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The problem of electron-ion temperature relaxation in beryllium plasma at various densities
(0.185–18.5 g/cm3) and temperatures [(1.0–8)×103 eV] is investigated by using the generalized Lenard-Balescu
theory. We consider the correlation effects between electrons and ions via classical and quantum static local
field corrections. The numerical results show that the electron-ion pair distribution function at the origin
approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of
the Coulomb logarithm is in agreement with the quantum result in both the weak (�ee < 10−2) and strong
(�ee > 1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate
values of the coupling parameter (10−2 < �ee < 1). We find that with increasing density of Be, the Coulomb
logarithm will decrease and the corresponding relaxation rate νie will increase. In addition, a simple fitting law
νie/ν

(0)
ie = a(ρBe/ρ0)b is determined, where ν

(0)
ie is the relaxation rate corresponding to the normal metal density

of Be and ρ0, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of
the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be
plasma.
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I. INTRODUCTION

In order to realize the ignition and high-energy gain in
inertial confinement fusion (ICF) [1–10], much effort has
been devoted to investigating the physical properties involved
in ICF. The temperature relaxation rate is one of various
quantities that need to be systematically studied for many
aspects of ICF research because the problem of temperature
relaxation between electrons and ions in hot dense plasmas is
of considerable significance for understanding and controlling
the implosion dynamics to ensure successful ignition in ICF. So
far, much progress on the temperature relaxations happening
in plasmas has been made. Recently, a method of determining
coupled-mode temperature relaxation rates via dynamical
local field corrections (LFCs) [11–13] has been employed to
simulate energy loss in dense hydrogen plasmas by consid-
ering particle screening, electron degeneracy, and correlations
between electrons and ions. This approach could be regarded as
a generalization of the Fermi golden rule [14] and the Lenard-
Balescu theory [15], in which the dynamics of electrons
and of ions are treated independently. Moreover, molecular
dynamics simulations of electron-ion temperature relaxation in
a classical Coulomb plasma [16,17] have shown that for weak-
coupling parameters, the simulated Coulomb logarithm (CL)
agrees with the models developed by Brown et al. [18] and by
Kihara and Aono [19]. In particular, in Ref. [17] an extensive
theoretical analysis using the generalized Lenard-Balescu
(GLB) theory was also performed, which includes both the
quantum dielectric response together with the bare Coulomb
potential and the classical dielectric response together with the
statistic potentials. Their results [17] suggested that, compared
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with molecular dynamics simulations, for hydrogen plasma,
GLB calculations in the presence of static LFCs may be worse
than GLB calculations in the absence of LFCs.

Furthermore, it is important that the ablator in ICF should
be symmetrically imploded since this will result in a small
mass of low-density hot fuel at the center surrounded by
a larger mass of high-density low-temperature fuel [1,2,20].
Deuterium-tritium (DT) fuel is of primary importance and
interest in various kinds of capsules and has been intensively
studied. In addition, beryllium is also of interest in ICF due
to its appearance in the ablator of the DT capsule and it
was suggested that using ions with atomic number Z > 1
could be advantageous because of their higher stopping power
compared with protons [20–22]. During the ICF implosion
process, the complex compression, laser absorption, and
instability of the fuel-ablator interface inevitably introduce
prominent mixing between DT and Be. As a result, a complete
understanding on the physical properties of the warm dense
plasma of Be is prerequisite for the ICF design [21,23–26].
For example, the equation of states and electronic transport
properties of warm dense Be for densities from 4.0 to 6.0
g/cm3 and temperatures from 1.0 to 10.0 eV have been
studied by employing the quantum molecular dynamics simu-
lations [25] and the principal Hugoniot curve is in agreement
with underground nuclear explosive and high-power laser
experimental results up to ∼20 Mbars [23]. However, we
have found there is few exhaustive reports on the electron-ion
temperature relaxation in Be plasma.

Owing to the importance from the perspective of both basis
physics and potential applications of Be in the fields of ICF, it
is interesting and timely to provide a theoretical analysis of the
electron-ion temperature relaxation of Be plasma. Therefore,
for this aspect, we present in this paper a theoretical investi-
gation of the problem of electron-ion temperature relaxation
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in Be plasma at various densities (0.185–18.5 g/cm3) and
temperatures [(1.0–8) × 103 eV]. In our calculations, (i) the
bare Coulomb interaction is assumed; (ii) the mean ionization
state of an average ion, i.e., the degree of ionization 〈Z〉 for
Be plasma, is considered; (iii) the correlation effect between
electrons and ions is also taken into account consistently via
classical and quantum static LFCs; and (iv) electrons are
treated as classical and positively (quantum and negatively)
charged particles [12], i.e., Ze = +1 (Ze = −1) in the classical
like-charge (quantum unlike-charge) Be plasma. Ions are
treated as classical particles in both the classical like-charge
and quantum unlike-charge cases.

The numerical results show that Be is almost fully ionized
when the temperature is higher than 800 eV. With the mean
ionization state 〈Z〉, the density ρBe, and the temperature Te

as inputs, in the classical case (the electrons are assumed to be
classical like-charge particles), the classical Ornstein-Zernike
equations (COZEs) and a hypernetted-chain closure (HNC)
for the correlation functions [27] give self-consistent solutions
for the classical static LFCs Gαβ(k) and the corresponding
classical pair distribution functions gαβ(r), with α,β = i,e

denoting ion and electron species, respectively. In contrast,
in the quantum case (the electrons are treated by quantum
mechanics), the static quantum electron-ion LFCs and the
corresponding quantum pair distribution functions are ob-
tained by considering a cusp-condition approximation. Our
quantum results show that the electron-ion pair distribution
function at the origin gie(r = 0), which is the limitation of the
quantum electron-ion LFCs at large momentum, approaches
the maximum when the dimensionless electron-electron cou-
pling parameter �ee = e2/aeTe [ae = (3/4πne)1/3 being the
mean interparticle distance] is equal to unity. Furthermore,
we find that the classical result of the CL is in agreement
with the quantum result in the weak (�ee < 10−2) and
strong (�ee > 1) electron-electron coupling range, while it
deviates from the quantum result at intermediate values of
the coupling parameter (10−2 < �ee < 1). In addition, the
numerical simulations imply that with increasing density of
Be, the CL will decrease and the corresponding relaxation rate
νie will increase. A simple fitting law νie/ν

(0)
ie = a(ρBe/ρ0)b

is also found, where ν
(0)
ie is the relaxation rate corresponding

to the normal metal density of Be ρ0 and a and b are the
dimensionless fitting parameters related to the temperature
and the degree of ionization 〈Z〉 of the system.

The paper is organized as follows. In Sec. II we introduce
briefly the main scheme of the GLB theory that we apply
to the problem. In Sec. III we show and analyze the results
of calculations for several cases of interest. In Sec. IV we
summarize the results of this work.

II. METHOD OF CALCULATION

In the present work we employ the GLB theory proposed in
Refs. [12,17], in which the time rates of change of the species
temperatures are related to ensemble averages of products
of density fluctuations. In the Fourier space, it is explicitly
expressed as

dTα

dt
= 2

3nαV

∑
k

∫ ∞

0
dωωvαβ (k)Aαβ(k,ω), (1)

where nα is the number density of particles of species α, V

is the volume of the system, and vαβ(k) = 4π〈Zα〉〈Zβ 〉e2

k2 denotes
the Fourier transform of the two-body Coulomb interaction
between particles of species α and particles of species β, with
〈Zα〉 and 〈Zβ〉 being the mean ionization states of an average
particle of species α and β, respectively. Here

Aαβ(k,ω) = Im〈δnα(k,ω)δnβ(−k, − ω)〉 (2)

is the imaginary part of the ensemble averages of products of
density fluctuations, where δnα(k,ω) is the Fourier transform
of the density fluctuations in the presence of interparticle
interactions, generally expressed as [27]

δnα(k,ω) = δn(s)
α (k,ω) + χ0

α (k,ω)

×
∑

β

uαβ(k,ω)δnβ(k,ω). (3)

In Eq. (3) δn(s)
α (k,ω) is the spontaneous fluctuation, χ0

α(k,ω)
is the free-particle linear polarizability, and

uαβ(k,ω) = vαβ(k)[1 − Gαβ(k,ω)] (4)

is the local effective potential with Gαβ(k,ω) being the
dynamical LFC. It is well known from the fluctuation-
dissipation theorem that the ensemble average of products of
the spontaneous density fluctuations could be written as〈

δn(s)
α (k,ω)δn(s)

β (−k,ω′)
〉 = − 4π�V δαβδ(ω + ω′)

×N

(
�ω

Tα

)
Im χ0

α(k,ω), (5)

where N (x) = 1
1−e−x for quantum particles and N (x) = 1

x

for classical particles. Correspondingly, for instance, one
could easily get the time rates of change of the ionic
temperature [12,17]

dTi

dt
= − �

3π3ni

∫ ∞

0
dkk2

∫ ∞

0
dωω

[
vie(k)

D(k,ω)

]2

×�N (k,ω)[1 − Gie(k,ω)] Im χ0
i (k,ω) Im χ0

e (k,ω),

(6)

where �N (k,ω) = N ( �ω
Ti

) − N ( �ω
Te

) and

D(k,ω) = [
1 − ueeχ

0
e

][
1 − uiiχ

0
i

] − ueiuieχ
0
e χ0

i (7)

essentially denotes the plasma dielectric function.
As discussed in Ref. [12], by considering miTe � meTi

and the f -sum rule for the ω integral, Eq. (6) can be further
simplified to a Landau-Spitzer form [28,29]

dTi

dt
= −νie(Ti − Te), (8)

where

νie = ν0 ln �(Ti − Te) (9)

is the relaxation rate with ν0 = 8ne〈Z〉2e4
√

2πmemi

3(miTe)3/2 , me and mi

being the mass of the electron and ion, respectively, and

ln � =
∫ ∞

0
dkF (k) (10)
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being the CL. Here we define the dimensionless k integrand
of the CL as

F (k) = 1 − Gie(k)

k|εe(k,0)|2 f (k/2). (11)

To make the problem simple and feasible, we have assumed the
static LFC approximation Gαβ (k,ω) = Gαβ (k) in the following
calculations and

εe(k,0) = 1 − uee(k,0)χ0
e (k,0) (12)

is the static electronic dielectric function. If the electrons are
treated as classical particles, f (k/2) = 1 and χ0

e (k,0) = − ne

Te

in Eq. (11); if the electrons are treated as quantum particles,

f (k/2) = 1

4

3
√

π�3/2

1 + exp
[(

k2
/

4k2
F − μ/εF

)/
�

] , (13)

χ0
e (k,0) = η

k

∫ ∞

0
dy

y ln |(k/2kF − y)/(k/2kF + y)|
1 + exp[y2/� − μ/Te]

, (14)

where η = mek
2
F /(π�)2 and � = Te/εF is the degeneracy

parameter with εF = (�kF )2/2me and kF = (3π2ne)1/3 being
the electronic Fermi energy and momentum, respectively. In
addition, we point out that throughout this work the ions
are assumed to be classical particles, which is a reasonable
approximation. Notice that although the effect of the coupled
mode reduces the temperature relaxation rate for higher 〈Z〉
and lower electron temperature [30], Eqs. (10) and (11)
should be reasonable for Be plasma since the ion acoustic
modes might not exist for lower charges. Here 〈Z〉 = 2
for temperature T < 10 eV and 〈Z〉 = 4 for the highest
temperature.

From the above equations we can see that to obtain the
CL and the relaxation rate νie, one needs to get the LFCs
Gαβ(k). Here we choose to solve the LFCs by considering the
pair distribution functions gαβ(r), the conditional probability
of finding a particle β between r and r + dr away from
a particle of species α. This is because the static structure
factor, which is defined as Sαβ(k) = 1

V
√

nαnβ
〈δnα(k)δnβ(−k)〉,

connects Gαβ(k) to gαβ(r) via Eqs. (3)–(5) and the relationship

Sαβ(k) = δαβ +
√

nαnβ

2π2k

∫ ∞

0
drr sin(kr)[gαβ(r) − 1]. (15)

For the classical case, we focus on the COZE [27] in Fourier
space

gαβ(k) = 1 + cαβ(k) +
∑

γ

nγ cαγ (k)[gγβ(k) − 1] (16)

and the correlated HNC in real space

gαβ(r) = exp

[
− vαβ(r)

T
+ gαβ(r) − 1 − cαβ (r)

]
, (17)

where cαβ(k) = −vαβ(k)[1 − Gαβ(k)]/T is the direct cor-
rection function, cαβ (r) = 1

2π2r

∫ ∞
0 dkk sin(kr)cαβ(k), and

vαβ(r) = 〈Zα〉〈Zβ 〉e2

r
is the bare Coulomb interaction. For

the quantum case (electrons are treated by the quantum
mechanics), the quantum Ornstein-Zernike equations and a
hypernetted-chain-like closure for the correlation functions
could be solved iteratively to obtain the LFCs (see, for

example, Ref. [31]). Alternatively, the quantum electron-ion
LFC could also be approximated as [32]

Gie(k) = (1 − α)[ϕ(k) − 1]

(1 − α)ϕ(k) + α − χ0
e (k,0)uee(k,0)

, (18)

where ϕ(k) = χ0
e (k,0)

χ0
e (0,0) , with χ0

e (0,0) =
− η

kF

∫ ∞
0

dy

1+exp[y2/�−μ/Te] , and the parameter α is restricted to
satisfy 0 � α � 1 and is determined by the cusp condition on
the electron-ion structure factor Sie(k),∫ ∞

0
dkk2Sie(k) = ξ lim

k→∞
[k4Sie(k)] − 2π2√neni, (19)

with ξ = π�
2

8〈Z〉mee2 . Notice that the structure factor Sie(k) in
Eq. (19) could be reduced to the result of the linear-response
theory at the small-k limit regardless of α, i.e., it satisfies the
compressibility sum rule [32].

III. RESULTS AND DISCUSSION

Before discussing the electron-ion temperature relaxation
in Be plasma for densities from 0.185 to 18.5 g/cm3 and
temperatures from 1.0 to 8 × 103 eV, let us first discuss
the mean ionization state of an average ion 〈Z〉 for Be
plasma. Numerical calculations based on two different models,
a detailed configuration accounting model [33,34] and an
average-atom model [35], have been performed. The effect of
pressure ionization is considered in both models. The results
show that the degrees of ionization for Be based on these
two models are almost identical to each other and typical
results of the mean ionization state 〈Z〉 for three different
densities obtained by a detailed configuration accounting
model are presented in Fig. 1(a). The main idea of the detailed
configuration accounting model is briefly introduced in the
Appendix. In addition, the results obtained here are also close
to with those obtained by Perrot in Ref. [36]. For example,
Perrot showed that 〈Z〉 = 2.0165, 2.1405, and 3.3127 in Be
plasma with Te = 15, 30, and 100 eV and ρBe ≈ 6.0g/cm3,
while the detailed configuration accounting model used here
gives 〈Z〉 = 2.012, 2.0775, and 3.068 in Be plasma with the
same temperatures and density. The mean ionization state for
Be is 〈Z〉 = 2 when the temperature is less than 10 eV and
it is almost fully ionized (〈Z〉 > 3.9) when the temperature
is larger than 800 eV. Correspondingly, the uniform number
density of electrons ne, which is shown in Fig. 1(b), and the

/

/

/

FIG. 1. (Color online) (a) Mean ionization state 〈Z〉 of an average
ion and (b) number densities of electrons as functions of temperature
of Be at densities of ρBe = 3.7, 5.0, and 6.0 g/cm3.
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FIG. 2. (Color online) (a) Electron-ion LFC 1 − Gie(k) as a
function of kae and (b) electron-ion pair distribution function gie(r)
as a function of r/ae for classical like-charged Be at ρBe = 6.0 g/cm3

and for various temperatures. In the calculations, the mean ionization
state of Be plasma shown in Fig. 1 was used.

electron chemical potential μe (not shown here for briefness)
are given by the charge neutrality condition

〈Z〉ni = ne =
√

2

π2�3
(meTe)3/2I1/2(μe), (20)

where I1/2(μe) is the Fermi integral of index 1/2. Taking the
density of Be ρBe = 6.0 g/cm3 as an instance, we find the
number density of electrons is ne ≈ 8.0 × 1023 cm−3 when
the temperature is less than 10 eV and it gradually increases
to ne ≈ 1.6 × 1024 cm−3 with increasing temperature to be
higher than 800 eV [see the black squares in Fig. 1(b)].
However, the corresponding coupling parameter �ee decreases
with increasing temperature (not shown here).

In the following calculations for the relaxation rate, the
mean ionization state 〈Z〉 and the number density of electrons
ne obtained here are used. It is clear that the temperature
relaxation between electrons and ions depends not only on
the temperature of the plasma but also on the density of each
species in the plasma. Therefore, we study the temperature
dependence of the LFC, the pair distribution function, the CL,
and the relaxation rate at a fixed density of Be plasma and
thus ρBe = 6.0 g/cm3 is chosen as an example. Under this
density condition, the electron-electron coupling parameter
�ee = 0.0034–21.56 when the temperature changes from 1.0
to 8 × 103 eV.

In Fig. 2 we exhibit the classical LFC and the corresponding
pair distribution function for various values of temperature
obtained by self-consistently solving the COZE and HNC, in
which the electrons are assumed to be classical and like-charge
particles (Ze = +1). We can see from Fig. 2(a) that the
classical LFC 1 − Gie(k) vanishes at high momentum k, which
is a reasonable result of the short-range correlations. We also
find from the numerical calculations, for each temperature Te,
1 − Gie(k) = 1/2 at momentum k = 1/rL, where rL = e2/Te

is the Landau length, i.e., the appropriate effective bmin of
the CL. This result is consistent with previous calculations
performed on hydrogen plasma [12]. The classical electron-ion
pair distribution function gie(r) increases to unity from zero
without oscillations when the temperature is high enough
(corresponding to weak coupling), while gie(r) will oscillate
out of the electron sphere radius several times when the
temperature becomes low (<10 eV). For example, the first two
peaks of gie(r) can be clearly observed when the temperature
Te = 2 eV [see the purple line in Fig. 2(b)]. The ion-ion

FIG. 3. (Color online) (a) Electron-ion LFC 1 − Gie(k) as a
function of kae and (b) electron-ion pair distribution function at the
origin gie(r = 0) as a function of the Coulomb coupling parameter
�ee for real Be plasma with quantum negative electrons with various
temperatures. Other parameters are the same as those in Fig. 2.

and electron-election pair distribution functions could also
be obtained self-consistently, which are not shown here for
briefness.

In the classical case, as suggested in Ref. [12], the GLB
model will diverge when the electrons are treated as classical
negatively charged particles (Ze = −1) even if the static LFC
is taken into account in the calculations. In contrast, the
GLB model will converge if the negatively charged electrons
are treated by quantum mechanics. The typical results for
the quantum static LFC obtained from the cusp-condition
approximation are presented in Fig. 3(a). Differing from
the classical case, the quantum LFC 1 − Gie(k) � 1 and its
limitation at large momentum k is the value of the electron-ion
pair distribution function at the origin gie(r = 0), which is
shown in Fig. 3(b) as a function of the coupling parameter �ee.
The correlation effect becomes important in the calculation
of the CL when the quantum LFC at large momentum
[limk→∞1 − Gie(k)] significantly increases and the value of
the CL in the presence of the LFC becomes larger than the
value obtained from the models ignoring LFC [Gαβ(k) = 0].
This is why we consider the quantum LFC in our calculations.
Furthermore, Fig. 3(b) shows that gie(r = 0) approaches a
maximum when the coupling parameter �ee = 1 and gie(r =
0) decreases to unity in the weak- or strong-coupling regime
(note that limk→∞[1 − Gie(k)] = gie(r = 0), which indicates
gie(r = 0) � 1).

In addition, we have also calculated the quantum electron-
ion pair distribution function gie(r). Selected results of
gie(r) as a function of r/ae are plotted in Fig. 4(a).
Different from the classical case [Fig. 2(b)], the quantum
pair distribution function gie(r) � 1 and decreases to unity
at large distance. Through the Fourier transform Sie(k) =√

nine

2π2k

∫ ∞
0 drr sin(kr)[gie(r) − 1], the behavior of gie(r) could

also be observed from the static structure factor Sie(k), which
reveals the influence of electron-ion collisions and the electron
accumulation at the sites of the ions in momentum space.
The corresponding Sie(k) obtained using the cusp-condition
approximation as a function of kae is shown in Fig. 4(b).
It is clear that Sie(k) tends to vanish at large momentum
and approaches a finite nonzero value at small momentum
(k → 0); another feature of Fig. 4(b) is the manner in which
Sie(k) approaches zero more quickly for higher temperature.

033103-4



GENERALIZED LENARD-BALESCU CALCULATIONS OF . . . PHYSICAL REVIEW E 92, 033103 (2015)

FIG. 4. (Color online) (a) Electron-ion pari-distribution function
gie(r) as a function of r/ae and (b) electron-ion static structure factor
Sie(k) as a function of kae for real Be with quantum negative electrons
with various temperatures. Other parameters are the same as those in
Fig. 2.

This is because the plasma becomes more weakly coupled as
the temperature increases.

After obtaining the LFC, one could easily get the CL
by using Eqs. (10) and (11). In Fig. 5(a) we show the
results for kF (k) versus kae obtained using the GLB model
for various values of temperature at a definite density of
ρBe = 6.0g/cm3. From Fig. 5(a) we can observe that kF (k)
approaches the maximum value almost at kae ≈ 3, which
is insensitive to the density and temperature of plasma, and
F (k) decreases to zero gradually (quickly) with increasing
(decreasing) momentum k from the value corresponding to
max[kF (k)] because of the remarkable quantum diffraction in
the limit of large momentum [the sharp increase in εe(k,0)
in the limit of small momentum]. Furthermore, Fig. 5(a)
shows that the value of kF (k) increases with increasing
temperature and max[kF (k)] → 1 in the high-temperature
(corresponding to weak-coupling) limit, which is similar to
the results for H plasma shown in Ref. [17]. In this way, we
can see that the GLB model could be approximated by the
Landau-Spitzer model [17,28,29] in weakly coupled plasma
since the Landau-Spitzer model suggests ln � = ∫

F (k)dk =∫ b−1
min

b−1
max

dk
k

= ln( bmax
bmin

), where bmax = λDe and bmin ≈ 0.778λth are
the maximum and minimum impact parameters, respectively,

FIG. 5. (Color online) (a) Plot of kF (k) [see the text for the
definition in Eq. (11)] vs kae for various electronic temperatures
of Be plasma obtained using the GLB model with local field
corrections Gαβ . (b) Plot of kF (k) vs kae for Te = 800 eV for Be
plasma. The results are obtained using the GLB model with the LFC
Gαβ �= 0 (black line), the Fermi golden rule with Gie = 0 and Gee

approximated by the Vashista-Singwi form (blue dotted line), and the
LB model with Gαβ = 0 (red dashed line). Other parameters are the
same as those in Fig. 2.

FIG. 6. (Color online) The CL vs plasma parameter �ee for dense
Be. The red squares are for the classical like-charge results obtained
using COZEs and the HNC and the blue dots are for the quantum
results obtained using the cusp-condition approximation. The black
curved line is a fit to the quantum data and the green dotted line is
a fit to the result in the weak-coupling regime. Other parameters are
the same as those in Fig. 2.

with λDe = (Te/4πnee
2)1/2 being the electron Debye wave-

length and λth = (�2/meTe)1/2 the electron thermal de Broglie
wavelength. For comparison, in Fig. 5(b) we additionally show
the results of kF (k) for Te = 800 eV obtained using the Fermi
golden rule [14] with Gie = 0 and Gee approximated by the
Vashista-Singwi form (blue dotted line) and the LB model [15]
in the absence of the LFC Gαβ = 0 (red dashed line). It is clear
that the result of kF (k) obtained from the GLB model [17]
(black line) is larger than the results obtained from the other
two models. In particular, when kae > 3, the difference is
distinguishable due to the remarkable short-range screening
and correlation effects between electrons and ions taken into
account via the LFC Gie. This result reveals that the value of
the CL with the LFC should be larger than that without the
LFC. We can also see from Fig. 5(b) that the result obtained
from the Fermi golden rule is indistinguishable from that of
the Lenard-Balescu model.

Substituting the above-obtained LFC into Eq. (10), it is
easy to get the CL. Here we point out that in order to
obtain a convergent and proper CL for like-charged classical
plasma (Ze = 1), large enough distance r and momentum k

are chosen and 217 points in r and k are set in our numerically
self-consistent iterations for solving the COZE and HNC [17].
The result of ln � for Be plasma at a density of ρBe =
6.0 g/cm3 and various temperatures (from 1 to 8 × 103 eV)
is shown in Fig. 6 as a function of the plasma coupling
parameter �ee, in which the red squares present the result for
like-charged classical plasma and the blue dots show the result
for oppositely charged quantum plasma. It is obvious that in the
strong-coupling case (�ee > 1), the classical result of the CL
is in agreement with the quantum result. This is reasonable and
results from the fact that the effective bmin = λL (the Landau
length λL = 〈Z〉e2/Te) is sure to be larger than the electron
thermal de Broglie length λth at low enough temperature.
Furthermore, the classical result of the CL is also in agreement
with the quantum result in the weak electron-electron coupling
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FIG. 7. (Color online) Relaxation rates νie for Be plasma at
densities 0.185 g/cm3 (blue), 1.85 g/cm3 (black), and 6.0 g/cm3

(red) obtained using the GLB model with the quantum LFC Gαβ .
Other parameters are the same as those in Fig. 2.

range (�ee < 10−2). There are two reasons for this agreement.
First, the GLB model (both the classical case and the quantum
case) is reduced to the Landau-Spitzer model and the Brown
et al. model in the weak-coupling range [17], which recover
the same result even in the quantum limit λL < λth for much
higher temperature [18,28,29] (λL � λth with 〈Z〉 ∼ 4 for
Te � 1 keV). Second, the quantum statistics effect could be
reduced to classical statistics at high temperature, namely, the
Fermi distribution is reduced to the Maxwellian distribution. A
notable difference between the quantum result and the classical
result is observed for intermediate values of �ee. This may
be due to the partial electron degeneracy in this coupling
regime, which is included in the static electronic dielectric
function [see Eqs. (12)–(14)]. Indeed, the classical result of the
CL shown here cannot predict the temperature equilibration
of a real Be plasma since the physics is ignored in the
classical like-charge pure-Coulomb cases [17] and therefore
we focus on the quantum result in the following discussion.
The quantum result of ln � could be well fitted by a logarithmic
function ∼ ln(1 + 0.85/�ee) in a wide range of �ee (see the
black curved line in Fig. 6) and in the weakly coupled regime
(�ee < 0.1) it could be fitted also by ∼ ln(0.85/�ee) (see the
green dotted line in Fig. 6). We have also numerically checked
that our result is consistent with the Landau-Spitzer result and
the Brown et al. result in the weakly coupled limitation.

The temperature relaxation rate νie between quantum
oppositely charged electrons and classical ions in Be plasma
at density ρBe = 6.0 g/cm3 is shown by a red curve in Fig. 7
as a function of electron temperature Te. Furthermore, for
comparison, we have also calculated νie at normal metal
density ρBe = 1.85 g/cm3 and expanded Be density ρBe =
0.185 g/cm3 (see the black and blue curves in Fig. 7). In all of
the calculations, the mean ionization state 〈Z〉 is considered
and the Fermi energy εF is not a constant due to partial
ionization at low temperatures. There are at least two points in
Fig. 7 that need to be noticed: (i) It is clear that lower density
gives a lower relaxation rate and (ii) similar to hydrogen
plasma, νie keeps nearly invariant when the temperature is
smaller than 100 eV since ν0 is proportional to T

−3/2
e , which is

comparable to ln � scaling like T
3/2
e at small Te. In contrast, νie

FIG. 8. (Color online) (a) Electron-ion LFC 1 − Gie(k) and (b)
electron-ion static structure factor Sie(k) vs kae for real Be with
quantum negative electrons at ρBe/ρ0 = 0.1, 1.0, and 10.0 for Te =
800 eV. Here ρ0 is the normal metal density of Be.

decreases when the temperature is higher than 100 eV because
the correlation effect becomes weak at high temperatures.
Compared with previous studies on the hydrogen plasma
with a similar electron number density [12], the temperature
relaxation rate νie for Be plasma considered herein is smaller
than that for hydrogen plasma because of the heavier ions in
Be plasma.

In the above calculations we focused on the Be plasma
at density ρBe = 6.0 g/cm3. Now let us turn to study the
response of relaxation rate to the density of Be plasma at a
fixed temperature. Here Te = 800 eV is chosen as an example
and the density of Be is changed from 0.1ρ0 to 10ρ0 in the
following discussion, where ρ0 = 1.85 g/cm3 is the normal
metal density of Be. The corresponding electron-electron
coupling parameter �ee changes from 0.0106 to 0.0484.
The numerical calculations show that the LFC and structure
factor are insensitive to the density of plasma. For instance,
1 − Gie(k) and Sie(k) as functions of kae for Be plasma with
quantum electrons at ρBe/ρ0 = 0.1, 1.0, and 10.0 are shown
in Fig. 8, from which we can see that with increasing the
density from 0.1ρ0 to 10ρ0, limk→∞[1 − Gie(k)] decreases
from 4.1505 to 3.8647 and limk→0 Sie(k) ≈ 0.4. However,
Sie(k) approaches zero more quickly for lower density at fixed
temperature since plasma becomes more weakly coupled as
the density decreases.

Furthermore, we show kF (k) in Fig. 9 as a function of kae

for various densities of Be plasma at temperature Te = 800 eV.
It is obvious that kF (k) → 1 at intermediate momentum k with
decreasing density. Correspondingly, the numerical data of
ln � as a function of ρBe/ρ0 for different temperatures Te = 1,
100, 800, 2000, and 5000 eV are shown in Fig. 10(a). One can
clearly see that the CL ln � decreases with increasing density.
The falloff in the ln � with density could be well fitted by
ln � = c(ρBe/ρ0)d , where c and d are the dimensionless fitting
parameters shown in Table I for different temperatures. Since
they depend smoothly on density, the parameters c and d may
be obtained for other values of Te by interpolation. However,
the electron-ion temperature relaxation rate νie increases with
increasing density [see Fig. 10(b)], which could be simply
fitted by

νie/ν
(0)
ie = a(ρBe/ρ0)b, (21)

where ν
(0)
ie = 4.5603 × 10−4fs−1 corresponds to the metal

density of Be ρ0 = 1.85 g/cm3 and the fitting parameters a
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FIG. 9. (Color online) Plot of kF (k) vs kae for various densities
of Be plasma with temperature Te = 800 eV.

and b are shown in Table I for different temperature values (see
also [37]). The parameter a is close to 1.1 and the parameter
b smoothly increases from 0.05 to 0.868 for Te changing from
1 to 5000 eV. Using this fitting function, one can estimate
the electron-ion temperature relaxation rate νie at desired
densities and temperatures and it may be useful for related
ICF experiments in the future.

IV. CONCLUSION

The electron-ion temperature relaxation in Be plasma
at various densities and temperatures was investigated by
employing the GLB model, where the correlation effects
between electrons and ions were self-consistently included
via static LFCs. The effect of the mean ionization state was
also included. The COZE and HNC (cusp-condition approx-
imation) were solved to obtain the classical (quantum) static
LFC Gαβ(k) and the corresponding classical (quantum) pair
distribution functions gαβ(r). The numerical results showed
that the classical result of the CL is in agreement with the
quantum result at either weak or strong electron-electron

FIG. 10. (Color online) (a) The CL ln � and (b) relaxation rate
νie/ν

(0)
ie vs ρBe/ρ0 with temperature Te = 1 eV (magenta squares),

100 eV (green stars), 800 eV (blue triangles), 2000 eV (red circles),
and 5000 eV (black diamonds). The lines are fits to the numerical
data. In the numerical calculations, ρBe is chosen as 0.185, 1.85, 3.7,
5.0, 6.0, 7.4, 11.1, 14.8, and 18.5 g/cm3. Here ρ0 = 1.85 g/cm3 is
the normal metal density of Be.

TABLE I. Fitting parameters a and b (c and d) for relaxation rate
(CL) as a function of the density of Be at different temperatures.

Te (eV) a b c d

1 1.05 0.050 0.088 −1.014
100 1.05 0.520 1.944 −0.229
800 1.11 0.753 3.888 −0.133
2000 1.08 0.820 4.730 −0.103
5000 1.07 0.868 5.605 −0.085

coupling parameters, while it deviates from the quantum result
at intermediate values of the coupling parameter. Furthermore,
it was found that with increasing the density of Be, the CL will
decrease and the corresponding relaxation rate will increase.
In addition, a simple increasing law νie/ν

(0)
ie = a(ρBe/ρ0)b was

determined. There results are expected to be useful for future
inertial confinement fusion experiments involving Be plasma.
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APPENDIX: INTRODUCTION OF THE DETAILED
CONFIGURATION ACCOUNTING MODEL

By employing a detailed configuration accounting model
with the term structures treated by the unresolved transition
array model, we have calculated the mean ionization of an
average ion 〈Z〉 for Be plasma. The detailed configuration
accounting model is a method consisting of the fully relativistic
treatment incorporated with the quantum defect theory to
calculate the atomic parameters [33,34]. A huge number
of configurations with high principal quantum number are
considered in this model. The fraction of incident radiation
transmitted through the plasma is written as a decaying
exponential function F (ω) = exp[−γ (ω)L], where L is the
path length traversed by the light through the plasma and γ (ω)
is the absorption coefficient, which is expressed as [34]

γ (ω) =
∑

i

[∑
c,c′

Ni,cσ
bb
i,c,c′ (ω) +

∑
c

Ni,cσ
bf

i,c (ω)

]

+ Neσ
ff (ω) (A1)

under the configuration average approximation. Here i is the
ionic stage, Ni,c (Ne) is the number of ions of configuration
c (the number of electrons) per unit volume, σbb

i,c,c′ (ω) is the
bound-bound photoexcitation cross section from configuration
c to c′, σ

bf

i,c (ω) is the bound-free photoionization cross section
from all subshells of configuration c, and σff (ω) denotes the
free-free absorption cross section. For the local thermody-
namic equilibrium plasmas, the charge state distribution and
the mean ionization of an average ion 〈Z〉 can be obtained by
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solving the Boltzmann-Saha equation [38]

Ni+1,cNe

Ni,c

= ZeZi+1

Zi

e−(φi−�φi )/T , (A2)

where Zi and Ze denote the partition function of ion-
ization stage i and free electrons, respectively, and φi

and �φi are the ionization potential and ionization

potential depression (the Debye-Hückel model) [39] of
ionization stage i, respectively. In the detailed configura-
tion accounting model, the self-consistent-field energy-level
database is employed to investigate and produce important
configurations and thereby the most important configura-
tions are taken into account in solving Boltzmann-Saha
equations.
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