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Physical processes causing the formation of penitentes
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Snow penitentes form in sublimation conditions by differential ablation. Here we investigate the physical
processes at the initial stage of penitente growth and perform the linear stability analysis of a flat surface
submitted to the solar heat flux. We show that these patterns do not simply result from the self-illumination
of the surface—a scale-free process—but are primarily controlled by vapor diffusion and heat conduction.
The wavelength at which snow penitentes emerge is derived and discussed. We found that it is controlled by
aerodynamic mixing of vapor above the ice surface.
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I. INTRODUCTION

Penitentes are natural patterns made of compact snow or
ice (Fig. 1). They are typically found in mountains at high
altitudes [1–7], where humidity and temperature are low and
solar radiation is intense—penitentes are also expected to form
on other planetary bodies [8]. In these conditions, solid water
sublimates when heated, and tall thin spikes oriented toward
the main direction of the sun emerge by differential ablation.
They have been reproduced at a centimeter scale in laboratory
experiments [9]. It has also been argued that conical spikes
obtained by irradiation of silicon surfaces with laser pulses
are the equivalent of penitentes at a micrometer scale [10,11].
Melting conditions rather generate ablation hollows on snow
fields [12–15]. Their shape is that of shallow cups with sharp
edges and are similar to ablation patterns on the surface of
meteorites (regmaglypts) [16] and to ripples generated by ion
erosion of sputtering targets [17].

It has been suggested that penitentes result from an
instability due to a geometrical effect: troughs receive more
radiation than crests because of photons diffused by the snow
surface [3,13,18]. As more radiation leads to an enhanced
sublimation rate, this effect constitutes a positive feedback
mechanism amplifying an undulated topography. However,
as this process is scale-free, it immediately raises several
questions. With this dynamical mechanism only, how do we
explain the selection of the penitente wavelength observed in
natural [3,5] and laboratory [9] conditions (Fig. 1)? What are
the mechanisms stabilizing the long wavelengths, and how do
we explain such a selection? Is this geometrical effect the only
instability mechanism?

A simple model has been proposed by Betterton [13],
where the growth of penitentes due to self-illumination is
balanced by an effective diffusion of the surface height. This
diffusion provides a small-scale cutoff, but the associated
mechanism is not clear. In this paper, we revisit the linear
stability analysis of the problem and put emphasis on two
specific aspects. First, the light does not directly lead to
sublimation. It is absorbed by snow, which is heated, leading
to a temperature gradient toward the interface. Heat is then
transported toward the surface by conduction, from the inside.

This is exactly the condition needed for a Mullins-Sekerka type
of instability [19] to take place, as studied in the context of
directional solidification [20] and for pattern formation (e.g.,
dendrites) in crystal growth [21]. Our second point is that the
sublimation rate depends on the vapor concentration close to
the surface, and thus that the evacuation of this vapor away
from it plays, through a typical associated length scale �, an
essential role in the dynamics of this instability.

In Sec. II, we set the starting equations for the modeling
of the diffusion of vapor, temperature, and light, as well as
the expressions of the sublimation rate. We then compute the
corresponding base state (Sec. III) and the surface illumination
on a modulated surface due to light reflection (Sec. IV). The
linear stability analysis is performed in Sec. V, and its results
are discussed in Sec. VI.

II. MODEL EQUATIONS

We consider a semi-infinite block of ice submitted to
incident light, as schematized in Fig. 2. Its sublimation is
governed by bulk diffusion of temperature, concentration, and
light, and by conservation laws at the interface.

A. Diffusion of vapor, temperature, and light

Neglecting possible hydrodynamical flows, the evolution
of the vapor density ρ (mass of water vapor per unit volume)
is governed by a diffusion equation:

∂tρ = − �∇ · �J ρ = Dρ
�∇2ρ. (1)

�J ρ = −Dρ
�∇ρ is the diffusive mass flux of water, where Dρ

is the diffusion coefficient of vapor in the air. Its typical
value in ambient conditions is Dρ � 3 10−5 m2/s [22]. This
description is valid at a scale larger than the mean free path of
water molecules in air. Similarly, we consider the diffusion of
temperature T in the ice

ρscs∂tT = − �∇ · �J s + ψ = κs
�∇2T + ψ. (2)

We neglect it in the gas. ρs � 103 kg/m3 is the ice density, and
cs � 2 103 J/kg/K is the ice specific heat. �J s = −κs

�∇T is the
heat flux in the solid, where κs is the ice thermal conductivity.
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FIG. 1. (a, b) Photographs of natural penitentes on the Aconcagua
mountain (Argentina). Peak separation: a few tens of centimeters
(photo credits: Paul Dubuc). (c, d) Micropenitentes in the laboratory,
from Ref. [9]. Peak separation � 1 cm.

Its typical value is κs � 2 W/m/K, corresponding to an ice
thermal diffusivity κs/(ρscs) � 10−6 m2/s [23]. The power
ψ per unit volume arises from the absorption of the light energy
in the ice. In the purely diffusive limit (i.e., when the absorption
coefficient is small with respect to the scattering coefficient),
the direction of the light does not have any influence. The
light diffusion and absorption equation, described in steady
state and in the absence of internal sources, governs the space
distribution of the light power per unit area ϕ (or fluence rate, in
units of W/m2), which takes the form �2 �∇2ϕ − ϕ = 0 [24]. �
is a characteristic attenuation length, which can be expressed as
a function of absorption and scattering coefficients. The value
of � is on the order of a few centimeters in compacted snow

vapor
diffusion

incident light

diffusion 
and absorption 
of light

heat diffusion

FIG. 2. Schematic of the system. z is the direction pointing toward
the light source. The x axis is perpendicular to it. �n denotes the unit
vector normal to the interface between the ice block and the air,
pointing toward the gas. The bold arrows represent the vapor density,
heat, and light power fluxes.
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FIG. 3. (Color online) Decay of light intensity in artificial snow,
for blue, green, and red wavelengths. The best fit by an exponential
(black solid line) gives a decay length � � 1.6 cm. The snow is
prepared by spraying ten micron-scale droplets into a flat reservoir of
liquid nitrogen. It is shaped into a cubic isotherm 25 × 25 × 25 cm3

box. The snow surface is illuminated with white parallel light using
a slide projector. A picture is taken from the side using a calibrated
color digital camera. The signals received in the red, blue, and green
photosensors are averaged over the direction transverse to the light.

and can be larger in clean ice [25]. We have also measured this
length in artificial snow by illuminating a cube of snow with
parallel light and taking a lateral picture. We have obtained
� � 1.6 cm for this particular snow sample, independent of
the light wavelength (Fig. 3). The absorbed power per unit
volume ψ is proportional to ϕ and is therefore controlled by
the same equation:

�2 �∇2ψ − ψ = 0. (3)

The surface of the ice is submitted to an insolation correspond-
ing to a light power flux Jψ . On Earth, its typical value due
to direct sun illumination is J

ψ

0 � 200 W/m2. We denote the
albedo as ω (it varies from 0.2 to 0.8 for ice and snow), so that
the boundary condition for the absorbed volumetric power ψ

is

�2 �∇ψ · �n = (1 − ω)Jψ, (4)

where �n the unit vector normal to the surface, oriented from
the solid towards the gas (Fig. 2).

B. Sublimation rate

The time evolution of the surface elevation h(x,t) is
governed by the sublimation rate q:

∂th = q

�ez · �n. (5)

Note that q is negative, as the pattern emerges by progressive
ablation of the solid. It obeys three equations simultaneously.
The conservation of mass gives

q = −
�J ρ · �n
ρs

. (6)
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The conservation of energy gives

q = −
�J s · �n
ρsL

, (7)

where L � 3 106 J/kg is the sublimation latent heat of the ice.
Finally, the dissolution and precipitation kinetics depends on
the difference between the actual vapor density at the interface
ρi and its saturation value ρsat. This gives

q = α

[
ρi − ρsat(T i)

ρs

]
. (8)

In this expression, α is a velocity scale, proportional to the
characteristic thermal velocity of particles in a gas,

√
kBT /m,

times a desorption probability. We estimate that the value of
α lies between 1 and 100 m/s. For the sake of simplicity,
we neglect its variations with temperature. The saturation
density ρsat is a calibrated function of the temperature [26],
here evaluated at the interface T i . We can expand it around the
reference temperature T0 as

ρsat(T
i) − ρsat(T0) = ρ ′

sat(T
0)(T i − T0), (9)

where the prime means the derivative with respect to the
temperature. Using the perfect gas law p/ρ = RT/Ms , where
R � 8.3 J/mol/K is the perfect gas constant and Ms =
18 10−3 kg/mol the molecular weight of water, we can
express ρ ′ = ρ

T
(p′Ms

ρR
− 1). Now using the Clausius-Clapeyron

relationship p′ = Lρ/T , we can write

ρ ′
sat(T0) = ρsat(T0)

T0

(
MsL
RT0

− 1

)
. (10)

The dimensionless factor in parentheses is on the order of 20.
For a vapor pressure at saturation psat � 0.6 103 Pa around
273 K [26], we obtain ρ ′

sat � 4 10−4 kg/m3/K.
Note that in writing down Eq. (8) we have neglected the

effect of capillarity: the saturation pressure should also depend
on the curvature of the interface (local equilibrium, described
by the Kelvin equation). In the Mullins-Sekerka analysis [19],
the interplay between capillarity and diffusion selects the
characteristic length scale of the interfacial instability, but
this scale is typically in the micron range. On the much
larger length scales of interest here, capillarity can safely be
neglected.

III. BASE STATE

In order to compute the base state of the problem, we
consider that all processes are much faster than the time scale
over which the ice surface elevation evolves. The computation
is performed in the frame of reference of the surface, which
moves downward with respect to the solid ground underneath.
The temperature and density fields are therefore stationary.
The temperature in the gas is noted T0, and it is also that of the
interface:

T i
0 = T0. (11)

The light volumetric power ψ vanishes asymptotically as z →
−∞ so that the base state for the light is

ψ0 = ψae
z/�, (12)

where ψa is the interfacial value of ψ . With the condition
Eq. (4), it gives ψa = (1 − ω)Jψ

0 /�. We checked this relation
experimentally over three decades (Fig. 3). We assume that
the thermal flux J s

∞ vanishes in the bulk of the solid as
z → −∞, far from the surface. The temperature in the solid
obeys the equation κs

�∇2T + ψ = 0. The solution is the sum
of −�2/κsψ plus a homogeneous solution ( �∇2T = 0), which
is here simply a constant as J s

∞ → 0. The base states for the
temperature and the flux �J s = −κs

�∇T then read

T s
0 = T0 + 1

κs

ψa�
2(1 − ez/�), (13)

J s
0 = ψa�ez/�. (14)

The temperature deep inside the solid is therefore larger than
in surface and tends to T0 + 1

κs
ψa�

2.
The sublimation rate, as defined in Eq. (7), is the ratio

between the heat flux at the interface and the latent heat. We
obtain

q0 = −ψa�

ρsL
. (15)

Here, the light power ψa is imposed, and the flux of vapor
J

ρ

0 must adjust following Eq. (6) to ensure a steady state:
J

ρ

0 = −ρsq0. The density profile reads

ρ0 = ρi
0 − J

ρ

0 z

Dρ

, (16)

where ρi
0 is the vapor density at the interface. For a given

temperature T0, ρi
0 adjusts following the kinetic condition

Eq. (8): ρsq0 = α[ρi
0 − ρsat(T0)].

IV. SURFACE ILLUMINATION ON
A MODULATED SURFACE

In this section, we determine the illumination of a mod-
ulated surface z = h(x) in a way similar to [13]. Due to a
finite albedo ω, a unit surface re-emits a light power flux ωJψ ,
proportional to the power received Jψ . When the interface is
flat, none of the re-emitted photons reach the surface again.
However, when the surface is modulated, its illumination
is partly due to these photons. Assuming isotropy of the
re-emission, and a one-dimensional profile, one obtains

Jψ (x,h) = J
ψ

0 + ω

∫ xb

xa

|S|
π

Jψ (ξ,h(ξ )) dξ, (17)

where Sdξ is the solid angle through which the element dξ at
position ξ is seen from point x, which reads

S(ξ ) = 1

x − ξ

[
h′(x) − h(x) − h(ξ )

x − ξ

]
. (18)

In this expression, h′ is the derivative of the interface profile.
The bounds xa and xb of this integral both depend on x

too. They correspond to positions beyond which the interface
cannot be seen from position x, due to shadowing (Fig. 4).

As the reference state considered is homogeneous, at the
linear order, eigen-modes of the illumination operator Eq. (17)
are periodic. However, due to the nonlocal nature of S, they
are not Fourier modes, as known in the general context
of Fredholm equations. In particular, the illumination of a
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(a)

(b)

FIG. 4. A given point x receives light from a portion of the
surface. The rays determining the limits of this portion are either
tangential to the surface at the point considered (a) or at the point of
emission (b). These conditions determine xa and xb [Eqs. (20)–(22)].

sinusoidal profile h(x) = h1 cos(kx), such as the one shown
in Fig. 5 is not strictly sinusoidal. For such a function, the
contribution to the integral term giving the illumination at first
order in kh1 reads

I (η) =
∫ ηb

ηa

∣∣∣∣sin η + cos η − cos η′

η − η′

∣∣∣∣ dη′

|η − η′| , (19)

where η = kx. The boundaries of the integral, ηa(η) and ηb(η),
correspond to rays that are tangent to the surface (Fig. 4). For
0 < η < π , they are solutions of

sin η + cos ηa − cos η

ηa − η
= 0 for 0 � η � π/2, (20)

sin ηa + cos η − cos ηa

η − ηa

= 0 for π/2 � η � π, (21)

sin ηb + cos ηb − cos η

ηb − η
= 0. (22)

For π < η < 2π , the bounds are obtained by symmetry. The
dependence of these bounds on η is displayed in Fig. 6(a).
However, the nonharmonic contribution of the modes turn out
to be negligible, and the integral Eq. (19) is numerically found
to be very close to the function 1 − cos(kx) [Fig. 6(b)]. For
the linear stability performed here, the light volumetric power
at the interface can be approximately written as

Jψ (x) = J
ψ

0 {1 + �kh1[1 − cos(kx)]}, (23)

where � = ω
π

.

V. LINEAR STABILITY ANALYSIS

We perform the linear stability analysis by using a complex
variable—the real part of the equations is understood. We
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FIG. 5. (Color online) Surface illumination of a modulated snow
surface. The photograph on the top (a) shows the snow block when
illuminated from above. It is scaled to correspond to the longitudinal
profiles below. Snow is prepared with a sinusoidal elevation profile
h of wavelength λ = 1.5 cm and of amplitude 1.5 mm crest to
crest (black solid line). The illumination, rescaled by its average, is
measured by means of image analysis and its profile is displayed with
orange circles (b). Fitting these data by a sinusoidal function (blue
dashed line), one observes an out-of-phase modulation from which
one extracts � � 0.08 [Eq. (23)], which corresponds to ω � 0.25.

consider an undulated interface of the form h = h1 exp(ikx +
σ t), where kh1 	 1.

A. Light power profile

The first-order correction for the light power density ψ

derives from the Laplace equation (3):

ψ = ψ0(z) + ψ1e
√

k2+�−2z+ikx+σ t . (24)

The disturbance to the light power flux at the interface can be
computed from Eq. (4) as

J
ψ

1 = �2

1 − ω

(
ψa

h1

�2
+

√
k2 + �−2ψ1

)
eikx+σ t . (25)

From Eq. (23) and neglecting the homogeneous first order
term, the light power flux is well approximated by

J
ψ

1 = −J
ψ

0 �kh1e
ikx+σ t , (26)

from which, in comparison to Eq. (24) and recalling that Jψ

0 =
�ψa/(1 − ω), one can deduce the following expression for ψ1:

ψ1 = −ψakh1
� + 1

k�√
1 + k2�2

. (27)

The first term in this expression encodes the fact that, due to
reflections at the surface, troughs are more illuminated than
crests. We can see that the second term adds up: the light
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FIG. 6. (a) Bounds of the integral Eq. (19) given by Eqs. (20)–
(22). (b) Integral I (η) (solid line) giving the illumination profile for
a sinusoidal surface, compared to the function 1 − cos(kx) (dotted
line).

power density is also smaller beneath the crests because the
light goes through a larger amount of matter.

B. Temperature profile

The temperature disturbance in ice is composed of two
terms: a term that follows the source term proportional to −ψ

in Eq. (2) and a solution of the homogeneous Laplace equation.
It then reads

T s = T s
0 (z) − �2

κs

ψ1e
√

k2+�−2z+ikx+σ t

+ T s
1 ekz+ikx+σ t . (28)

The relevant temperature is not T s
1 but the interfacial temper-

ature T i . At first order we obtain

T i
1 = − 1

κs

ψa�h1 − �2

κs

ψ1 + T s
1

= �ψah1

κs

(
�k� + 1√
1 + k2�2

− 1

)
+ T s

1 . (29)

The full temperature field finally reads

T s = T s
0 (z)

+ �

κs

ψah1
�k� + 1√
1 + k2�2

e
√

k2+�−2z+ikx+σ t

+
[
T i

1 −
(

�k� + 1√
1 + k2�2

− 1

)
�ψah1

κs

]
ekz+ikx+σ t .

(30)

The corresponding heat flux in the ice block can be computed
from �J s = −κs

�∇T s , and its normal component reads

�J s · �n = J s
0 (z)

−ψah1(�k� + 1)e
√

k2+�−2z+ikx+σ t

−
[
kκsT

i
1 −

(
�k� + 1√
1 + k2�2

− 1

)
k�ψah1

]

× ekz+ikx+σ t . (31)

Note that, at the first order, the normal unit vector vecn is
vertical. Evaluating this expression at the interface, we obtain
from Eq. (7) the following expression for the modulation of
the sublimation rate:

ρsLq1 = kκsT
i

1 −
(

�k� + 1√
1 + k2�2

− 1 − �

)
k�ψah1. (32)

C. Vapor density profile

Following Eq. (1), the vapor density takes the generic form

ρ = ρ0(z) + (ρ−
1 e−kz + ρ+

1 ekz)eikx+σ t . (33)

With these notations, the density correction at the interface is
given by

ρi
1 = −J

ρ

0 h1/Dρ + ρ−
1 + ρ+

1 . (34)

We consider that there exists a boundary layer of thickness
�, above which air is permanently kept at constant humidity.
Introducing this length is a way to abstract aerodynamical
processes and to remain general. ρ is therefore imposed at a
distance � from the ice surface, so that its first-order correction
at z = h1 + � must vanish:

− J
ρ

0 h1/Dρ + ρ−
1 e−k� + ρ+

1 ek� = 0. (35)

Equations (34) and (35) can be solved for ρ±
1 and the resulting

vapor density profile reads

ρ = ρ0(z) +
{
ρi

1
sinh[k(� − z)]

sinh(k�)

+ J
ρ

0 h1

Dρ

cosh[k(�/2 − z)]

cosh(k�/2)

}
eikx+σ t . (36)

The corresponding vapor flux can be computed from �J ρ =
−Dρ

�∇ρ, and its normal component reads

�J ρ · �n = J
ρ

0 + kDρ

{
ρi

1
cosh[k(� − z)]

sinh(k�)

+ J
ρ

0 h1

Dρ

sinh[k(�/2 − z)]

cosh(k�/2)

}
eikx+σ t . (37)
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Evaluating this expression at the interface, from Eq. (6)
and recalling that J

ρ

0 = ψa�/L, we obtain the following
expression for the modulation of the sublimation rate:

ρsq1 = − Dρkρ
i
1

tanh(k�)
− ψa�

L tanh

(
k�

2

)
kh1. (38)

D. Dispersion relation

As discussed around Eqs. (6)–(8), the sublimation rate
modulation q1 = σh1 of the pattern, where σ is the growth
rate, simultaneously obeys three equations. The conservation
of energy, which derives from the heat flux Eq. (32) evaluated
at the interface leads to

ρsL
ψa

σ = k�
κs

ψa�

T i
1

h1
+ k�

(
1 + � − �k� + 1√

1 + k2�2

)
. (39)

The conservation of mass, derived from the vapor flux Eq. (38)
at the interface, reads

ρsL
ψa

σ = − k�

tanh(k�)

LDρ

ψa�

ρi
1

h1
− tanh

(
k�

2

)
k�. (40)

Finally, the third equation comes from the kinetics:

q1 = α
ρi

1 − ρ ′
satT

i
1

ρs

, (41)

and gives

ρsL
ψa

σ = αL
ψa

ρi
1

h1
− ρ ′

satαL
ψa

T i
1

h1
. (42)

We introduce two dimensionless numbers. P compares the
influence of heat conductivity and mass diffusion,

P = κs

ρ ′
satDρL

, (43)

and R compares the influence of heat conductivity and
kinetics,

R = κs

ρ ′
satα�L . (44)

Assuming the instantaneous equilibrium between the vapor
and its saturated value corresponds to R → 0. With the
numerical values of the different parameters given in Sec. II,
we can estimate these two dimensionless numbers as P � 60
and R � 0.1.

The main dependence of P with the temperature comes
from the factor ρ ′

sat: it is related to the vapor density, or the
vapor pressure, which decreases in an exponential manner
when T is lowered [26]. Larger P are thus expected for
lower temperatures. For instance, around 250 K, we have
ρ ′

sat � 7 10−5 kg/m3/K, and thus P � 300. Interestingly,
neglecting 1 in front of MsL/(RT0) in Eq. (10), one can
express the temperature derivative of the vapor density as
ρ ′

sat ≈ ρsatMsL/(RT 2
0 ). This allows us to rewrite P as the

product of three factors:

P ≈ κs

ρscsDρ

× RT0

MsL
× ρscsT0

ρsatL
. (45)

Besides the competition between diffusive coefficients of heat
in the solid and of mass in the gas, one can identify two
other quantities: (the inverse of) a dimensionless sublimation

heat and a ratio between an internal energy and a sublimation
energy. It is interesting to compare these different factors for
different materials around their temperature of sublimation.
One can take the example of carbon. As a matter of fact,
the mechanism that we discuss here could be at the origin
of scallops or cross-hatching that has been evidenced on
nose tips made of carbon and placed in high-enthalpy,
high velocity plasma flows simulating atmospheric re-entry
conditions [27]; it constitutes a more plausible scenario
than a previous one [28], which contained an unnoticed
algebraic error. Taking a typical temperature T0 � 3800 K,
the physical parameters are κs � 200 W/m/K, L � 6 ×
107 J/kg, Dρ � 5 × 10−4 m2/s, ρs � 2 × 103 kg/m3, Ms =
12 × 10−3 kg/mol, cs � 2 × 103 J/kg/K, and psat � 103 Pa
corresponding to ρsat � 4 × 10−4 kg/m3. Combining these
numbers, we obtain κs/(ρscsDρ) � 10−1, MsL/(RT0) � 23,
and ρscsT0/(ρsatL) � 6 × 105, whose values are so different
to those for ice: respectively, 3 × 10−2, 24, and 4 × 104. The
parameter P for carbon is eventually around 2600, an order of
magnitude larger than for ice.

Finally, the three above equations (39, 40, 42) can be
combined to give the following dispersion relation relating
the growth rate to the wave number:

ρsL
ψa

σ = k�

1 + P tanh(k�) + Rk�

×
[(

1 − 1√
1 + k2�2

)
+ �

(
1 − k�√

1 + k2�2

)

−
(

1 − 1

cosh(k�)

)
P

]
. (46)

The two first terms in the square brackets are positive
and, respectively, correspond to the destabilizing role of
the inverted temperature gradient and the self-illuminating
process, proportional to �. The third contribution is negative,
coming from the stabilizing effect of vapor diffusion above the
surface.

VI. DISCUSSION

We can now study and discuss the different regimes of
the dispersion relation Eq. (46). We recall that we have not
included in our calculation the effect of surface tension. As dis-
cussed previously, local equilibrium at the interface provides
a stabilizing effect that acts on small length scales. Therefore,
taking into account capillarity would alter the dispersion
relation in the limit of large k. Nevertheless, we proceed
by discussing the dispersion relation that we have derived
above, in order to clarify the interplay of illumination, heat
conduction, and vapor diffusion in the interfacial instability.
As will be seen, the typical relevant length scales that are found
in this analysis are large enough to neglect capillarity.

A. Simple and large-k limits

The problem simplifies in the limit where the whole
illumination power is used for sublimation. This corresponds
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to the triple limit P → 0, R → 0, and k� 	 1:

σ = ψa

ρsL
�k� = (1 − ω)Jψ

0

ρsL
�k. (47)

This expression shows that the growth rate is unconditionally
positive and proportional to the albedo and to the wave number.
Accounting for a finite penetration length �, but keeping the
limit P → 0 and R → 0, the dispersion relation becomes

σ = ψa

ρsL
k�

[
1 − 1√

1 + k2�2
+ �

(
1 − k�√

1 + k2�2

)]
.

(48)

One can immediately see that the growth rate is still uncon-
ditionally positive and diverges when k → ∞. This means
that there is no wavelength selection: arbitrarily small scale
structures can emerge. Betterton [13] fixed this problem by
introducing a phenomenological diffusive term to encode in
a simple form the processes leading to a small-scale cutoff.
Here, we can see the role played by the parameter P in relation
to the diffusion of the vapor above the interface: the large-k
limit of Eq. (46) shows either a linear asymptotic behavior
σ ∼ ψa

ρsLk� 1−P
1+P when R = 0, or a growth rate that tends to

a constant σ ∼ ψa

ρsL
1−P
R for a nonvanishing R. In both cases,

the growth rate keeps positive at small scales when P < 1.
Conversely, large wave numbers are stable when P > 1 and
a wavelength selection is possible. We shall work under this
assumption in the following analysis.

B. Analysis of the dispersion relation for �/� > 1

We assume for simplicity that sublimation is not limited by
the kinetics (R = 0). We furthermore consider the limit where
the absorption length � is smaller than all other lengthscales
(�/� > 1). The numerical investigation of Eq. (46) shows that
its behavior can be analyzed in the regime of small k� and
small k�, for which the growth rate can be approximated as

ρsL
ψa

σ = k�

1 + Pk�

[
� − 1

2
(k�)2P

]
. (49)

As illustrated in Fig. 7(a), this expression is indeed a very
good approximation of the full dispersion relation Eq. (46),
which shows an unstable (σ > 0) range at small wave numbers,
whereas large k are stable (σ < 0). The most unstable wave
number km corresponding to the above expression verifies
(Pkm�)3 + 3

2 (Pkm�)2 − �P = 0, whose solution is

km� = 1

2P

(
A1/3 + 1

A1/3
− 1

)
, (50)

with

A = 4�P − 2
√

2
√

2(�P)2 − �P − 1. (51)

Note that this expression is valid for �P > 1/2 only, otherwise
a more complicated formula for km� applies. For �P � 1,
Eq. (50) simplifies into

km� ∼ �1/3

P2/3
. (52)

As shown in Fig. 7(b), this scaling law is asymptotically
verified by the numerical computation of km from the full
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FIG. 7. (a) Dimensionless growth rate as a function of k� for
P = 100, �/� = 10, � = 0.1, and R = 0. Solid line: full dispersion
relation Eq. (46). Dashed line: approximation Eq. (49). (b) Most
unstable wave number km� as a function of P , all other parameters
kept the same as in (a). Solid line: numerical computation from the
full dispersion relation Eq. (46). Dashed line: km� deduced from
Eqs. (50) and (51). Dotted line: km� computed from the asymptotic
scaling Eq. (52). (c) Same as (b) for the growth rate σm of the most
unstable mode.

Eq. (46), of which Eq. (50) is almost a perfect approximation.
Similarly, the corresponding growth rate asymptotically scales
as

ρsL
ψa

σm ∼ �

�

�

P , (53)

as shown in Fig. 7(c).
When neglecting self-illumination (� = 0), the expansion

of Eq. (46) at small k� shows that the leading term is cubic:
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ρsL
ψa

σ ∼ 1
2 [1 − ( �

�
)
2P](k�)3. Recalling that P > 1 is required

to ensure a nondiverging large-k behavior, this term is negative
for �/� > 1. The interface is then always stable in this case
without any effect of the self-illumination process.

C. Analysis of the dispersion relation for �/� < 1

Let us first continue with the limit of negligible self-
illumination (� = 0). The system is unstable for a parameter
P in the range 1 < P < (�/�)2. For P → (�/�)2, the growth
rate can be approximated by expanding Eq. (46) at small k�

up to the fifth order:

ρsL
ψa

σ ∼ 1

2

[
1 −

(
�

�

)2

P
][

(k�)3 −
(

�

�

)
P(k�)4

]

− 1

24

[
9 − 5

(
�

�

)4

P
]

(k�)5, (54)

leading to a most unstable wave number vanishing as

km� ∼
√√√√4

5

[
1 −

(
�

�

)2

P
]

(55)

in the limit of large enough �/�. For the parameter P small
enough with respect to its upper bound, km� is found to be of
order one or larger. Neglecting the term 1/

√
1 + k2�2 in front

of 1, and assuming that the condition k� 	 1 is still valid, the
dispersion relation Eq. (46) can be approximated as

ρsL
ψa

σ = k�

1 + Pk�

[
1 − 1

2
(k�)2P

]
. (56)

This expression resembles Eq. (49), and the corresponding
most unstable mode is then identical to Eq. (50), but where
one should formally set � = 1 in Eq. (51) for A—recall we
are discussing the case � = 0. In fact, in the limit P → 1, one
can show that ρsL

ψa
σ ∼ k�e−k� in the regime k� � 1, which

gives km� = 1. The assumption that k� 	 1 to derive Eq. (56)
is therefore partly valid only.

Now considering a finite albedo (� > 0), the behavior of
the dispersion relation is not affected at small enough P .
The reason is that, in Eq. (46), the factor of � vanishes
at k� � 1 and the contribution of the self-illumination
can thus be neglected in front of the term related to the
inverted temperature gradient. However, this term suppresses
the critical behavior of km whenP tends to (�/�)2, and beyond
this value one recovers a growth rate dominated by small k�

and k�, i.e., well described by Eq. (49), with km� given by
Eqs. (50) and (51).

We illustrate these results in Figs. 8 and 9. One can see
that, as expected, the approximation Eq. (56) developed for
P 	 (�/�)2, for which relevant k� are larger than unity, is
rough [Fig. 8(a)]. However, the description of the decrease
of km� with P is still qualitatively correct [Fig. 8(b)]. On the
opposite, for P � (�/�)2, which makes sense for finite �

only, the approximation Eq. (49) of the dispersion relation is
good [Fig. 9(a)], and the corresponding prediction of the most
unstable wave number is quantitative [Fig. 9(b)].

100

10-1

10-2

103102101100

0.15

0.1

0.05

0

-0.05

32.521.510.50

(a)

(b)

FIG. 8. (a) Dimensionless growth rate as a function of k� forP =
100, �/� = 0.05, � = 0.3, and R = 0. Solid line: full dispersion
relation Eq. (46). Dashed line: approximation Eq. (56). (b) Most
unstable wave number km� as a function of P . Solid line: numerical
computation from the full dispersion relation Eq. (46) with all other
parameters kept the same as in (a). Dotted-dashed line: idem but
with � = 0. In this case km� vanishes when P → (�/�)2 = 400, like
a square root [Eq. (55)]. Dashed line: most unstable wave number
corresponding to the approximation Eq. (56), i.e., km� deduced from
Eq. (50), where � = 1 is set in Eq. (51).

D. Effect of a finite R
Let us now investigate finite values of R. Because this

number exclusively enters the dispersion relation as the third
term of the denominator of Eq. (46), it can only have a
significant effect when Rk� is larger than 1 + Pk�. In the
case �/� � 1, this can only occur if R is much larger than P ,
which is unlikely given the expected values of these numbers
discussed in the previous section. In the case �/� 	 1,
large enough values of R induce a slight decrease of km,
quantitatively similar to an increase of P . In conclusion, no
qualitative difference is expected with finite values of R in
comparison to the results described above.

E. Concluding remarks

Interestingly, in both cases �/� > 1 and �/� < 1, the
selected wavelength λm ≡ 2π/km is found independent
of the light penetration distance �. It is directly proportional
to the distance � from the ground at which the water vapor
content does not feel the vapor flux modulation anymore. From
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FIG. 9. (a) Dimensionless growth rate as a function of k� for
P = 100, �/� = 0.5, � = 0.3, andR = 0. Solid line: full dispersion
relation Eq. (46). Dashed line: approximation Eq. (49). (b) Most
unstable wave number km� as a function of P . Solid line: numerical
computation from the full dispersion relation Eq. (46) with all other
parameters kept the same as in (a). Dotted-dashed line: idem but with
� = 0. Dashed line: most unstable wave number corresponding to
the approximation Eq. (49), i.e., km� deduced from Eqs. (50) and (51).

the scaling law Eq. (52), we obtain

λm ∼ 2π
P2/3

�1/3
�. (57)

The factor of proportionality between λ and � is large, typically
on the order of a few hundreds, forP � 100 and � in the range
0.1–0.5. In the regime where the light penetration length � is
much larger than � so that 1 	 P 	 (�/�)2, the result is
similar with λm ∼ 2πP2/3�.

This scaling law Eq. (57) suggests that the emerging length-
scale of penitentes is controlled by aerodynamic mixing above
the ice surface. Molecular diffusion is inefficient compared to
vapor advection. � can therefore be interpreted as the distance
to the soil at which mixing is efficient enough to recover a
homogeneous vapor content. This length is set by the height
over which turbulent fluctuations are suppressed close to the
ground. In the field, λm, i.e., the peak separation of emerging
penitentes, is typically on the order of a few tens of centimeters,
which, according to Eq.(57), corresponds to � � 0.1 cm.
Assuming first that the ice surface is smooth, turbulent vapor
mixing can hardly occur in the viscous sublayer, whose
thickness is �ν � 5ν/u∗, where ν � 10−5 m2/s is the air
kinematic viscosity and u∗ the wind shear velocity [29].

1 cm

FIG. 10. Evidence for the influence of water vapor saturation on
the laboratory-scale penitente instability. Dry air is injected from the
left and progressively saturates in water vapor toward the right of the
picture

� = �ν would then correspond to u∗ of a few centimeters
per second, i.e., low wind conditions, which is in agreement
with observations that penitentes are specially developed on
leeward slopes [3]. Moreover, thermal stratification may help
to suppress turbulence even at larger winds.

The ice surface is aerodynamically rough if the viscous
length �ν is smaller than the surface roughness δ. � = δ on
the order of a few millimeters is also reasonable. In the
experiment in Ref. [9], micropenitentes emerge at λm � 1 cm.
A corresponding length � on the order of 100 μm is perfectly
consistent with the surface roughness in these conditions.

Testing quantitatively the scaling law derived here requires
better field data and/or experiments in which humidity is
controlled in a precise way. Laboratory experiments such as [9]
are performed in a confined environment and humidity in the
experimental box is limited by a supply of dry air. As illustrated
in Fig. 10, this usually establishes gradients along the air
flow. It was accordingly reported in Ref. [9] that penitente
emergence was eliminated when a moderate, steady breeze
was induced to transport vapor. Further progress therefore
requires an experimental control of hydrodynamic conditions.
Building an experimental set-up able to control the mixing
length � is difficult. As the length-scales are larger, it may
be easier to study the development of penitentes in the field,
measuring the structure of the boundary layers in which vapor
is transported away from the surface.

Further theoretical progress requires a complete descrip-
tion of hydrodynamics. One expects a transition at large
wind from penitentes to snow cups (or scallops), or toward
“cross-hatching” features [17,30,31], similar in structure to
regmaglypts. Interestingly, scallop patterns are also observed
to form under dissolution, rather than ablation, processes [32],
obeying similar scaling laws λm ∝ ν/u∗ [33]. As in Eq. (57),
the factor of proportionality is large, on the order of 103 [33].
This suggests a common origin of the instability mechanism,
where a Reynolds number is selected [34], which must be
investigated.
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