
PHYSICAL REVIEW E 92, 033102 (2015)

Electron energy distribution in a dusty plasma: Analytical approach

I. B. Denysenko,1,* H. Kersten,2 and N. A. Azarenkov1

1School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv, Ukraine
2Institut für Experimentelle und Angewandte Physik, Leibnizstrasse 19, Kiel D-24098, Germany

(Received 30 June 2015; published 8 September 2015)

Analytical expressions describing the electron energy distribution function (EEDF) in a dusty plasma are
obtained from the homogeneous Boltzmann equation for electrons. The expressions are derived neglecting
electron-electron collisions, as well as transformation of high-energy electrons into low-energy electrons at
inelastic electron-atom collisions. At large electron energies, the quasiclassical approach for calculation of the
EEDF is applied. For the moderate energies, we account for inelastic electron-atom collisions in the dust-free
case and both inelastic electron-atom and electron-dust collisions in the dusty plasma case. Using these analytical
expressions and the balance equation for dust charging, the electron energy distribution function, the effective
electron temperature, the dust charge, and the dust surface potential are obtained for different dust radii and
densities, as well as for different electron densities and radio-frequency (rf) field amplitudes and frequencies.
The dusty plasma parameters are compared with those calculated numerically by a finite-difference method
taking into account electron-electron collisions and the transformation of high-energy electrons at inelastic
electron-neutral collisions. It is shown that the analytical expressions can be used for calculation of the EEDF
and dusty plasma parameters at typical experimental conditions, in particular, in the positive column of a
direct-current glow discharge and in the case of an rf plasma maintained by an electric field with frequency
f = 13.56 MHz.
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I. INTRODUCTION

Plasmas with nano- and micrometer-sized particles (dusty
plasmas) have been extensively studied in the last three
decades. These complex ionized gas systems are of great
interest in different fields including formation of cosmic
clouds, formation of Coulomb crystals, vortices, and voids
in low-pressure plasmas, as well as in the fields of fusion and
processing plasmas [1–5].

Because of the fundamental and technological interest,
properties of dusty plasmas have been studied by many authors
and are quite well known [1–7]. They include the balance
of electrons and ions, charging of dust particles, structure
formation, wave and shock propagation in the plasmas,
transport of electrons, ions, and dust particles, and forces
affecting the dust particles [1–4,8–14].

For a theoretical description of these complex systems, one
usually uses hydrodynamic models for the electrons and ions
assuming that they are in Maxwellian equilibrium [1–4,9].
However, for most industrial and laboratory plasmas such as
those from inductively and capacitively coupled discharges,
the electron energy distribution function (EEDF) often deviates
from Maxwellian because of the many different electron
collision processes [15,16]. The profile of the electron energy
distribution function affects different plasma parameters such
as the effective electron temperature, the electron and ion
number densities, and the reaction rate coefficients, as well
as the dust charge and the ion and/or electron fluxes on a
processing surface [1,17,18]. Moreover, the collective motion
of dusty plasma, for example, the propagation of vertically
polarized dust acoustic waves, also depends on the EEDF
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profile [19]. Therefore, determination of the EEDF profile is
very important in studying different plasmas.

In [20], the electron energy probability function in a dusty
plasma was analyzed from the second derivative of the Lang-
muir probe current-voltage characteristics. It was found that
in the presence of dust particles the electron density decreased
and the electron temperature increased in comparison to those
of pristine argon plasma [20]. The population of lower-energy
electrons decreased in a dusty plasma, while the high-energy
tail region overlapped throughout the experiment. In [21],
optical emission spectroscopy was performed on a radio-
frequency (rf) discharge in argon during dust particle growth. It
was found that the intensities of all of the argon emission lines
increased due to increasing electron temperature, indicating an
increase in the number of high-energy electrons in the EEDF
as a result of dust growth. The increase of emission intensity
from plasmas with increasing dust size was also observed in
[22,23].

In [24], the EEDF for a magnetically filtered dusty plasma
was studied in a dusty double plasma device. In the experiment,
it was observed that typical Druyvesteyn-like EEDFs in
pristine plasma may behave as Maxwellian types in the
presence of a sufficient concentration of dust grains, as was
predicted before in [25]. In [26], an image of the electron
temperature in a dusty plasma was observed. It was found
that the electron temperature was lower in the void region
than in the surrounding plasma region with dust particles.
Later, by solving the electron Boltzmann equation, the electron
temperature increase in the dusty region was explained by the
fact that the rf electric field is inversely proportional to the
local electron density [27].

For calculation of the EEDF in dusty plasmas, different
numerical approaches have been used. To study dusty plasma
properties, McCaughey and Kushner [28] developed a hybrid
Monte Carlo–molecular dynamics approach, while Boeuf
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[29] introduced a particle-in-cell–Monte Carlo (PIC-MC)
model. Numerical models for reactive rf dusty plasmas were
developed by Schweigert et al. [30] and Goedheer et al. [31]. In
[32], a method for calculation of dust charging in a capacitively
coupled rf discharge was developed based on the kinetic
treatment of the electron and ion motion using the PIC-MC
approach. It was shown that at large ion drift velocities, the
orbital-motion-limited (OML) theory gives up to 25% larger
absolute value of the dust potential than that obtained with
the PIC-MC calculations. Self-consistent kinetic models of
low-pressure glow discharges with dust particles based on
the Boltzmann equation for the electron energy distribution
function were presented in [33]. In [34], nonlocal effects in
the positive column (PC) of a low-pressure stratified dc glow
discharge in argon with dust particles were studied. It was
noted that in a stratified PC the electron energy distribution is
not Maxwellian and is even nonmonotonic, and the local field
approximation is appropriate for the EEDF calculation only
at intermediate gas pressures. The EEDF in a dusty plasma
was obtained on the basis of the solution of the homogeneous
Boltzmann equation by Wang and Dong [35]. Considering the
case when an external electric field sustaining a dusty plasma
is fixed, they found that the profile of the EEDF strongly
depends on the dust concentration. rf discharges with dust were
investigated with the help of the homogeneous Boltzmann
equation for the EEDF in [25,27,36–38], too. However, all
these numerical approaches for determination of the EEDF
in dusty plasmas are rather complicated. Suitable analytical
expressions for the EEDF in dusty plasmas, accounting
for deviations of the distribution from Maxwellian, are not
available at present.

Meantime, for dust-free plasmas, different analytical ex-
pressions for the EEDF were obtained in some cases, by
applying the two-term approximation [17,39–41]. In partic-
ular, using this approximation, the Druyvesteyn distribution
function, describing the steady-state electron distribution
function in a uniform plasma and with elastic collisions
between electrons and neutral gas atoms, was obtained [17,40].
In this approach, an analytical expression was also derived for
the EEDF in a positive column for electrons with energies
exceeding the first inelastic energy threshold Uexc [17,40,41].

In this paper, we will provide an analytical expression
for the EEDF in an argon dusty plasma for electrons with
energies exceeding Uexc. We will also derive an integral
expression for the electron energy distribution function for
electrons in the energy range smaller than Uexc. We will show
that the analytical expressions can be used for calculation
of the EEDF in rf and dc dusty plasmas. These analytical
expressions for the EEDF will be obtained in the local
approximation [17] neglecting electron-electron collisions
and neglecting transformation of high-energy electrons into
low-energy electrons at inelastic electron-atom collisions. The
electron energy distribution function, the effective electron
temperature, and the dust charge obtained from the simplified
model will be compared with those calculated numerically
using a more complicated approach, in which electron-electron
collisions and the transformation of high-energy electrons at
inelastic electron-neutral collisions are not neglected. The
study is carried out for different dust radii and densities, as
well as for different frequencies, electron densities, and rf field

amplitudes. Typical conditions, where the simplified approach
for EEDF determination in dusty plasmas is applicable, will
be reported.

II. MAIN ASSUMPTIONS AND EQUATIONS

Let us consider a plasma maintained by an electric field
E(t). In the case of a radio-frequency discharge E(t) =
Ep cos(ωt), where ω = 2πfE and fE is the rf frequency. For
a direct current discharge, E(t) = Ep = const. The plasma is
assumed to consist of electrons with density ne, singly charged
positive ions (Ar+) with density ni , and negatively charged
dust particles of submicron size with density nd and radius
ad . We also assume that the dust grains are all of the same
size and are uniformly distributed in the plasma volume. The
massive dust grains (as compared with the ions and electrons)
can be treated as immobile, when τd � τeq, where τd and τeq

are the characteristic time scales of dust grain motion and
establishment of equilibrium, respectively. It is also assumed
that the dust radius is smaller than the sheath around a dust
grain, or λD � ad , where λD ≈ 1/

√
4πe(ne/Teff + ni/Ti) is

the Debye length, and e is the magnitude of electron charge,
Teff (in eV) is the effective electron temperature, and Ti (in
eV) is the ion temperature. The effective electron temperature
is defined by the electron energy distribution function f0(u):
Teff = (2/3)

∫ ∞
0 f0(u)u3/2du, where u is the electron energy

(in eV) and f0(u)
√

udu is the ratio of the number of electrons
with energy in the interval [u,u + du] to the total number of
electrons.

The distance between the dust particles is larger than the
Debye length. We consider dust particles of small radius (ad <

1 μm) and, therefore, the linear Debye-Hückel potential can
be taken as the shielding potential of the dust grain [1],

ϕ(r) = ϕs

ad

r
exp [−(r − ad )/λD],

where r is the distance from the dust particle center, and φs is
the grain surface potential.

To calculate the electron energy distribution function,
the two-term approximation is used, whereas the energy
distribution is assumed to be nearly isotropic. This assumption
is valid if the electron dynamics is dominated by elastic
collisions over most of the energy range, i.e., the elastic
scattering frequency of electrons must be large compared to
the characteristic frequencies for electron energy gain (e.g.,
from the field) and loss (e.g., due to inelastic collisions) [17].

For the rf case, it is assumed that the field variation
is much faster than that of energy relaxation, or ω > νe =
(2me/mi)〈νem〉 + 〈ν∗〉, where me and mi are the masses of
electrons and ions, respectively. νem is the rate of electron-
neutral momentum transfer, ν∗ is the total inelastic collision
frequency, and 〈· · · 〉 denotes the energy-averaged value. Thus,
in both the rf and dc cases, the isotropic part of the electron
energy distribution function can be treated as time independent
[42,43].

Moreover, we assume that the energy relaxation length λε

is small compared to the spatial inhomogeneity scale 
 of the
discharge,

λε 	 
, (1)
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where λε ≈ (λmλinel/3)1/2 [17]. Here, λm ≈ 1/(na〈σm〉 +
nd〈σed〉) is the total mean free path for momentum transfer,
and λinel is the mean free path accounting for all colli-
sional loss processes. The mean free path can be estimated
as

λ−1
inel ≈ na[(2me/mi)〈σm〉 + 〈σex〉 + 〈σiz〉]

+ nd

[
(2me/md )

〈
σ e

ed

〉 + 〈
σ c

ed

〉]
,

where na is the neutral gas density, σm is the cross section for
electron-atom momentum transfer collisions, σex is the total
cross section for electronic excitation in collisions of electrons
with Ar atoms, σiz is the cross section for electron impact
ionization in collisions of electrons with Ar atoms, and md

is the individual dust particle mass. σ e
ed and σ c

ed are the cross
sections for momentum transfer collisions of electrons with
dust particles and collection of electrons by dust particles,
respectively. In a plasma with large dust density, the condition
(1) takes place at smaller gas pressures than in the dust-free
plasma [36]. In this case, one can use the local approximation,
and the electron energy distribution function can be presented
in the form F0 = nef0(u). The function f0 is normalized by∫ ∞

0 f0(u)
√

udu = 1.
The electron energy distribution function f0 satisfies the

following homogeneous Boltzmann equation [39,40]:

− 2e

3me

∂

∂u

[
u3/2

vm(u)
E2

eff(u)
∂f0

∂u

]
= S0(f0), (2)

where

E2
eff = E2

p

2

v2
m(u)

v2
m(u) + ω2

for the rf case, and Eeff = Ep is the external electric field
in the dc case. Here, S0(f0) = Sea(f0) + Sed (f0) + See(f0),
where the terms Sea(f0), Sed (f0), and See(f0) describe the
electron-atom, electron-dust, and electron-electron collisions,
respectively. vm is the effective rate of momentum transfer,
including electron-neutral and electron-dust collisions. In this
approximation superelastic collisions between electrons and
atoms, as well as excitation from low to high atomic states, are
neglected.

The term describing electron-atom collisions has several
components. The elastic collisions are represented by

Se
ea(f0) = d

du

[
2me

mi

u3/2vem(u)

(
f0 + Tg

df0

du

)]
, (3)

where Tg is the neutral gas temperature, which is assumed to
be equal to 300 K (0.026 eV). The collision-induced atomic
excitations are given by

Sexc
ea (f0) =

∑
k

⌊
vk

ea(u + Vk)f0(u + Vk)(u + Vk)1/2

− vk
ea(u)f0(u)u1/2

⌋
, (4)

where vk
ea is the collision frequency of the kth inelastic process

with a threshold energy Vk . In this model the ionization
of Ar atoms is treated as an ordinary excitation process
[44]. The term describing electron-dust collisions can be

modeled by [35]

Sed (f0) = d

du

[
2me

md

u3/2ve
ed (u)

(
f0 + Td

df0

du

)]

− vc
ed (u)f0u

1/2, (5)

where Td is the individual dust particle temperature. It is
assumed that Td = 0.026 eV and md = (4/3)ρdπa3

d , where
ρd = 2g/cm3 is the dust material density [1]. ve

ed (u) =
ndσ

e
ed (u)(2eu/me)0.5 and vc

ed (u) = ndσ
c
ed (u)(2eu/me)0.5 are

the frequencies for electron-dust momentum transfer and
electron collection by the dust particles, respectively.
The cross section for electron-dust momentum transfer
is [35]

σ e
ed (u) ≈ πa2

d (−ϕs/u)2e2ad/λD ln χ, (6)

where χ ≈ −λDTeff/(adϕs). In the orbital-motion-limited
approximation the cross section for collection of electrons
by the dust particles is σ c

ed (u) = πa2
d (1 + ϕs/u) for u � −ϕs

and σ c
ed (u) = 0 for u < −ϕs .

The term See(f0) describing electron-electron collisions is
given by

See(f0) = d

du

[
2u3/2vee(u)

(
f0G(u) + H (u)

df0

du

)]
, (7)

where H (u)= 2
3 (

∫ u

0 u3/2f0(u)du+u3/2
∫ ∞
u

f0(u)du), G(u) =∫ u

0 u1/2f0(u)du, vee(u) = 4π (e2/me)2ne ln 
/υ3, ln 
 is the
Coulomb logarithm [40], and v = √

2eu/me is the electron
velocity.

It is assumed that the electron (Ie) and ion (Ii) currents to a
floating dust particle are in balance, or

Ie + Ii = 0. (8)

The electron current to a dust particle is [45]

Ie = −πa2
dene

∫ ∞

−ϕs

(
1 + ϕs

u

)√
2eu

me

f0(u)
√

udu.

The ion current was calculated taking into account the ion-
neutral collisions in the sheath around a dust particle, resulting
in [46]

Ii = enia
2
d (8πTi/mi)

0.5(1 + ξτ + Hξ 2τ 2λSnaσia),

where τ = Teff/Ti and ξ = |Zd |e2/(adTeff), and σia ≈
10−14 cm−2 is the cross section for ion-neutral collisions.
We assume that Ti = Tg . The function H has the following
asymptotes: H ∼ 0.1 for 0.1 � β � 10; H ∼ β for β 	 1,
and H ∼ β−2(ln β)3 for β � 1 [46], where β = |Zd |e2/(λsTi)
and λs is the screening length, which is of the same order as
the Debye length [1].

Furthermore, it is assumed that the plasma is quasineutral,
or

ni = ne + |Zd |nd. (9)

Equations (8) and (9) are used to calculate the dust charge
required for the term (5) describing electron-dust collisions.

In general, the EEDF from Eq. (2) may be found only
numerically. However, as shown below, an approximate
analytical solution of Eq. (2) also exists.
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III. THE APPROXIMATE ANALYTICAL SOLUTION
FOR THE EEDF

Consider the case of low-ionized plasma [the electron-atom
collisions dominate over the electron-electron collisions, i.e.,
νee/(δνem) 	 1 for most of the electrons’ energies in the
electron energy distribution, where δ = 2me/mi]. Moreover,
the number of electrons with energy larger than the first
excitation energy threshold (≈11.5 eV for Ar) is assumed to
be small. In this case, one can neglect in Eq. (2) the term
(7) and the term describing transformation of electrons with
large energy into low-energetic electrons, and Eq. (4) can be
simplified to

Sexc
ea (f0) ≈ −

∑
k

vk
ea(u)f0(u)u1/2. (10)

Taking into account these simplifications, the homogeneous
Boltzmann equation can be written as

∂

∂u

[
u3/2

(
δDνe

ed (u) + δνem(u)
){

f0(u) + 1

β

∂f0(u)

∂u

}]

≈ [
νc

ed (u) + ν1�(u)
]
f0(u)

√
u, (11)

where δD = 2me/md ,

β−1 = Tg + 2e

3me

E2
eff

νm(δDνe
ed + δνem)

,

νm = νe
ed + νem, and ν1�(u) = ∑

k vk
ea(u) is the total frequency

for inelastic electron-atom collisions including processes of
excitation and ionization. The frequency was calculated using
Eqs. (B6) and (B7) of Ref. [47].

At large electron energies (u � u∗
1 > u∗ = 11.5 eV, and by

taking u∗
1 = 20 eV), the electron energy distribution function

decreases rapidly with an increase of u. Therefore, to calculate
the EEDF at large energies, we apply the quasiclassical method
[17,40,41] assuming that

f0(u) = C2 exp[S(u)], (12)

where C2 is a constant, and S(u) is a smooth function satisfying
the following conditions [40]:

u
dS

du
� 1 and

(
dS

du

)2

�
∣∣∣∣d2S

du2

∣∣∣∣.
In this approximation, it follows from Eq. (11) that

dS(u)

du
= − 1√

u

√
β
[
νc

ed (u) + ν1�(u)
]

δDνe
ed (u) + δνem(u)

= −β1(u)

and

S(u) = −
∫ u

u∗
1

β1
(
u/

)
du/. (13)

At large electron energies (e.g., δDνe
ed 	 δνem and

νe
ed 	 νem) and, therefore, the ratio of β1 in a dusty

plasma to that in a dust-free plasma for the same
electric field sustaining the plasmas is approximately√

[vc
ed (u) + v1�(u)]/v1�(u). Thus, at large electron energies

the EEDF in a dusty plasma decreases faster than in a dust-free
plasma.

In the pristine case when nd = 0, it follows from (13) that
[40,41]

S(u) = −
∫ u

u∗
1

√
3meνem(u/)ν1�(u/)

u/2eE2
eff

du/.

To calculate the EEDF at moderate and low energies (u <

u∗
1), we move from u to the new variable y = u∗

1 − u. In this
case, Eq. (11) can be presented in the following form:

− ∂

∂y

[
α(y)

{
f0(y) − 1

β

∂f0(y)

∂y

}]

≈ [
νc

ed (y) + ν1�(y)
]
f0(y)

√
u∗

1 − y, (14)

where α(y) = u3/2[δDνe
ed (u) + δνem(u)] with u = u∗

1 − y.
Integrating Eq. (14) in the energy interval [0,y], we obtain

−α(y)

{
f0(y) − 1

β

∂f0(y)

∂y

}
+ A

≈
∫ y

0

[
νc

ed (y/) + ν1�(y/)
]
f0(y/)

√
u∗

1 − y/dy/, (15)

where

A = α(y)

{
f0(y) − 1

β

∂f0(y)

∂y

}∣∣∣∣
y=0

.

We assume that f0(y = 0) = C2. Therefore, it follows from
Eqs. (12) and (13) that ∂f0(y)

∂y
|y=0 = C2β1(y = 0).

Equation (15) may be presented in the following form:

f0(y) − 1

β

∂f0(y)

∂y
= χ (y), (16)

where

χ (y) = A − ∫ y

0

[
νc

ed (y/) + ν1�(y/)
]
f0(y/)

√
u∗

1 − y/dy/

α(y)
.

The solution of Eq. (16) is

f0(y) =
[
C2−

∫ y

0
β(y/)χ (y/) exp

(
−

∫ y ′

0
β(y//)dy//

)
dy/

]

× exp

(∫ y

0
β(y/)dy/

)
. (17)

Note that the integral expression for χ (y) depends on the
EEDF. However, it can be easily calculated because the energy
distribution function at y = 0 is known [f0(y = 0) = C2]. As
a result,

I1 =
∫ �y

0

[
νc

ed (y) + ν1�(y)
]
f0(y)

√
u∗

1 − ydy

≈ [
νc

ed (y = 0) + ν1�(y = 0)
]
f0(y = 0)

√
u∗

1�y,

where �y 	 u∗
1, and one can find from Eq. (17) the EEDF at

y = �y. Similarly, one can calculate the integral for y = 2�y

to be I2 = ∫ 2�y

0 [νc
ed (y) + ν1�(y)]f0(y)

√
u∗

1 − ydy ≈ I1 +
[νc

ed (y = �y) + ν1�(y = �y)]f0(y = �y)
√

u∗
1 − �y�y,

and then one can find f0 at y = 2�y. After getting f0

at y = 2�y, one can obtain the EEDF at y = 3�y, etc.
Thus, Eqs. (12) and (17) allow us to obtain the EEDF in
the whole energy interval. The constant C2 in Eqs. (12)
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and (17) was found from the normalization condition
[
∫ ∞

0 f0(u)
√

udu = 1].

IV. RESULTS

In this section, we will analyze how the electron energy
distribution function depends on the dust density and the
dust particle radius, and we will determine the range of
parameters where the simplified approach may be applied.
To analyze the applicability of the simplified model, we will
compare the EEDF obtained from Eqs. (12) and (17) with
that calculated from Eq. (2) using a finite-difference method
[25] for different rf frequencies, electron densities, and rf field
amplitudes.

A. The effect of dust particles on the EEDF and other dusty
plasma properties

First, we study how the variations of dust density and
dust radius affect the electron energy distribution function.
In Fig. 1(a), the EEDF is shown for dust densities nd =
3 × 107 cm−3, nd = 5 × 107 cm−3, and nd = 108 cm−3, as
well as for the case when dust particles in the rf discharge
are absent (nd = 0). The curves in Fig. 1(a) were obtained
using the simplified model for the following rf discharge

FIG. 1. (Color online) (a) The electron energy distribution func-
tion calculated using the simplified model for ad = 200 nm and
different dust densities: nd = 0 (solid line), 3 × 107 cm−3 (dashed
line), 5 × 107 cm−3 (dotted line), and = 108 cm−3 (dash-dotted line).
(b) The same as in (a) for nd = 3 × 107 cm−3 and different dust
radii: ad = 100 nm (solid line), ad = 250 nm (dashed line), and
ad = 500 nm (dotted line). (c) The EEDF calculated using the
simplified model for nd = 0 (dotted line) and 108 cm−3 (solid line).
The Maxwellian EEDF calculated at Teff = 3.30 eV corresponding
to nd = 0 (curve 1) and at Teff = 1.24 eV corresponding to nd =
108 cm−3 (curve 2). The other external conditions are the same as
in (a).

TABLE I. The dust charge, effective electron temperature, and
dust surface potential for different dust densities and dust radii. The
external conditions correspond to Fig. 1.

nd (107 cm−3) ad (nm) Zd (−e) Teff (eV) ϕs (V)

0 200 736 3.30 5.30
0.5 200 553 3.64 3.98
2 200 366 2.83 2.64
3 200 308 2.45 2.22
5 200 238 1.92 1.71
10 200 154 1.24 1.11
3 100 214 3.40 3.08
3 250 329 1.98 1.90
3 500 359 0.82 1.03

parameters: f = 13.56 MHz, p = 13.3 Pa, Tg = 300 K, ne =
109 cm−3, ad = 200 nm, and Ep = 300 V/m. One can see
from Fig. 1(a) that for the same external electric field sustaining
the plasma, the number of electrons with energies larger than
6 eV is smaller in the dusty plasma than in the dust-free
plasma.

The number of energetic electrons is decreasing with
increasing dust density. The decrease is due to the increase
of the total surface of dust particles absorbing the electrons
with energy u larger than the dust surface potential ϕs . The
decrease of energetic electron’s number is accompanied by

FIG. 2. (Color online) EEDFs calculated using the more com-
plicated numerical (solid lines) and simplified analytical (dotted
lines) models for nd = 107 cm−3, ad = 100 nm, and different rf
frequencies: 0 (a), 27.12 MHz (b), 60 MHz (c), and 2.45 GHz (d).
Ep = 8500 V/m for f = 2.45 GHz, and Ep = 300 V/m for other
frequencies. The other external conditions are the same as in Fig. 1.
The dashed lines correspond to the Maxwellian EEDFs calculated
at Teff corresponding to the effective electron temperatures obtained
from the more complicated numerical model (the temperatures are
presented in Table II).
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TABLE II. Dust charge and effective electron temperature for different rf frequencies, which were obtained from the simplified and more
accurate models, and the differences between the parameters calculated using the different models. The external conditions are the same as in
Fig. 2.

Zd (−e) = Z1 Zd (−e) = Z2 Teff (eV) = T2

obtained obtained Teff (eV) = T1 obtained
using the from the obtained using from the
simplified more the simplified more

f (MHz) model accurate model |Z1−Z2|
Z2

× 100% model accurate model |T1−T2|
T2

× 100%

0 285 292 2.4 3.91 4.17 6.24
13.56 280 292 4.11 3.74 4.08 8.33
27.12 267 283 5.65 3.30 3.83 13.84
60 219 253 13.44 2.10 2.95 28.81
2.45 × 103 141 211 33.18 0.93 2.07 55.07

an increase of the number of electrons in the middle and low
energy ranges (<5 eV) [see Fig. 1(a)].

The effect of increase of dust radius on the EEDF is nearly
the same as for the dust density. At an increase of ad , while
the other plasma parameters are kept fixed, the number of
energetic electrons in the EEDF is decreasing, and the number
of electrons in the low-energy range is increasing [Fig. 1(b)].

Since the number of energetic electrons in the EEDF is
decreasing with an increase of nd and/or ad , the electron
temperature becomes smaller when the dust density and/or dust
radius become larger. Meantime, we observe that the electron
temperature in dusty plasma at small nd may become larger
than that in the dust-free case (the cases nd = 5 × 106 cm−3

and nd = 0 in Table I). In our opinion, this enlargement of
Teff in the dusty plasma is due to an increase of the number
of electrons in the middle energy range with a decrease of the
number of electrons in the EEDF tail, as compared with the
dust-free plasma.

With an increase of dust density, the dust charge and dust
surface potential are decreasing. When the dust radius is
increasing, the dust charge becomes larger, while the dust
surface potential decreases.

In Fig. 1(c), the EEDF calculated using the simplified model
is compared with the Maxwellian distribution for nd = 0 and
nd = 108 cm−3. One can see from Fig. 1(c) that the EEDF
for the dust-free case and f0 < 10−6 eV−3/2 differs essentially
from the Maxwellian distribution. At large dust densities, the
difference is smaller because of collection of electrons by dust
particles.

Note that the effects of variations of nd and ad on the
EEDF, the electron temperature, the dust charge, and the dust
surface potential are similar to those obtained by other authors
[1,35–38].

B. The comparison of plasma and dust particle parameters
obtained from different models

In this section, we compare the EEDFs, dust charges, and
effective electron temperatures calculated using the simplified
model [Eqs. (8), (9), (12), and (17)] with the parameters
which were obtained from Eqs. (2), (8), and (9), applying
the finite-difference method [25]. The comparison was carried
out for different field frequencies, electron densities, and rf
field amplitudes, and for the dc case.

In Fig. 2, the electron energy distribution functions are
shown for f = 0 (the dc case), f = 27.12 MHz, f = 60 MHz,
and f = 2.45 GHz. The dotted lines in Fig. 2 are obtained
using the simplified model, while the solid lines are calculated
using the finite-difference method. The dashed lines in Fig. 2
are the Maxwellian electron energy distribution functions
for the electron temperatures corresponding to the solid
lines.

From Figs. 2(a) and 2(b) one can recognize that for the
dc case and f = 27.12 MHz the EEDFs obtained using the
simplified model are very similar to those calculated using
the finite-difference method. The differences in dust charges
and electron temperatures obtained from the different models

FIG. 3. (Color online) The electron energy distribution functions
calculated using the simplified model (dotted lines) and the more
accurate model (solid lines) for different electric field amplitudes:
100 V/m (a), 500 V/m (b), 1000 V/m (c), and 2000 V/m (d). Here,
f = 13.56 MHz, nd = 5 × 107 cm−3, ad = 200 nm, and the other
external parameters are the same as in Fig. 2. The dashed lines
correspond to the Maxwellian EEDFs with Teff obtained from the
more accurate model (Table III).
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TABLE III. The same quantities as in Table II for different electric field amplitudes. The external parameters are the same as in Fig. 3.

Zd (−e) = Z1 Zd (−e) = Z2 Teff (eV) = T2

obtained obtained Teff (eV) = T1 obtained
using the from the obtained using from the
simplified more the simplified more

Ep (V/m) model accurate model |Z1−Z2|
Z2

× 100% model accurate model |T1−T2|
T2

× 100%

100 143 148 3.38 0.68 0.73 6.06
500 278 286 2.80 2.75 2.9 5.17
1000 321 337 4.75 3.93 4.35 9.66
2000 364 385 5.45 5.5 6.15 10.57

are also small (<6% for dust charge and <14% for Teff) at
f � 27.12 MHz (Table II). However, at large rf frequencies
(f � 60 MHz), the EEDF and dust charge calculated using the
simplified model differ essentially from those obtained from
Eq. (2) which take into account the electron-electron collisions
and the term describing inelastic electron-atom collisions in
the form of Eq. (4) [see Figs. 2(c) and 2(d)]. At f = 60 MHz,
the difference is about 13.5% for Zd and it is about 29% for
Teff .

One can conclude from Fig. 2 and Table II that the
differences between the dusty plasma parameters (f0, Zd , and
Teff) obtained from the simplified model and those calculated
using the more accurate model are increasing when the rf
frequency becomes larger.

For low electron densities considered here (ne =
109 cm−3), the effect of electron-electron collisions on the
EEDF is small, and, therefore, the EEDF and other dusty
plasma parameters obtained from the simplified model differ
from those calculated using the more accurate model mainly
because of neglect in Eq. (4) of the term which describes
transformation of high-energetic electrons (with u > 11.5 eV)
into low-energetic electrons by inelastic electron-atom colli-
sions. The transformation of high-energetic electrons affects
essentially the EEDF at large field frequencies due to the fact
that the EEDF becomes more Maxwellian-like when the rf
frequency increases [40,48]. Because of the Maxwellization,
the number of energetic electrons with respect to that in the
middle energy range increases, and the effect of the former
term in Eq. (4) on the energy distribution becomes more
important. The Maxwellization at an increase of rf frequency
is accompanied by a decrease of Teff and, as a result, by a
decrease of dust charge (see Table II).

The effect of transformation of high-energetic electrons
on the EEDF may also be essential at large electric fields Ep,
when the relative number of electrons with energy u > 11.5 eV
becomes large. To check this, we carried out our analytical
calculations for different electric field amplitudes. In Fig. 3,
the electron energy distribution functions are presented for
Ep = 100,500,1000, and 2000 V/m.

In Table III, the dust charges and effective electron
temperatures obtained using the simplified and more accurate
models are shown for different electric field amplitudes.

Obviously, one can conclude from Fig. 3 and Table III
that the simplified model yields results which are close to
those obtained using the more accurate model, for different rf
amplitudes. With increasing Ep, the difference in the EEDF
slightly increases (Fig. 3). As a result, the difference in

effective electron temperature also becomes larger (Table III).
The difference in Teff does not exceed 10.6% for the external
parameters considered here, while the difference in dust charge
is less than 5.5%.

Note that the EEDF at large rf field amplitudes is closer to
the Maxwellian distribution than that at low Ep . In our opinion,
the variation of the EEDF shape is due to increasing the number
of high-energetic electrons (with u > 11.5 eV) at increasing
Ep while simultaneously decreasing the electron’s number in
the energy range eϕs < u < 11.5 eV, as compared with the
dust-free case. This conclusion concerning the variation of
the EEDF shape is in agreement with the results presented in
Refs. [24,25].

In our simplified model, we also neglected the term
describing electron-electron collisions [Eq. (7)]. However,
the effect of these collisions on the EEDF increases with
an increase of ne (Fig. 4). At low electron densities (ne ∼

FIG. 4. (Color online) EEDFs for different electron densities:
ne = 109 (a), 1010 (b), 1011 (c), and 1012 cm−3 (d). The solid and
dotted lines correspond to the EEDFs obtained using the more
accurate and simplified models, respectively. Here, Ep = 300 V/m
and the other parameters are the same as in Fig. 3. The dashed lines
correspond to the Maxwellian EEDFs with Teff obtained from the
more accurate model (Table IV).
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TABLE IV. The same quantities as in Table II for different electron densities. The external parameters are the same as in Fig. 4.

Zd (−e) = Z1 Zd (−e) = Z2 Teff (eV) = T2

obtained obtained Teff (eV) = T1 obtained
using the from the obtained using from the
simplified more the simplified more

ne (cm−3) model accurate model |Z1−Z2|
Z2

× 100% model accurate model |T1−T2|
T2

× 100%

109 237 244 2.87 1.91 2.01 4.98
1010 470 484 2.89 1.84 1.98 7.07
1011 722 724 0.28 2.0 2.18 8.26
1012 889 844 5.33 2.4 2.48 3.23

109 cm−3) for f = 13.56 MHz and Ep = 300 V/m, the ef-
fective electron temperature calculated from the simplified
model is 4.98% smaller than that obtained applying the
finite-difference method and accounting for νee (Table IV).
For ne ∼ 109 cm−3, the difference in dust charge obtained
using the different approaches is 2.87%. With increasing ne,
the effective electron temperature becomes larger due to a
decrease of the ratio |ndZd/ne|, which is accompanied by
decreasing the effect of dust particles on the EEDF. When
the electron density becomes larger, the difference between
the EEDF obtained from the more accurate model and the
Maxwellian distribution at u < 15 eV becomes smaller. This
modification of the EEDF shape is due to electron-electron
collisions. Since electron-electron collisions are not accounted
for in the simplified model, the shape of the EEDF obtained
using this model depends slightly on electron density, and the
difference between the EEDF and that obtained from the more
accurate model becomes larger, when ne increases. Meantime,
the difference in Teff does not exceed 8.3% for the electron
densities considered here, while the difference in dust charge
is less than 5.4% (Table IV).

V. CONCLUSIONS

Analytical expressions (12) and (17) describing the electron
energy distribution in a dusty argon plasma have been
obtained. The expressions have been derived using a simplified
approach, in which electron-electron collisions and transfor-
mation of high-energy electrons into electrons with low energy
(u < 11.5 eV) were neglected. Using this simplified model,
the EEDF, effective electron temperature, dust charge, and
dust surface potential have been studied for different dust
densities, dust radii, field frequencies, electron densities, and
amplitudes of rf field. The dusty plasma parameters have
been compared with those obtained from a more accurate
numerical model, in which the transformation of high-energy
electrons into electrons with low energy and the electron-
electron collisions were accounted for. It has been found
that the simplified model can be used for calculation of the
EEDF and dusty plasma parameters at typical experimental
conditions, in particular, in the dc case and for an rf plasma
maintained by an electric field with rather low frequency
f = 13.56 MHz.

Note that our approach for EEDF description at mod-
erate energies is different from that proposed by previous

authors [40,41,48], even in the dust-free case. While in the
previous works it was suggested that the EEDF for dust-free
plasma in the energy range u∗ < u < u∗ + (3/2)Teff could
be obtained neglecting inelastic electron-atom collisions, we
account for these collisions. In the dusty plasma case, we
take into account the electron-atom collisions, as well as
the inelastic electron-dust collisions, which are important at
u > −ϕs .

Meantime, the analytical model proposed here has some
limitations. Since we neglect the transformation of high-energy
electrons into low-energy electrons at inelastic electron-
neutral collisions, the simplified model may be inapplicable
at relatively large rf frequencies (f � 60 MHz), when the
number of energetic electrons with respect to that in the
middle-energy range can be large. The deviations between
the EEDF obtained from the simplified model and that from
the more accurate model become larger with increasing
electron density and rf field amplitude. However, for the
electron densities and rf field amplitudes considered here
(ne � 1012 cm−3 and Ep � 2000 V/m), the differences be-
tween the effective electron temperatures and dust charges
obtained from the simplified and more accurate models do
not exceed 11% and 5.5%, respectively (Tables III and IV).
The model applicability is also limited by the validation
of the local approach used here [Eq. (1)]. Therefore, the
simplified model is not applicable at small plasma volumes
and low neutral gas pressures. Meantime, with increasing dust
density and/or dust radius the electron mean free path for
momentum transfer and the energy relaxation length become
smaller, and the local approach, inapplicable for a dust-free
plasma case, may become applicable for consideration of dusty
plasma.

Using Eqs. (12) and (17), one can find more easily the
electron energy distribution function in a dusty plasma, as
compared with other approaches usually used for the EEDF
calculation (finite-difference methods, particle-in-cell–Monte
Carlo models, and hybrid models). The approach used here
can also be applied for obtaining the EEDF in other plasma
systems, including but not limited to those used for the
fabrication of nano- and microsized structures.
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