerical pitch-angle diffusion
coefficients, but this variation is relatively small in each case;
despite the variability in the simulation parameters employed.

APPENDIX D: THE EFFECT OF PLASMA DISPERSION
ON THE RADIATION SPECTRA

As mentioned in Sec. II, inclusion of plasma dispersion
changes the nonrelativistic radiation spectrum to

d2W

dω dη
= e2

4π2c3

√
ε(ω)|wω|2sin2�, (D1)

where ε(ω) = 1 − ω2
pe/ω

2 is the plasma scalar permittivity.
Since this amounts to a multiplicative factor, the jitter
spectrum Eq. (39) will be modified simply by an extra
frequency-dependent coefficient. The effect will, however,
further complicate the relativistic regime. Fortunately, a
Lorentz transformation can be applied, once more, to obtain
the relativistic spectrum.
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Consider a relativistic electron moving with velocity β

in the (unprimed) plasma rest frame. In this frame, the
plasma frequency is ωpe; additionally, the index of refraction
is n ≡ √

ε. Conversely, the electron rest frame will be the
site of a plasma in motion, with velocity −β. In this frame,
ω′

pe = ωpe/
√

γ . In a plasma medium, the radiation spectra are
connected by the generalized relation

1

nω2

d2W

dωdη
= 1

n′ω′2
d2W ′

dω′dη′ , (D2)

where n′ is the index of refraction in the electron rest frame.
Via Lorentz transformation, n′ is [41]

n′2 − 1 = (ω/ω′)2(n2 − 1), (D3)

from which one may obtain the generalization of the relativistic
Doppler effect,

ω′ = γω(1 − N · β), (D4)

where N ≡ nn̂. Using the reverse transformation, i.e.,
prime ↔ unprimed and β → −β, the angle cosines are related
by

cosθ ′ = ncosθ − β

n′(1 − nβcosθ)
. (D5)

Using these results, along with Eqs. (54) and (55), the
dispersion corrected relativistic jitter spectrum becomes

dW

dω
= 3n

8γ 2

∫ 1

−1
dx

[
1

(1 − nβx)2
+ (nx − β)2

n′2(1 − nβx)4

]
I (ω0),

(D6)
with ω0 ≡ ω(1 − nβx) and

n′ =
√

n2 − 1 + γ 2(1 − nβx)2

γ (1 − nβx)
. (D7)
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FIG. 17. (Color online) Numerical radiation spectrum given a
β = 0.5 electron moving through sub-Larmor-scale magnetic tur-
bulence in a dispersive plasma (thick blue), superimposed with the
analytical spectrum from Eq. (D6) (dashed red) and the “dispersion-
free” spectrum (long-short dashed black). For these runs, μ = 4,
ρ = 14.2, and ωpe = kminc/10 (see Table I for a complete listing of
simulation parameters). All spectra are normalized to their respective
maximum values. As can be readily seen, the high-frequency end
remains largely unchanged by the inclusion of plasma dispersion.
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FIG. 18. (Color online) Radiation spectra, identical to Fig. 17,
with the exception that ωpe = kminc. With ωpe ∼ ωjn, the dispersion
plays a more prominent role. Nonetheless, the overall shape of the
spectrum is unaffected.

Next, the numerical spectrum is obtained from the general-
izations of Eqs. (24) and (25)

d2W

dω dη
=

√
ε(ω)

e2

4π2c

∣∣∣∣
∫ ∞

−∞
Ak(t)eiωt dt

∣∣∣∣
2

, (D8)

where

Ak(t) ≡ n̂ × [(n̂ − β) × β̇]

(1 − √
ε(ω)n̂ · β)2

e−i
√

ε(ω)k·r(t). (D9)

In Fig. 17, we consider a β = 0.5 electron moving through a
plasma medium with a plasma frequency ωpe = kminc/10. The
plot includes the equivalent dispersion-free jitter spectrum,
along with the analytical spectrum, from Eq. (D6), and a
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FIG. 19. (Color online) Dispersion adjusted analytical radiation
spectrum for a γ = 50 electron. Relevant parameters are ρ = 153.4
and μ = 5. Two power laws appear. The ω2 (long-three-dash red)
power law, which extends up to ω ∼ γωpe, is a consequence of the
Razin effect. Additionally, we have included ω−μ+2 (long-two-dashed
blue) on the right. As expected from Eq. (19), the high-frequency end
is a power law, with a very steep drop beyond ωbn ≈ ωb.
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spectrum obtained numerically. The numerical spectrum was
produced given magnetic turbulence prescribed by the model
described in Appendix B. Since the wave number becomes
imaginary when ω < ωpe, we have set a cutoff for frequencies
below the plasma frequency. From the plot, we see that the
spectrum differs largely from the dispersion-free equivalent
for frequencies near ωpe. However, as anticipated, the high-
frequency end is largely unaffected.

However, as can be seen in Fig. 18 , the spectrum is altered
in a more dramatic way when ωpe = kminc. The low-frequency
end remains distinctly concave, but now the high-frequency

end is shifted to the right. The overall shape of the spectrum,
nevertheless, remains the same.

As a final test of Eq. (D6), we consider an extreme rela-
tivistic case, γ = 50. The ultrarelativistic jitter spectrum, with
plasma dispersion included, contains an additional ω2 asymp-
tote at low frequencies (a hint of this was seen in the previous,
transrelativistic, plots). In Fig. 19 , we see the emergence of this
low-frequency asymptote. Additionally, we see that the jitter
spectrum falls off dramatically for frequencies beyond ωjn =
γ 2kmaxv ≈ γ 2kmaxc, hence, the correspondence to the ultrarel-
ativistic hard cutoff at ωb, from Eq. (19), is made apparent.
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