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Asymmetry-induced electric current rectification in permselective systems
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For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response
is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the
concentration distribution, electric potential, and current-voltage response for a four-layered system comprised
of two microchambers connected by two permselective regions of varying properties. It is shown that any
additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property
of the permselective regions, results in current rectification. Our work is divided into two parts: when both
permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case
we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For
the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the

magnitude of the rectification can be of order 102—10°.
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I. INTRODUCTION

Permselective media such as nanoporous membranes
or nanochannels possess a symmetry-breaking property—
permselectivity—that allows preferential passage of charge
carriers of one sign over the charge carrier of the opposite sign.
Thus, under the application of an external electric potential
or electrical current, the transport of ions through such media
exhibit a preferred direction in forming concentration gradients
within the system. On one end of the system a region depleted
of ions is formed while at the other end an enriched region
is formed. The formation of these concentrations gradients is
determined by a steady-state current-voltage (I — V') response,
which accounts for the numerous properties of the system
including the geometry, the bulk concentration, and the surface
charge properties of the permselective media [1,2]. The for-
mation of these concentration gradients and the resultant / —V
relation are collectively termed concentration polarization
(CP). The steady-state response of the system is of much
importance and is used to characterize the systems, such as the
conductance in the Ohmic region [3—5] or the diffusion-limited
current of the system [6,7].

Understanding CP is of much importance as it is the
governing physical mechanism in electrodialysis (ED) desali-
nation systems ([8,9] and references therein) where under the
application of an external electric field salts are removed from
one desalted stream into another brine stream. In this context,
desalination systems have received a lot of attention where
much of the emphasis was on the nonlinear response due to
the formation of an extended space-charge layer (SCL) [10],
surface conduction [11,12], and numerous electroconvective
mechanisms [13-18]. The analysis in these works analyzed
the effects in single microchamber, which was usually one
dimensional (1D) thus making the system homogenous.
Recently, the linear [5,19,20] and nonlinear [21] effects were
extended to the more realistic three-layered heterogeneous
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geometry encountered in numerous experiments [3,4,22-25],
and simulation [25-27].

In contrast to an ED system, which operates under an ap-
plied electric current, a reverse-electrodialysis (RED) system
works in the reverse modus operandi, an electric current is
harvested due to asymmetric concentrations at the end of
the system [28-30]. Such systems have also been termed
dialytic batteries [29]. Numerous works, using varying and
substantially different experimental setups [31-35], as well
as numerical investigation [36,37], have shown that energy
could be harvested through fresh water and seawater mixing.
The key point to realize is the inherent potential to harvest
energy at any location at which fresh water rivers pour into the
oceans (approximately 2.2 kJ per liter of fresh water [28,29]).
Regardless of mankind, physics dictates that the fresh water
is going to flow into the ocean, the energy that is harvested
is 100% green energy [38]. It has been estimated that amount
of energy that can be harvested amounts to 2 TW, which is
approximately 13% of the world’s energy consumption [39].
Surprisingly, excluding the pioneering work of Weinstein and
Leitz [29] (which treated membrane systems), little theoretical
work has been conducted in this field. In nanochannel systems
only initial experimental work has been conducted [40—42]
but even in this aspect the full potential of these systems has
not been fully realized. It may not be too surprising that such
asymmetric systems have not received theoretical attention
as up until recently most works focused on the one-layered
systems and as such could not consider bulk concentration
asymmetries specifically or any asymmetries in general. With
the emergence of three-layered models [5,19,20], the need to
address matters of asymmetries has become more pressing.

In this work we shall show that any asymmetries within
a permselective system will cause current rectification. In
their seminal work of Weinstein and Leitz [29] considered
only a 1D system, where based on heuristic principles they
derived a very clever and simple model for the resultant
potential of a dialytic battery under a zero applied electric
current without the effects of CP and with a number of fitting
parameters. In this work we shall methodologically derive a
complete solution, which not only includes the final /—V
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relation but will also include the concentration and electric
potential distributions. No fitting parameters are required in
our model. Although the approach taken by us is not limited to
the number of layers, for illustration purposes we have focused
on a four-layered 2D system comprised of two microchannels
connected by two permselective regions (where the geometry
in each region can be different, Fig. 1) under the forcing
of an external applied potential as well as asymmetric bulk
concentrations. Understanding the effects of two dimensions
(or three dimensions) is of much importance in permselective
systems, which are inherently not 1D. The four-layer layout
of such a system will allow us also to consider two additional
asymmetries that have thus far received only initial consid-
eration: (i) asymmetric permselective geometries [43,44] and
(i1) asymmetric permselective charge properties. In an attempt
to keep the introduction structured, we have thus far only
provided a review of the first case. For the second case we
will provide the introduction at the beginning of Sec. IV,
which deals with the case of asymmetric permselective charge
properties.

This work is divided in the following manner. In Sec. II
we shall introduce the governing equations and describe the
geometry. Section III focuses on a more standard four-layered
system where both permselective regions are assumed to be
ideally permselective and both regions are either cation or
anion permselective. We derive a general solution and discuss
the numerous consequences, which include rectification and
energy harvesting. In Sec. IV. we focus on a four-layered
system where each permselective region’s surface charge is
of different sign. Once more, we outline the model and its
principle assumptions, derive the solution, and discuss the
outcomes. We note that in Sec. IV the assumption of ideal
permselection is lifted but another assumption is required for
an analytical solution. Finally, concluding remarks are given
in Sec. V.

II. GOVERNING EQUATIONS AND GEOMETRY

The nondimensional equations governing steady-state con-
vectionless ion transport through a permselective medium

for a symmetric and binary (z; = —z_ =1, D, = D_ = D)
Region 1
b=V Region 2 Region 3 Region 4
Py =7
— h
I IS S e, | PR
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X >
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FIG. 1. (Color online) Schematic describing a two-dimensional
four-layered system comprised of two microchambers (regions 1 and
4) connected by two permselective mediums (regions 2 and 3). The
geometry of each region is described in the schematic while the
surface charge properties (or the counterion concentrations) of the
permselective regions are defined in Secs. III A and IV A. Black lines
prescribe zero flux BC (j1 - n = 0,0¢/dn = 0) while the magenta
lines at the two opposite ends x = 0, A4 prescribe Dirichlet BCs and
are given in the schematic.
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electrolyte are the Poisson-Nernst-Planck (PNP) equations

V-(Vey +¢e4Vp) ==V . j. =0, (D
V. (Ve —c V¢)=-V.j =0, )
26’V = —p,, 3)

wherein Eqs. (1) and (2) are the Nernst-Planck equations satis-
fying the continuity of ionic fluxes conditions. The decoupling
of the electrodiffusive problem from the electroconvective
problem in the underlimiting regime is based on the smallness
of the Peclet number for inhomogeneous media [6,7]. The
cationic and anionic concentrations, ¢; and é_, respectively,
have been normalized by one of the bulk concentrations, i.e.,
Co taken as either ¢; or ¢4, where the tilde stands for the
parameter in its dimensional form. The spatial coordinates
have been normalized by the diffusion length (DL) L, the
ionic fluxes have been normalized by Dé&,/L. Equation (3) is
the Poisson equation for the electric potential ¢, which has
been normalized by the thermal potential 7T/ F, where N is
the universal gas constant, 7 is the absolute temperature, and
F is the Faraday constant. The nondimensional charge density
Pe> appearing in Eq. (3) is normalized by z F &y. The normalized
Debye layer is ¢ = Ap/L, with

X _ eosrfﬁT (4)
D=y 2F2,

where ¢y and ¢, are the permittivity of vacuum and the relative
permittivity of the electrolyte, respectively. The space-charge
density is given by the relation

Pe =Cy —c_ — Nabyx — N3b3 s, (5)

where k represents the regions (k = 1,2,3,4, and see Fig. 1)
and §; x is Kronecker’s § (I = 2,3 will be used throughout this
paper to denote the permselective regions). The properties for
N, and N3, which are the excess counterion concentrations
in regions 2 and 3, will be defined differently as needed in
Secs. I and I'V.

Our model consists of a four-layered system in which
two microchambers are connected by permselective mediums,
wherein all four domains are of rectangular shape, as shown
in Fig. 1. The left microchamber, termed “region 17, is
defined in the domain x € [0,L],y € [0,H;]. The perms-
elective mediums, termed “region 2” and ‘“region 3, are
defined by the domains x € [Li,L; + d5],y € [0,h;] and x €
[Ly +dr, Ly +dy +dsl,y € [0,h3], respectively. The right
microchamber, termed “region 4”, is defined in the domain x €
[Li+d,+ds,Ly +dy+d;+ L4l,y € [0,Hs]. Such a ge-
ometry realistically describes systems that have been the
subject of numerous recent experiments [41,43,44]. The spatial
coordinates have been normalized by the DL length, L (L can
be chosen arbitrarily as either L, or L4 [5]). Without loss of
generality, we shall formulate the solution for general values
of the dimensionless L and L4 while we shall remember that
at least one of these values when normalized is unity.

Under the local electroneutrality (LEN) approxima-
tion [1,2,10,14], one takes ¢ = 0, as a result of Eq. (3) p. = 0.
The implication will be discussed in each of the following
sections separately.
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III. SYMMETRIC IDEAL PERMSELECTIVE REGIONS

In this section we will discuss the case where N, and N;
are of the same sign. We will arbitrarily assume, without loss
of generality, that they are positive. We assume that the media
are ideally permselective, hence the transport of negatively
charged ions through the interfaces is zero (j_ = 0).

A. Assumptions

Under the LEN approximation, p, = 0, within the mi-
crochambers (regions 1 and 4) the positive and negatively
charged ion concentrations are equal (c; = c_ = c¢). Upon
substitution of this into Eqgs. (1) and (2), and taking its sum
leads to

Vie=0. (6)

From the careful inspection of the boundary conditions
(BCs) in an ideal permselective system under steady-state
conditions, the coion flux is zero everywhere (j_ -n = 0)
leading to [from Eq. (2)] [5-7]

¢=1Inc+¢, 7)

where ¢ is an integration constant. The assumption of an ideal
permselective medium usually corresponds to the case where
N»3 > 1 and the coion approximation is of order ~1/N. For
ideal permselectivity, careful inspection of the BCs and the
remaining assumptions leads to the approximation ¢34 &
Noj3,c03- = 0.

B. Boundary conditions

In this part we shall provide the appropriate BCs required
for the solution of Egs. (6)—(7) for this section. At the opposite
ends of the system we require the concentrations to have a bulk
value, which are not necessarily equal, and the potential drop
over the entire system is V

cx =0)=2¢1, clx = Ay) =84, ®)

px=0)=V, o =A4=0, €))

where Ay = L) +d> +d; + Ly is the length of the entire
system. It should be pointed out that the ideal permse-
lective assumption requires that max(¢,C4) << min(N;,N3).
Requiring no penetration of ions (j+ - n = 0, where n is the
coordinate normal to the surface or symmetry plane) along
with electrical insulation d¢/dn at the microchamber walls
(or at the symmetry planes), translates into
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This can be written explicitly as

cy(x,Hy) = ¢y(x,0) =0, k=14 (11)

At the permselective medium surfaces located at x = A| =
L],X = Az = Ll +d2,andx = A3 = L] + d2 +d3 we make
a simplifying assumption of uniform current density along the
permselective interface. We shall also require the continuity
of the total electric current per unit width (in the z-coordinate

direction), I (normalized by F D&), such that

—1/(2hy) 0<y < hy,
X = A ’ = . ’ 12
exlx 1Y) {O otherwise, (12)
—1/(2h3) 0<y < hs,
o(x = Az, y) = {0 . , (13)
otherwise,
@x = Az, I = izhz = i3h3. (14)

Equation (14) represents the requirement that the total electric
current is conserved at the interface x = A, where a dis-
continuity exists in the geometries thus leading to different
electric current densities i»,i3 (normalized by FD&,/L). To
avoid ambiguity, we shall discuss the solutions only in terms
of the current [ itself. In the above equations we have
used the simplifying assumption of uniform ionic current
density along the interface between the permselective medium
and the microchannels. The above-mentioned equations are
satisfactory for the solution of the concentration distributions
in each of the regions, which will be solved shortly.

We now provide the BCs required for the solution of the
electric potential. At the interface between the regions, we
require the continuity of the electrochemical potential

p+(x,y) = In[es(x, )] £ ¢(x,y). 15)
Within an ideal permselective medium, c_ = 0, leading to an
infinite p_, thus we apply this condition only for p,. We
require the continuity at three points along the centerline at
the interfaces

k=123.
(16)

Myp(x = Ap,y =0) = gy j1(x = Ag,y = 0),

C. Concentration solution

From Egs. (6), (8), and (11)— (13), using the separations of
variable technique, under the assumption of ideal permselec-

g—; =0. (10) tivity, one gets the two-dimensional concentration distribution
|
o0 .
1(x.y) = & — ZLHlx - h;Hl Z: Aziziﬁ(fzzl) Sinh(,x) COS(hny), a7
Cra(x,y) =Nay cn(x,y) =0, (18)
c3(x,y) = N3, c_3(x,y) =0, (19)
Ca(r) = &4+ 3By =)+ S S G (8] costinn), 20)

n=

- K2 cosh(k, La)
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with
n Tn

Ay = —, Ky=—.
n H, Kn H,

The first two terms in Egs. (17) and (20) are the one-
dimensional concentration distributions, which have been
modified to have general bulk values. The third term ac-
counts for the 2D distribution. For a complete discussion
on the effects of the third term in Eqgs. (17) and (20) see
Refs. [5-7,19,20,45]. Of these works, only Refs. [5,19,20]
focused on three-layered systems whereas here we provide a
solution for a four-layered system, where the additional term
appears rather trivial. The added bonus is that we account for
asymmetric bulk concentrations as well as asymmetric perms-
elective geometries (that is not possible in a three-layered
system). All these asymmetries will lead to rectifications as
we shall discuss shortly.

21

D. Electric potential solution
Using Egs. (7) and (9) leads to the following electric
potential distributions within the microchambers

ci(x,y) Y
¢l ’

$s(x.y) = In [M}
&4

()bl(xsy) =In |:
(22)

In contrast, in the ideal permselective regions 2 and 3,
using Eq. (1) under the assumption of ideal permselectivity
(j-=0,j+ =1/h), yields the solution for the electric
potential

dr(x,y) = — x4+ ¢y ¢3=-— x+ ¢35 (23)

h2N2 h3N3

Requiring continuity of the electrochemical potentials at the
three interfaces [Eq. (16)] we find the two unknowns ¢,, ¢3
and a I —V relation

_ IA
3= — +2Infes(x = As,y = 0)] — In(N3éy),  (24)
h3N3
L N IA, 1A,
= In{ — — , 25
¢ = @3+ n(N2>+h2N2 TN (25)

d» ds
Vel n
haN>  h3N;

1 _
Co +——Ls+ 1
C4+ H, 4+ 1fs

+2In - —In (c—“) (26)
A i C1
& ——L—1
1 o, | N
with
_ 1 & sin(Agha)
= tanh(A,L1), 27
fi=i ; s tanh D) 27)
1 & sin(i,hs)
fi = oL ZZI: = tanh(k,, L4). (28)

The I—V relation given by Eq. (26) is comprised of three
different terms. The first term represents the Ohmic resistance
of the nanochannels. The second term is a nonlinear resistor
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that accounts for depletion and enrichment within the mi-
crochambers. The resistor also accounts for the field-focusing
effects at the interfaces through the f; functions. The behavior
of the f; functions in the varying limits of heterogeneity, i.e.,
large and small &/ H, has been recently investigated [7]. In
addition, the asymmetric bulk concentrations contribute in the
following manner: (i) introduction of the third term in
Eq. (26); (ii) playing an important role in the microchamber
nonlinear resistance in the second term. In a system with
symmetric bulk concentrations the depleted (enriched) region
has a concentration that is lower (higher) than the bulk
concentration. In principal, depending on the bulk values,
geometry, and current bias, one can have that the enriched
region will indeed have an interfacial concentration higher than
the connecting reservoir’s bulk value but it will still be lower
than the depleted concentration at the opposite microchamber.
A key point to realize from Eq. (26) is that any asymmetry
(bulk concentration, geometric, or both) in the system will
result in current rectification.

E. Analysis

We shall now elaborate on a number of these outcomes
from an intuitive standpoint, after which we shall demonstrate
the addressed points.

Energy harvesting. The final term in Eq. (26) results in the
ability to harvest an electric current I, from the system without
applying an external potentialdrop V = 0.If ¢, = ¢4 = 1, then
for reasons of symmetry, when the system is not forced, it is
in equilibrium and thus the current is zero. In contrast, when
€1 # €4, an inherent concentration gradient exists—due to a
gradient in the electrochemical potential and the symmetry-
breaking property of ion permselectivity. The existence of a
concentration gradient requires that the current is nonzero.
The exact value of I needs to be solved by the transcendental
equation of V = 0. It is clear that as the asymmetry ¢ /¢4 is
increased so will the harvested electrical current.

Limiting current. The limiting current, defined when the
concentration within the microchannel interfacing the perms-
elective medium is zero [Eqs. (17) or (20)], depends not only
on the geometry but also on the on the bulk concentrations

lim,1 = 51/<i + fl>, (29)
’ 2H,;

liim,4 = —@4/<i + f4> (30)
’ 2H,

It is observed that even for a symmetric geometry about
x=Ay (hp =h3, dy =d;, H = Hy, L; = L,), the asym-
metric bulk concentrations would lead to asymmetric limiting
currents.

Conductance. We can look at the current response for small
currents [ < 1,

d d L fl L s
V=1< X S B A +2ﬁ>

+
h2N2 h3N3 @1H1 C1 64H4 @4

i (C_4> a1
C1
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This equation can be written in a simpler and more intuitive
manner

V =IR+V,, (32)

where R is the total resistance of the system and has
been investigated in previous works [5,20] and the shifted

potential [29,33] is
C4
Vo =1n <T> (33)
Ci

When this potential is applied, the inherent concentration
gradients are countered leading to a new equilibrium state
with I = 0. Equation (32) predicts that the current response
about Vj is antisymmetric, hence the 7/ V slope ratio between
positive and negative current should be unity. As we will see
in the results (Sec. III F) even at very small currents this ratio
is not unity. This indicates that if one is interested in such a
ratio, one should also account for the higher-order terms.

Rectification. It makes sense to define the rectification factor
(RF) around the shifted electric potential

Iy-y,

RF = (34)

Iy .y,

From this expression, it can be shown that current recti-
fication does not only occur for the limiting currents but at
all applied voltages. Rectification does not occur solely in an
ideal permselective system but also in a nonideal permselective
system. In the extreme case of vanishing permselectivity, we
would still have a current-voltage response that was dependent
only on the geometry and bulk concentrations, but there
would be no rectification. In other words, the rectification
occurs solely due to the symmetry-breaking property of ion
permselectivity.

F. Results

We shall start investigating the behavior of asymmetric bulk
concentrations. For the sake of simplicity we start by investi-
gating the behavior of a simple 1D system with a symmetric
geometry. In Fig. 2(a) we can see the effects of asymmetric
bulk concentrations are manifested as shifts in the intersection
of the /—V curves and the ¥ and y coordinates, change in
the limiting current, and change in the slope (i.e., differential
resistance). It can be observed that at high voltages, the current,
calculated via numerical simulations, surpasses the limiting
value. This stands in contrast to the above theoretical relations,
which assume the LEN approximation and is due to the
formation of the extended space-charge layer (SCL) [10,46]
that is captured in the numerical simulations. While in the
former case ¢ is identically zero, in the latter case it is small
(¢ < 1) but finite, thus, allowing for nonelectroneutrality to
exist, capturing both the quasiequilibrium electric double layer
(EDL) and the nonequilibrium SCL. As ¢ decreases so does
the discrepancy [10,46]. In addition, ideal permselectivity is
not a priori assumed by the numerical simulations. However,
by taking N > 1 one can practically ensure that the coion
concentration will be O(N~"), which will also lead j-=0.
In Fig. 2(b) we demonstrate the behavior of the rectification
factor. As we increased the asymmetry ratio in bulk con-
centrations we increased the range in which the rectification
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factor changes. Our theoretical predictions are confirmed by
numerical simulations (details can be found in the Appendix).

In Fig. 3 we primarily investigate the case of symmetric
bulk concentrations and microchamber geometries (the case
of asymmetric microchamber geometries was covered in our
previous work [S5]) with an asymmetry in the permselective
medium geometries. It can be seen that by increasing the ratio
of the permselective medium heights (% /h3), the rectification
factor increases substantially. Our theoretical model thus quali-
tatively explains the previous experimental results of Yossifon
et al. [43] where asymmetric nanochannel entrance geome-
tries led to ionic current rectification due to concentration
polarization. A quantitative comparison is not straightforward
and necessitates accounting for additional effects existing in
fabricated linear nanochannels, such as net electro-osmotic
flow [47,48], surface conductance effects [11], and nonideal
ion permselectivity [19,49] [N ~ O(1)], which are negligible
in nanoporous membrane systems. We have also added a
curve for the case of an asymmetric bulk concentrations and
asymmetric permselective geometries (solid cyan line), which
accounts for both kind of asymmetries and which is verified
by simulations (red line with squares).

(a)

¢ = 0.5
= =1

¢ =2
[ o Simulations

(b) 22f ]

1.8¢ 1
1.6 1
1.4r 7
<3
~1.20 1

0.8 1
0.6 1
0.41 1

V-V

FIG. 2. (Color online) The (a) /—V curves and (b) RF for a 1D
system. All lengths scales are unity (L4 =d>3 =1) and N3 =
102. The bulk at x = A4 is kept constant & = 1, while the bulk
concentration ¢; is varied. The simulations were conducted for
the following values: L4 =dy3 =1, Ny3 = 102, 6, =2, 6,=1,
e=10"%,
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FIG. 3. (Color online) The (a) I—V curves and (b) RF for a 2D
system where the height /1, was varied. All the length scales are unity
(L14 = dy3 = 1), while the remaining heights are H, 4 = 0.4,h3 =
1072 and N, 3 = 10%. The bulk at x = A is kept constant & = 1. The
bulk concentration ¢; = 1 unless otherwise specified. The simulations
were conducted for the following values: L4y =dy3 =1, Higa =
0.4, h3 = 1072, Ny3 =10%, & =1, ¢, = 2, & = 1073, For the case
of symmetric bulk concentrations V;, = 0 while for the asymmetric
case used here V) = —In2.

IV. ASYMMETRIES IN THE ELECTRIC CHARGE
OF THE PERMSELECTIVE REGIONS

Similar to the dialytic battery, a permselective-media-based
bipolar diode, based on at least two permselective regions of
opposite charges, is not only interesting from a physical point
of view but also from an application point view. From as far
back as the 1960s [50,51] bipolar membrane systems have been
investigated. It was shown, qualitatively, that such systems
display similar properties to P-N junction diodes encountered
commonly in solid-state physics [52]. Perhaps the most
interesting of these properties is the rectification capability
exhibiting a preferred direction in the transport of current.

Sonin and Grossman [53] analyzed the complex system of
four 1D permselective membranes adjacent to each other. Due
to the complexity of such a system they made a number of
oversimplifying assumptions, such as a linear concentration
and electric potential profile within the permselective regions,
which is not always as the case. Grossman [54] later followed
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up with a simpler two-layered model where he investigated the
effects of water splitting on the / —V response. While a detailed
mathematical model was presented for four ionic species,
due to its complexity, numerical analysis was eventually
required. Since then, much work has been conducted on
membrane systems [55,56] (see the recent review [57] and
references therein). Unexpectedly, within the ever-growing
field of nanofluidics, bipolar permselective nanochannels have
also started to receive attention [41,58,59], however, little the-
oretical attention has been given to this subject. Additionally,
the effects of two dimensions have not been investigated at
all. However, a complete theoretical model of a bipolar diode
consisting of a four-layered model (two microchambers and
two permselective regions) has yet to be derived.

In this section we will discuss the case where N; and N3 are
not of the same sign and not necessarily of the same absolute
value. We will systematically derive a I —V relation as well as
the 2D concentration and electric potential distributions under
the assumption of local electroneutrality. Our I —V relation
will indeed predict the diodelike behavior.

In a four-layered system (Fig. 1) if we were to assume
that each of the permselective regions were ideal, then we
would reach the immediate and intuitive result that the cationic
current through the anion region is zero, as well as the
anionic current through the cation region is zero. Due to
the requirement of current conservation this would lead to
the trivial response that the overall current in the system is
zero unless there is water splitting at the interface between
the permselective mediums (which requires two additional
species). This requires that we lift the beneficial constraint of
ideality, which allowed us to derive a general solution without
requiring any additional assumptions. As we shall shortly see,
a different ad hoc assumption will be used to allow us to
continue with an analytical derivation. The consequences of
this assumption and its outcome will be discussed thoroughly.

A. Assumptions

Taking the sum and differences between Eqgs. (1) and (2)
gives two sets of equations

V- [V(eq + )+ (cp —c)VP]
=-V-(Us+Jj)=-V-j=0, (35)

V- [V(ey —c)+ (e +c)VP]
=-V-(j+—Jj)=-V-i=0, (36)
where j is the salt flux density (normalized by D& /L) and
i the current flux density (normalized by F D¢&y/L). Under

the LEN approximation, p, = 0, within the microchambers
(regions 1 and 4) ¢, = ¢ = ¢, hence

Vi =—-1V.ji=0, k=14, (37)

V- (V) =—iV iy =0, k=14 (38)

In permselective regions 2 and 3 we obtain similar equa-
tions, only now instead of requiring the assumption of LEN
we require cross-sectional local electroneutrality

Cy1 —C| = N[’ I = 2’3’ (39)
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and by defining s; = ¢4 ; + ¢_; (I = 2,3) one obtains
V- [Vs,+NV¢]=-V.j =0, (40)

V‘[S]V(b[] =-V.i =0:>S1V¢[ = —1i. 41

Let us analyze the vector components of j; in Eq. (40). Due
to the requirements that the walls are insulating (j4 - y) =0
means that j, = i, = 0 at the walls. A simplifying assumption
would be that both the salt flux and current density are uniform
within the permselective mediums. This reduces Eqs. (40)
and (41) to be 1D (after dropping the x subscripts for the
currents)

Six + Nigie = — i, (42)

SiPre = —ij. (43)

In general one needs to find the j—i relation for our
four-layered problem. A similar problem was recently covered
in the thorough work of abu-Rhal ez al. [19], which investigated
the effects of a single nonideal permselective region (three-
layers system). It was shown there that one can find a nontrivial
relation between j—i that needs be to solved using Lambert
functions and is evaluated numerically. In our case we can
indeed derive a similar j—i relation, however, we would then
be unable to proceed with deriving a basic solution in term
of closed functions. We have therefore chosen to make the
following ad hoc assumption whose consequences will be
discussed later on when they become more apparent

je=—jo = =0, i=2j,. (44)

The physical justification is based on the following heuristic
argument. If we were to assume that the permselective regions
are ideal, than as we have previously mentioned, the resultant
current would be zero. By alleviating this requirement we are
now allowing a small current to be created and transported
through each of the regions. For reasons of symmetries, let us
assume that this current is rather small and equal in magnitude.
While this paper focuses on breaking numerous symmetries
through the system including the sign of the surface charge,
even by assuming a symmetry in the amplitude of the ionic
current densities we shall soon witness that the system will
behave in an inherently asymmetric manner.

B. Concentration solution

It is now quite easy to resolve the concentrations within the
microchambers (region 1 and 4 [Eq. (37)]). The BCs given in
Sec. ITI B remain the same with the sole difference that the BCs
at the permselective interface changes [Eqgs. (12) and (13) are
now ¢k x(x = Ag,y) = 0,k = 1,3]. Since j = 0 from Eq. (37)

Ver =0, k=14, (45)
resulting in uniform concentrations within regions 1 and 4
c4(x,y) = é4. (46)

Within the permselective regions 2 and 3 we solve the
following equations

ci(x,y) = ¢éi,

sM—Mgzo,l:l& (47)
1

PHYSICAL REVIEW E 92, 033018 (2015)
This Bernoulli-type differential equation has a solution

si(x) = :£/2uNix + A, [=2,3 (48)
and since the concentration must be positive we take the
positive branch, and A; is an unknown constant to be found
later. By using Eq. (39) we can rewrite this in term of the

concentrations

S + N[ _ «/21’1le + Al + N[

= [ =2,3.
cxi(x,y) > > , ,
(49)
C. Electric potential solution
Substituting Eq. (48) into Eq. (43) yields
V20N A
o=y =23 50)
!

We thus have four unknown constants of integration, which we
would like to find {A,, A3, B>, B3}. To find these four unknowns
requires continuity of the electrochemical potential [Eq. (15)]
of both the anions and cations at the permselective mediums
boundaries

k=123.
G

e = Ap,y =0) = py j1(x = Ag,y =0),

Equation (51) constitutes six BCs while we have only four
unknowns. Four of the equations will be solved for the
unknowns while the fifth equation will give us the I—V
relation and the sixth relation will give us an additional
constraint to our j = 0 assumption.

Prior to solving for the constants we provide the solution
for the electric potential in regions 1 and 4. Now that the
concentration distributions have been shown to be uniform, the
governing equation [Eq. (38)] reduces to Laplace’s equation

Vg = 0. (52)

The BC:s for the electric potential still include a potential drop
V over the entire system

dp(x=0,y) =V, ¢ =A4y)=0. (53)

Requiring the electrical insulation at the microchamber
walls and symmetry planes

9 _

5 =0, (54)

This can be written explicitly as
¢y(x, Hy) = ¢y(x,0) =0, k=14 (55)
At the permselective surfaces located at x = A, Ay, Az we

continue with the simplifying assumption of uniform current
density along the interface between the permselective medium
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and the microchannels

PHYSICAL REVIEW E 92, 033018 (2015)

Equation (58) represents the requirement that the total electric

—1/Q2hy¢) 0< y < hy, current is conserved at the interface x = A, where a disconti-
Or(x = Apy) = . (56)  nuity exists in the geometries thus leading to different electric
0 otherwise, ..o
current densities i5,i3.
—1/(2h3¢4) 0< y < h3, Since the governing equation and BCs for the electric
Px(x = Az,y) = 0 otherwise 57 potential in this part are identical to those for the concentration
’ in the previous section (Sec. III), this suggests that the electric
@x = Ay, I =irhy =izhs. (58)  potential solutions have a similar form
|
Pix,y) =V — — L_g_sinlah) G costiay) (59)
x,y)=V — X — sinh(X,x) cos(A,y),
1Y 2Hé éhyHy & 32 cosh(h, L) Y
I I =\ sin(k,hz)
X,y) = Ay —x)+ sinh[k,(As—x)] cos(k,y). 60
94(x.3) = F=(Bs =0+ o ;  cosh(e, L) (A4 =0T cos(y) (60)
[
Taking the sum of the anion and cation electrochemical _ _
i ] L - + N
potent%al [Eq. (15)] removes the dependency of the electric By=1 e )+ % —In 03 3 (68)
potential and one gets 2H, N 2
with
(crrc—lx=a, = (Crpt16—k+Dlx=a,, k=123. (61) - /
+ x +.k+ + K Or =4+ N2, (69)

As it turns out this is optimal for the permselective concentra-
tions due to their functional form [Eq. (49)]. At x = A1,A3
this gives

I
Ay =481+ Ny — 2h—N2L1, (62)
2

1
Ay =485+ N3* — 2.=N3As. (63)
3
The condition at x = A, gives the following condition that
needs to be met
N3d
Ry pasacy
2 hs

Nod
482 421 ;2:4

(64)

Such a constraint, which has a dependence on the current,
can only be met if the bulk concentrations are symmetric to
negate the current dependency. Hence, another disadvantage to
assume that j = 0 is that we cannot solve for the most general
problem, which also includes asymmetries in the bulk concen-
trations, but we now have a very simple constraint for the bulk
concentrations, geometries, and counterion concentrations

l=8=1 (65)
[N2ldy  |N3lds

= . 66

i I (66)

By solving for the j # 0 case and finding the j—i relation,
the asymmetric bulk concentrations can also be accounted
for but this shall be left for future work. We shall now
find our two additional constants and /—V relation by using
either the positive or negative electrochemical potential at x =
A1, Ar, Asz. We use the positive electrochemical potential. The
BCs at x = A, A3 yield [including substitution of Eqgs. (62)
and (63)]

v L 0 [0+ M
By=V 1(2H1+f1>+ 1n|:—2 :|, (67)

Finally we use the BC at x = A, and derive the /—V

relation
Ly . Li 03 S-3 02 Si»
Ty i =4 X3 _0-3 22, 042
(2H1+f1+2H4+f“)+<N3 Ny NN
S_ N D N
e
03+ N3 Si2+ N2
with
) 1
Si,[= 4+Nl ﬂ:zh—Nld[. (71)
I

The I—V relation given by Eq. (70) is comprised of three
different terms. The first term accounts for the microchambers’
Ohmic resistors, which also account for field focusing into
the permselective interfaces. The second term describes the
potential drop over the permselective regions. The third term
describes the Donnan potential jumps at all three interfaces.

D. Bipolar behavior

While Eq. (70) has a complicated form, there remains a lot
of interesting physics that appear hidden but are in fact quite
apparent. To show this we shall start off by analyzing the 1D
case (Hy 4 = hy3, I/h — i) with an additional simplifying
assumption of equal length scales (L4 = d>3 = L). Under
the constraint of Eq. (66) we have that N = —N3 = N. For
this case we see that O, = Q3 and S,» = S_3. Also we shall
assume N > 1 or that counterion charge is large relative
to other properties, which will be defined as needed. Thus
Eq. (70) reduces to

a2 A Sio=N\( O2+N
e o () 2]

(72)
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The second term can be written in the following manner

Sia— 0y = Qz(ﬁ— )

0>

[ Ja+N2+2NL
= o JAEEEAE
AN
2iL |i|«N/L
N§1N<,/I+IT—1) <L )

Prior to the simplification |i| < N/L, we see that this
expression is not symmetric with i as there are no limits
on positive values but there is a limit on the negative value,
i > —N/2L. Under the simplification |i| <« N /L, we see that
the second term, associated with the permselective medium,
behaves as an Ohmic resistor with a resistance that is O(1/N)
smaller than that of the microchamber resistance.

It is the third term that is the most interesting. Inserting the
S, » and Q, functions and looking at the case of N > 1 and
|i|NL < 1 one can look at an expansion of the

1n[(5f2_N>< Q“LN)}Mn[Hﬂ} (74)
0,—N Si2+ N 2

Such a resistor is clearly asymmetric with the current and
will result in rectification. Once more, there is no upper
bound on the positive currents while the negative current
has a limiting value of i, = —2/NL due to the con-
straint (S, — N) > 0. This constraint is more restrictive than
the previous constraint (i > —N/2L). In two dimensions
(hp3 = h, N, = —N3 = N), the former constraint translates
into Ijj, = —2h/N L. The asymmetric and diodelike behavior
of the current is due to the system layout. When the voltage
is applied in the direction that coincides with the inherent
electric field of positive N to negative N then the current
is enhanced. The reason that there is no limiting current in
this forward bias is because we have forgone the assumption

10
8t Bipolar with micro—channels
Bipolar w/o micro—channels /
¢l —Ideal Permselective /]
“““ Simulation /
~ 4r 1

-15 -10 -5 0 5 10 15

FIG. 4. (Color online) The /—V curves for a 1D system. All
lengths scales are unity (L14 =dp3=1) and N, = —N;3 = 102.
For the sake of comparison we have added the positive branch
of the I—V for an ideal permselective system with N3 = 10%.
The simulations were conducted for the following values: L4 =
dy3=1,Ny=—-N3; =102, ¢, =1,¢, =1, =10
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FIG. 5. (Color online) The (a) I—V curves and (b) RF for a 2D
system where the geometry is varied. The nominal geometry is such
that the length of each regionis unity (L, 4 = d» 3 = 1) and the heights
are H, 4 = 0.4, hy 3 = 1072, For all curves a value of N, = —N; =
10? was used. The simulations (red squares) were conducted for the
following values: L4 =dy3 =1, Hia =04, hys = 1072, N, =
—N3 = 102, 6114 = 1, &= 10_3

of ideal permselectivity. When the voltage is applied in the
opposite direction, reverse bias, then the applied electric field
is operating against the inherent electric field. This leads to a
reduction in the resultant current.

E. Analysis and key results

In Fig. 4 we plot the /—V for a 1D system where all the
length scales are unity. Theoretical predictions are verified by
simulations. For the sake of comparison we have added two
curves: (i) the response of a system without the microchambers
and (ii) the response of an ideal permselective systems whose
geometry is identical and N, = Nj. It is observed that the
microchamber reduces the overall current, in a non-negligible
manner, due to an increase the overall resistance. Hence,
one should not unequivocally neglect the effects of the
microchambers. Additionally, we see that the nonideal forward
bias (i.e., V > 0) does not have a limiting current as the ideal
case does. In contrast, the nonideal reverse biased (i.e., V < 0)
current’s absolute value is substantially lower than the ideal
case (whose limiting value is 2).
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In Fig. 5 we investigate the 2D behavior of the system
by changing a number of geometric properties. First and
foremost, it is visible that the response changes substantially
with the geometry. By increasing the height or decreasing
length of the system, we are decreasing the overall resistance.
Moreover, we see that the rectification factor can now be on
the order of magnitude of 0(10°-10%) whereas in the 1D case
(which is not plotted) one gets a RF value of 0(102)@10V.
Indeed as the geometry changed, so did the limiting current
I = —2h/Nd, which also resulted in the change of the RF
(see inset). Also by observing the change in the slope of the
RF one gets a good qualitative understanding when the diode
behavior comes into play (this becomes more visible in a
semilog plot, which is not shown here).

V. CONCLUSIONS

This work focuses on additional asymmetries (bulk con-
centrations, geometric, and surface charge properties) in
permselective systems that possess an inherently symmetry-
breaking property. These asymmetries eventually lead to the
electrical current rectification.

In Sec. Il we derived a general solution for a dialytic battery
where both permselective regions were of the same charge.
We showed that any bulk concentration asymmetry allows for
the harvesting of electrical energy. In addition we showed
that based on this asymmetry and geometric asymmetries,
the current has a preferred direction for transport resulting
in current rectification.

In Sec. IV we investigated the bipolar behavior of systems
whose permselective regions have an opposite charge. We are
able to derive an I—V response under an additional ad hoc
assumption. Due to the surface charge asymmetry one can
design a simple nanofluidic-based diode whose rectification
(depends on the geometry) can be as large as 102—10°.
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APPENDIX: NUMERICAL SIMULATIONS

To verify our results we solved the fully coupled PNP
equations given by Egs. (1)—(3) using the finite elements
program COMSOL™ for the two-dimensional geometry
described in Fig. 1. The PNP equations were solved using
the Transport of Diluted Species and Electrostatic modules in
COMSOL.

The 1D and 2D scenarios were solved separately. The
reason is as follows. For a truly 1D system (i.e., solving
the problem on a 1D straight line) the numerics are very
simple. All that is required is to resolve the Debye length
whose structure is 1D and behavior is rather simple [10,46].
Usually 10° elements within this small region of order 10e
is all that is required. Outside of the Debye length, the
resolution of the mesh can be rather coarse. Most comput-
ers nowadays can easily handle several thousand elements
(and degrees of freedom) and provide almost instantaneous
answers. Thus we used a very small value of ¢ = 10~* for 1D
simulations.

In contrast, in 2D simulations, to resolve the 2D structure
of the Debye length the mesh needs to resolve a region
whose height is approximately #. Thus the number of
elements (and degrees of freedom) needs to be multiplied
by a factor of h/e making numerical simulations very
expensive. Due to the fact this problem is singular with ¢ and
2D realistically being quite expensive to solve numerically,
the advantage of solving the problem using our theoretical
approach, which is equivalent to taking ¢ — 0, becomes even
more apparent. In our 2D simulations we used & = 1073.
While we find COMSOL a convenient program to solve the
PNP equations to get an answer very quickly, it has been
recently shown that customized codes can be more efficient
for the study of PNP in conjunction with hydrodynamic
effects [60].
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