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Rarefaction waves in van der Waals fluids with an arbitrary number of degrees of freedom
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The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a 1D fluid
model. The initial temperature and density are assumed to be in the vicinity of the critical temperature and solid
density, respectively. The fluid is assumed to satisfy the van der Waals equation of state with an arbitrary number
of degrees of freedom. Self-similar Riemann solutions are found. With a larger number of degrees of freedom f,
depending on the initial dimensionless entropy Sy, a richer family of foil expansion behaviors have been found.
We calculate the domain in parameter space where these behaviors occur. In total, eight types of rarefaction

waves are found and described.
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I. INTRODUCTION

Warm dense matter (WDM) conditions are reached when
the density is approximately in the range of 0.1 to 10 times
the solid density and the temperature approximately reaches
0.01 to 10 eV, although some authors extend the WDM regime
to temperatures up to 50eV [1,2]. WDM conditions occur
naturally and artificially, e.g., in the core of gaseous planets [3],
during the heating of a metal by a laser [3-5] or an ion beam
[5-8], or during the early stages of an inertial confined fusion
implosion [9].

This paper focuses on the hydrodynamical expansion and
transition of a material from a high temperature liquid or solid
state into a vapor state, which, for some materials, is in the
WDM regime. Emphasis is made on the conditions around the
critical point, above which there is no distinction between
the liquid and vapor phases. For many materials such as
refractory metals [10], the full vapor-liquid phase boundary
as a function of density and temperature is poorly known.

Riemann [11] proved that, for any equation of state (EOS)
and if the motion is 1D, the flow of an instantaneously
heated semiinfinite foil is self-similar, and analytically derived
the dynamics of the flow for the case of an ideal gas (see
also Refs. [12] and [13]). The present paper uses Riemann’s
solution for the specific case where the matter behaves as a
van der Waals (VDW) fluid.

Under certain conditions, the solution displays plateaus of
constant density during the phase transition from a single-
phase to the two-phase regime. The plateaus may have
observational consequences. For example, optical fringes in
reflected laser light have been observed in short-pulse laser
experiments on Si surfaces [14]. The optical fringes were later
interpreted as density plateaus of the flow [6,15—17]. Density
plateaus of the flow have also been observed semianalytically
and numerically for particular choices of parameters of VDW
fluids in expansion [18]. By describing the expanding matter
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as a polytropic fluid (i.e., following the relation p oc p+1/7,
where p, p, n are, respectively, the fluid pressure, mass density,
and the polytropic index), it was also observed analytically and
numerically that the flow of the expanding matter consists of
two domains: a thin liquid shell moving with constant velocity
and a thick low-density layer of material in a two-phase
state [19]. The solutions for two different polytropes were
subsequently patched together and reproduced qualitatively
the features observed using a more detailed yet complex
equation of state for aluminum.

Other work has shown that a single measurement of the
density profile (as a function of distance) for an expanding
1D material can be used to infer the pressure as a function
of density [20]. Previous work on hydrodynamic waves in
generalized VDW fluids in the vicinity of the two-phase
regime, but still above the critical point, showed the possible
presence of rarefaction shockwaves, particularly for foils of
finite thickness [12,21-23].

The present paper treats simple-wave-based solutions, i.e.,
before the rarefaction waves from both sides of a given thin foil
meet. The more complex problem where these two rarefaction
waves meet at the center has been treated analytically for an
ideal gas [13]. Here, a 1D fluid model with a generalized VDW
EOS is employed to find the types of rarefaction waves and
their inherent features in the dynamics of the foil expansion,
both semianalytically (by numerically integrating a system
of ODEs) and numerically using the 1D planar Lagrangian
hydrodynamic code DISH [24]. In this paper, we categorize the
possible types of rarefaction waves in generalized VDW fluids.

II. GEOMETRY AND METHOD

The initial foil is modeled by a 1D semiinfinite slab of
material that initially extends from z = —oo to z = 0, and
from —oo to 400 in the x and y directions. In spite of being
1D planar, the model is nevertheless a good approximation
for higher-dimensional geometries at early times, since the
out-flowing material would extend to distances much smaller
than the radius of the heating beam. For later times, 2D and
3D solutions of the hydrodynamics equations introduce new
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characteristic length scales, e.g., curvature radius, making a
self-similar solution impossible.

The foil at initial density pg is assumed to have undergone
uniform and instantaneous heating to temperature 7. This is a
valid assumption when the heating time is much shorter than
the hydrodynamic time—the time for the rarefaction wave
to reach the center of the foil—and when the deposition is
volumetric, as with x-ray or ion beam heating.

A fluid description employing the VDW EOS is used to
describe the dynamics of the heated target. The VDW EOS
is a “cubic” EOS (i.e., one in which the density expressed as
a function of P and T is the solution of a cubic equation in
p), chosen in this paper for its mathematical simplicity and its
two-phase behavior. The VDW picture for monoatomic fluids
assumes (i) a hard-sphere representation of atoms in a fluid,
(i1) a meaningful separation of potential into a strong short-
ranged repulsive part and a weaker long-ranged attractive
part, (iii) that the weaker long-ranged attractive forces can be
modeled as a mean field, (iv) and that intermolecular hydrogen
bonds, directional intermolecular covalent bonds, and ionic
forces are negligible. In this paper, we employ a generalized
version (see, e.g., Ref. [21]) that includes internal degrees
of freedom and enables richer physics of internal modes,
e.g., molecular rotations and vibrations can be included. The
simplifications adopted in items (i) through (iv) above restrict
the applicability of the VDW EOS and may hinder quantitative
investigations of rarefaction waves using the VDW EOS.
However, the VDW picture has been successfully applied to
interpret a wide range of condensed matter properties [25] and
can be improved in order to quantitatively investigate a broader
set of fluids for design purposes [26]. In this paper, our intent
is to give a concrete example of the variety of behaviors that
can occur for an equation of state that exhibits a liquid-vapor
phase change. The simplicity of the EOS allows us to identify
the boundaries in a dimensionless two-parameter space for the
eight classes of rarefaction waves identified in this study. It
is often useful to compare experimental data with known (but
idealized) solutions to the fluid equations. We also believe
these similarity solutions could be useful in benchmarking
more complicated hydrodynamic codes.

The Maxwell construction is also employed in order
to avoid the microinstabilities that occur during a phase
transition. However, because it is an equilibrium theory, the
Maxwell construction cannot model droplets and bubbles
created in the two-phase regime. The numerically challenging
problem of resolving droplets and bubbles in a simulation [27]
could yield a more accurate description of the rarefaction
waves.

III. HYDRODYNAMICS OF THE VAN DER WAALS FLUID

A. Hydrodynamics

The continuity and momentum equations for a neutral and
nonviscous fluid in the absence of a mass source or sink for
the 1D Cartesian Eulerian fluid system [11-13] are

d apv
_’0 + L
at 0z
av av 1dp

=0,
(D

E—i_v&_ 09z’
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Here, p, p, and v are, respectively, the fluid mass density,
pressure, and velocity at time ¢ and axial coordinate z.
Equation (1) decouples by employing P = v+ [ and M =

v— I with I(p) = p’; %‘f/) dp’ and ¢, the sound speed defined

as ¢;2(p) = dp/dpls. po is the density of the uniformly heated
fluid at the initial time # = 0. The subscript s means that the
derivative is taken at constant entropy. The use of the self-
similar variable & = z/¢ eliminates an independent variable,
and writing " as the total derivative with respect to &, Eq. (1)
simplifies to

(w+ce, —EP'(E) =0,

©))
(v—c; — M) =0,
which yields
(v—c;—&)=0 and P'(§)=0, (3a)
or(V+c,—&)=0 and M'(§)=0. (3b)

Foratypical EOS (dp/dV?|, > 0), the asymptotic solutions
of the system set conditions on the sound speed and the fluid
velocity. In the dense fluid, i.e., for £ « 0, the sound speed
must be nonzero and the fluid velocity equal to zero. In the
vacuum side, i.e., for & > 0, the sound speed must tend to zero
and the fluid velocity must be positive. Equivalently,

for§ «0,¢; >0 and v — 0,

“

andfor £ > 0,¢, — 0 and v > 0.

Because Eq. (3b) does not fulfill the asymptotic conditions
of Eq. (4), Eq. (3a) is the valid solution and sets the
hydrodynamics equation,

£(p) = —1(p) — cs(p). )

¢s(p) depends on the thermodynamical properties of the
fluid expansion, henceforth modeled by the VDW EOS.

B. Equation of state: The generalized van der Waals model
The VDW EOS is described by the following equations:

okT s

L E———,S 6
b= A —p) (e)
k 1—bp 273
s = In ( Amgpy——2 20, (6b)
AMamu A
] 2 kT 1
= A —2ap,  (6c)
3p s f Amumu (1 - bp)2
f kT
=< — ap. 6d
€=3 Amo ap (6d)

Here, p, p, T, s, ¢y, and € are, respectively, the pressure,
mass density, temperature, entropy, sound speed, and the
energy density of the fluid. A is the mass number of the atomic
species of the fluid, k is the Boltzmann constant, and 1,y
is the atomic mass unit. A = h/(27 AmamukT)"/? is the de
Broglie wavelength. A is the Planck constant. Aq is an arbitrary
normalization constant that has no effect on the dynamics and
will not appear in the subsequent treatment of the rarefaction
waves. a and b are the VDW constants of the fluid whose
derivations can be found in the literature [28] and whose
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experimental values can be found in reference tables [29] for
a number of gases and compounds, but, for many materials
that have high critical temperatures, the constants have not
been measured or yield large measurement uncertainties [10].
In Eq. (6) and throughout this paper, the VDW EOS has been
generalized to arbitrary numbers of degrees of freedom f > 3
in order to account for more complex material compounds. The
standard VDW EOS for monatomic molecules has a number
of degrees of freedom f = 3. In Eq. (6a), the first term in
the right-hand side models the strong short-ranged repulsive
atomic forces while the second term models the long-ranged
attractive forces.

The critical pressure p., density p., and temperature 7, are
defined at the inflection point dp/dp|r = 82p/dp*|7 = 0 and
yield

1 _la and kT, _Sa 7
Pe=1%7 Aams 276"

Furthermore, a characteristic sound speed C?,o = pc/pec
and a characteristic energy density €, = €(po.,T.) = (4f —
9)/27 x a/b are defined based on the critical parameters.
Note ¢?, is not the sound speed at the critical point, rather
a characteristic speed that we chose to simplify the equations.
The sound speed at the critical point is 24/3/f ¢;. 0.

For generality, dimensionless quantities are henceforth
employed by scaling all dimensional quantities with the
critical or characteristic parameters above-mentioned. In what
follows, tilded quantities are the dimensionless counterparts
of dimensional quantities such that = p/p., p = p/pe,
T =T/T.,¢(p) = cs(p)/cs0, and € = €/e,.

From Eqgs. (6) and (7), the dimensionless VDW equations
yield

57

p=8"— —3p, (8)
3—-p

g 0% 3Py

§= % (L7, (8b)
k/(Amamu) 2p
op 2 24T

p=lr) 12 AT (8¢)
05l f G-p)
4 - 9

= M 5 B (8d)
4F—9 4f-9

Here, s, = s(p.,1.). There exists a regime of instability
where 35/3p|7 < O for the isotherms T < 1 since the density
increases for a decreasing pressure, which is unphysical for
a fluid in equilibrium. Consequently, the Maxwell construc-
tion [30] is employed to represent an equilibrium state in
this unstable zone: the fluid is modeled as a mixture of a
liquid phase of density p; and pressure p; at mass fraction
x; and a gaseous phase of density g, and pressure p, at mass
fraction x,. The Maxwell construction sets gy, B, P, and p, by
assuming equal pressure p and chemical potential i between
the two phases; i.e., pi(T) = po(T) and ji;(T) = fig(T). The
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latter condition is equivalent to f%/g(ﬁ — Pg)dV = 0. Here

V = 1/p is the dimensionless specific volume.
The liquid and gas mass fraction x; and x, is defined by
AT p = po(T)
P o(T) = pe(T)
BT = (D)
xg(p. Ty = P2 L PR
b pe(T) — pi(T)
The emphasis in this paper is on the isentropic evolution
of the VDW fluid, i.e., §(5,T) = § is constant where §j is
the initial dimensionless entropy of the fluid. This hypothesis

eliminates one of the two independent parameters in Eq. (9)
and yields

3 3— 0 be (To\'? 35 p
xl(T)=1n< ‘f"@(r‘)) )/ln( ‘fl@),
3 —Pg Po \ T, 3—-0g O a
) 3—p0pi (To)" 3— e B
xo(F) = n <_p&(_) ) / In <_p&)
3—0 P\ T, 3— D1 Pg

The density in the two-phase regime may be expressed as a
function of temperature only:

AT (T)
X (DT + xi(T) (T

To complete the calculation of the self-similar evolution,
we need to calculate the sound speed in the two-phase
regime. Since the pressure may be written as a function
of the temperature only ﬁ(f’) = ﬁ(ﬁz(T),T) = ﬁ(ﬁg(f)j’),

2 _ 3pG.p), _ dp(Ty/dT
the sound speed may be calculated, ¢; = o5 l; = dp(T)jdT*

so that I(p) is the sum of the contribution before entering
the two-phase regime plus the contribution in the two-phase

e R W ax 1 (P ap) dp g
regime: [(p) = fﬁ/;b %’J)dp + fﬁi(f‘b) %ﬁdT.

xl(ﬁ’ 7~1) =
)

p(T) = (11
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FIG. 1. (Color online) Diagram determining which type of rar-
efaction waves to encounter depending on initial entropy §, and
number of degrees of freedom f.
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FIG. 2. (Color online) The rarefaction waves of (a) case 1 and (b) case 2. Each of the subfigures contains three plots. In the (i) subfigures of
each cases are represented in full blue line the isentropic trajectory of the rarefaction wave, in dashed red line the Maxwell-constructed binodal
between single- and two-phase regime, and in dotted line the unstable boundary in the single-phase regime. In the (ii) and (iii) subfigures of
each cases are represented in blue line the semianalytical solution, and the purple line is the numerical solution of the density and pressure

profiles. Zones of interest of the rarefaction waves are zoomed.

It can be shown [12] that a shockwave is possible when
d*p/dV?; <0 and their existence has been numerically
predicted for a foil of finite thickness modeled as a single
phase VDW fluid (subsequently referred to as case 1 and case
2 in Fig. 2) in the complex wave regime [21], i.e., when the
rarefaction waves from the ends of the foil meet.

Eight types of rarefaction waves that depend exclusively on
the initial entropy and the number of degrees of freedom, as

shown in Fig. 1, are found from the isentropic trajectory of
the VDW fluid in the (5, T') diagram and are plotted as a blue
full line in the eight upper subplots of the (5, T) diagrams
in Figs. 2, 3, and 4. Also depicted in the upper subplots of
Figs. 2, 3, and 4 are the Maxwell-constructed binodal between
the single-phase regime and two-phase regime in red dashed
line and the shockwave boundary in red dotted line. Note that
even though the shockwave boundary in red dotted line is
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FIG. 3. (Color online) The rarefaction waves of (a) case 3, (b) case 4, and (c) case 5 are displayed. See annotations of Fig. 2 for details.

valid only in the single-phase regime, it has been included in
all the diagrams even when it is not valid in order to see the
proximity of the shock regime to the single-phase regime. For
f > 34, shockwaves can be observed for some isentropes [23]
since part of the shockwave boundary is above the Maxwell-
constructed binodal.

As expected, these isentropic trajectories in the (5, T)
diagram yield different shapes of density and pressure profiles
in the next section.

C. Dimensionless solutions

The hydrodynamic Eq. (5) is scaled by ¢, o and yields
£(p) = —1(p) = &(p), (12)

which completes the set of dimensionless equations. Here,
é(ﬁ) = E(P)/Cs,o, I(ﬁ) = I(/O)/cs,O, and 55(;5) = Cs(lo)/cs,0~

This analysis is applicable to any VDW fluid as the solutions
can be scaled back to dimensional quantities using the appro-
priate A, a, and b that characterize a given chemical element.

In the following, we denote the variables with subscript
“b” their values at binodal. While 9 5 /9 5|7 no longer reaches
negative values due to the Maxwell construction, it is no
longer a smooth function of g at p = p; as 8ﬁ/8,6|f(ﬁ;r) #*
0p/9pl7(p, ), which leads to the discontinuity of the sound
speed at § = p,. From Eq. (12), a discontinuity in £ is
therefore expected each time an isentropic trajectory crosses
the Maxwell-constructed binodal in the (p, p) diagram.

This set of dimensionless equations is semianalytically
solved using Mathematica [31] and compared against the 1D
planar Lagrangian hydrodynamic code DISH [24].

The density g and pressure p profiles as a function of
the self-similar variable £ of each of the eight types of
rarefaction waves under investigation are represented in the
central and lower parts of Figs. 2, 3, and 4. As the density
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FIG. 4. (Color online) The rarefaction waves of (a) case 6, (b) case 7, and (c) case 8 are displayed. See annotations of Fig. 2 for details.

and pressure profiles computed numerically by the DISH code
also displayed a self-similar expansion, they are also plotted
in dimensionless variables as a function of the self-similar
variable. In each of those cases, the numerical simulations
showed that the entropy is conserved.

In cases 1, 3, and 6 the semianalytic similarity solution and
the hydrodynamic code DISH agree well. The plateau region
in density, temperature, pressure, and velocity that occurs in
the transition to the two-phase regime (in cases 3 and 6) is
faithfully reproduced in DISH as well as in the semianalytic
similarity solution.

In cases 2, 4, 5, 7, and 8, the fluid follows a trajectory
such that 825/dV?|; is less than zero for a part of the fluid’s
trajectory in the (4, T) diagram (where V = 1/5). Asindicated
in Refs. [12,21], this implies an unstable region where shocks
may form. A simple integration of the semianalytic solution
yields a double valued (unphysical) density distribution (see
Figs. 2, 3, and 4). The DISH code yields a sharp density

gradient in this unstable region (shown in purple), although it
is well resolved (see Fig. 5) and does not have a discontinuity in
the pressure and so is technically not a shock. The asymptotic
density, temperature, and pressure before and after the unstable
region (where 825/dV?|; < 0) are nearly identical in the
semianalytic solution and in DISH. The solution in the unstable
region indicates a strong density and pressure gradient,
followed by a more conventional rarefaction wave.

Case I: f = 20, To = 2, po =2.7.
The fluid stays in one phase continuously varying from high-
density fluid to a gas. The rarefaction wave does not display
any plateau or unstable features. There is a good agreement
between the semianalytical solution and the numerical solution
(DISH).

Case 2: f =100, Ty = 1.07, po = 2.7.
The fluid stays in one phase continuously varying from
high-density fluid to a gas. Because f > 34, as previously
mentioned, the shockwave boundary is above the Maxwell-
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FIG. 5. (Color online) The numerically computed temporal evolution of the density profiles (in purple lines) shows that the kinks of the

semianalytical solutions (in blue lines) are well resolved, and the evolution remains self-similar. The purple line is the interpolation of the
numerical solution over time ranging from #; to #;. The purple dots represent the numerical solution at a given time ?,, t,, and #;. (a) Case
2 (po =2.7, Ty = 1.07, £ =100). (b) Case 4 (gp = 2.7, Ty = 1, f = 30). The subfigures (i), (ii), and (iii) represent different snapshots at

different times, as denoted on the figures.

constructed binodal in the (p, §) diagram. The studied case
crosses the shock boundary. A self-similar pressure gradient
forms in the numerical simulation and nonphysical “z”-shaped
density and pressure profiles occur in the semianalytical
solution. The semianalytical and numerical models not do
agree, as the same analytical model evidently does not model
well the unstable region, well-resolved numerically as shown
in Fig. 5.

Case 3: f =3, To =1, po = 2.7.
The fluid starts as a single-phase fluid, enters the two-
phase regime as a liquid, and stays as a two-phase fluid.
A single-density plateau whose length is a function of §
and f is observed. There is a good agreement between the
semianalytical solution and the numerical solution.

Case4: f =30,Ty =1, py = 2.7.
The fluid starts as a single-phase fluid, enters the two-phase
regime as a liquid, and leaves the two-phase regime to revert
to a single phase that is gaseous. The rarefaction wave yields
one plateau and a kink. The kink that can be observed in
the semianalytical solution is simulated as a steep self-similar
profile in the well-resolved numerical simulations (see Fig. 5),
not modeled in our analytical model.

Case 5: f =100, Ty = 1.03, po = 2.7.
The fluid starts as a single-phase fluid, becomes a liquid, enters
the two-phase regime, and then quickly leaves the two-phase
regime to revert as a single gaseous phase in the shockwave
regime. This case is similar to case 4 with features from case 2.

Case 6: f =3, To = 10, po =2.7.
The fluid starts as a single-phase fluid, enters the two-phase
regime as a gas, and stays as a two-phase fluid. Similar to
case 3, a single-density plateau whose length is a function
of § and f is observed. The length of the plateau is smaller
than case 3 and the shape of the rarefaction wave is more
similar to case 1. There is a good agreement between the
semianalytical solution and the numerical solution. Here, the
bump in the purple numerical profiles is due to numerical
artifacts as the steep gradient is difficult to resolve in the
our hydrodynamic code. This case has similar features to
case 3.

Case 7: f =20, Ty = 1.35, jp = 2.7.
The fluid starts as a single-phase fluid, enters the two-phase
regime as a gas, and quickly leaves the two-phase regime to
revert to a single gaseous phase. This case has similar features
to case 4.
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Case 8: f =50, Ty = 1.125, py = 2.7.
The fluid starts as a single-phase fluid, becomes a gas, enters
the two-phase regime, and then quickly leaves the two-phase
regime to revert as a single gaseous phase in the shockwave
regime. This case has similar features to case 5.

IV. DISCUSSIONS

The 1D planar isentropic hydrodynamic model of a gener-
alized van der Waals fluid homogeneously and instantaneously
heated to temperatures of order the critical point predicts the
presence of eight types of rarefaction waves depending on the
number of degrees of freedom f, the initial density pp, and
temperature 7Tj in the simple-wave regime.

Our work shows that for certain values of f and §j in
the simple-wave regime, the fluid can go through a region
of instability (9%5/3V?|; < 0), in which a strong pressure
gradient (possibly a shock) forms. This is not in disagreement
with Ref. [21], which found that shocks formed in the
nonsimple wave regime, after the rarefaction waves collided
in the middle of the foil. Interestingly, the numerical solutions
in the unstable regime appear to be self-similar as seen

PHYSICAL REVIEW E 92, 033019 (2015)

from overlaying density and pressure profiles from different
times. Nevertheless, the numerical solutions do not show
the formation of a shock wave. We have not resolved this
discrepancy and can only conclude that a steep density gradient
(if not a shock) forms in the unstable regime.

This work should be useful in interpreting and categorizing
the types of behavior observed when experiments are carried
out that produce warm dense matter conditions by volumet-
rically heating thin foils and using the subsequent dynamic
behavior to infer properties of the matter.
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