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Theory of the liquid film motor
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The liquid film motor is a freely suspended liquid film placed between two capacitively coupled plates that
rotates when an electric current is passed through it. Here we propose a theory for its rotation mechanism based
on thin film electroconvection. The capacitively coupled plates induce free charges on the surfaces of the film,
and the electric field on the film exerts a force that induces rotation. Results of the proposed theory and simulation
are in good agreement with the experiments in different properties of the liquid film motor.
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I. INTRODUCTION

Properties of freely suspended liquid films have been of
interest in the past century in studies regarding soap films and
soap bubbles [1–7]. Their two-dimensional (2D) dynamical
behavior offers an experimental medium for the investigation
of physics of two-dimensional systems [8–11], which becomes
especially interesting in the case of films of liquid crystals,
where the film thickness is quantized to one or more molecular
layers. [12–14].

A remarkable phenomenon in this context is the electrocon-
vection in suspended liquid films, which has been extensively
studied in the past decades [15–27]. It is an instability caused in
the freely suspended liquid film when an electric current passes
through it. Many experiments and theoretical studies have been
performed regarding the electroconvection phenomenon, and
as a result the governing equations regarding the dynamics of
thin films in the presence of electric fields are well known.
The electrical instability in a thin film creates a motion similar
to thermal convection if the field is strong enough, forming
cells of counter rotating flows (similar to Benard cells). The
convection is encountered because of the force exerted to free
charges accumulated on the surface of the film.

Amjadi et al. [28] reported a novel phenomenon: They
conducted an electric current through a horizontal freely
suspended liquid film, and placed it between two large
vertical plates, connected to a high-voltage power supply. As a
result, a rotation was observed with a well-defined predictable
direction. This was named the liquid film motor. Later other
experiments were also carried out in similar arrangements,
with many different liquids and also liquid crystals to find
out more about its dynamical mechanism [29,30]. Recently, it
was found that this motor can act reversely to form an electric
generator, and the effect was named the liquid film electric
generator [31]. Similar effects are explained in old papers
of Electrohydrodynamics. For example, the review paper by
Melcher and Taylor [32] describes well the effect of interfacial
shear stresses. The effects discussed therein are closely related
to the dynamics of the liquid film motor, where similarly
external electrodes induce surface charges on the interface, and
the electric field creates a shear force, inducing fluid motion.
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After reporting the liquid film motor, two hypothesis were
given to explain its rotation mechanism. Shiryaeva et al. [33]
assumed that free charges are accumulated at the edges of the
film, and the internal electric field exerts a force that leads to
a slip velocity at the sides. The slip velocity in this model was
similar to the electro-osmotic slip caused by charges within the
Debye length near the edges [34,35]. This explanation was not
in agreement with the experiments since experimental results
showed a no-slip boundary at the edges and that the maximum
velocity of motion occurred somewhere between the center and
sides of the film [29]. The main problem with this theory [33]
was the assumption that free charges are induced near the
edges only, and the free surfaces of the film are charge-free.
This assumption comes from a two-dimensional picture, while
recalling from the literature on thin film electroconvection, it
is quite clear that a three-dimensional (3D) equation must be
solved to understand the electrostatics of such systems. Free
charges are induced all over the free surfaces of the film and
not at the edges only. Liu et al. [36,37] suggested another
explanation, which was based on the continuous competition
between the destruction and the reestablishment of the po-
larization equilibrium. This hypothesis is inconsistent with the
previous literature on electroconvection (e.g., Refs. [15,17,19–
27,38]). Also, many experimental results, such as the effect
of conductivity on the motion and the form of motion in
weakly conducting liquids [29] cannot be explained with this
theory.

In this paper we present a theory on the liquid film motor
based on the governing equations derived for thin film electro-
convection. The phenomenon and the rotation mechanism is
qualitatively explained in Sec. II and the governing equations
are derived in Sec. III. A numerical solution on motion
equations using a finite difference method is performed, as
explained in Sec. IV. In Sec. V, numerical results are presented,
discussed, and compared with experimental results, showing
that they are in good agreement. Finally conclusions are
presented in Sec. VI.

II. PHENOMENON EXPLANATION

The experiment setup consists of a two-dimensional hori-
zontal frame lying in the x-y plane on which the suspended
film is formed (Fig. 1). Two sides of the frame are conductive
and act as a conducting electrode, which when a voltage of Vin

is applied to it, creates an average electric field of Ein inside
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FIG. 1. (Color online) Schematic of the experiment setup.

the film and conducts an electrical current through the film in
the negative x direction. The system is placed between two
capacitively coupled plates connected to a high-voltage power
supply. If the film was not present, these plates would produce
a uniform electric field Eex in the negative y direction. When
the film is present, it changes the field in its immediate vicinity
and a uniform external field will only be found far from the
film.

When both voltages are applied, the film starts to rotate
steadily in its plane, if the electric fields are of sufficient
magnitude. The direction of rotational velocity is in the
direction of Eex × Ein. This fact about the direction was
observed to be consistent for all of the rotating liquids and
has never been violated in experiments. For details about the
experiments see Refs. [28] and [29].

The device has been tested for several liquids, showing that
the liquids that are conductive and have polar molecules are
able to rotate. It was reported that the conductivity itself does
not necessarily change the rotational behavior. For example,
for water-soap films, adding salt (e.g., NaCl) did not change the
rotational characteristics while the conductivity was greatly
altered. This fact has been interpreted before [28,29] to
conclude that explanations that are based on conduction and
the surface charge mechanisms cannot be true. However, we
explain here that this observation does not lead to the rejection
of such explanations.

It was shown [39] that in experiments with a bulk of liquid,
the rotation is initiated at the free surface, which shows that
the phenomenon is surface dominated. A bulky liquid has a
much weaker rotation than a thin film because of this effect.

Our explanation relies on the surface charges induced by
the conducting electrodes and the capacitively coupled plates.
It is essential to understand that when the film is subjected
to each of the voltages, charges are accumulated all over
the free surfaces (liquid-air interfaces) and not on the edges
only. With the conducting electrodes, positive charges are
accumulated near the positive electrode and vice versa. With
the capacitively coupled plates it is the inverse; as negative
charges are induced near the positive plates and vice versa.
The liquid is an ohmic conductor, thus the electric field inside
it is proportional to the conductive current density. The local
electric field E exerts a surface force F to the liquid with a
surface charge density of q: F = q E. This force is the main
driving force of the rotation of the film motor. According to this

explanation, the main role of the capacitively coupled plates
is to induce charge density gradient along the y direction, and
the internal voltage creates a current in the film in the negative
x direction. This configuration leads to an asymmetric force
and is responsible for the rotation in the liquid film motor.
The resulted direction of rotation here is just the same as in
the experimental observations.

Based on this explanation the effect of conductivity (σ ) can
be understood. There are two mechanisms for charge transport;
Conductive current j con = σ E and advection j adv = qu,
where u is the fluid velocity. Assuming that fluid velocity
is zero in the film, in the presence of the electric voltages,
there is a stable charge distribution for the film, which we
call the base charge state q0(x,y). The conductivity value has
no effect on this base charge state, but the time it takes from
the moment the fields are applied until the formation of the
base state is a function of conductivity (electrical relaxation
time τE). In the general case when the film is in motion, the
distribution of charges is affected by the advection term. The
variation in the charge distribution by this effect is in direct
relation to the velocity magnitudes and inversely proportional
to the conductivity. Thus if the conductivity is high enough, the
state of charges and potentials will be similar to the base state.
However, if conductivity is low, the charge distribution will
be affected by the motion. This argument is why increasing
water’s conductivity did not change the rotation behavior in
experiments, since according to our explanation in the coming
sections, water would have a high conductivity and the charge
distribution would not be affected by motion. This idea is made
more clear later in the theory where a dimensionless ratio,
the Prandtl-like number, will be introduced, which makes this
argument more precise.

III. GOVERNING EQUATIONS

The film is confined to a square frame of side dimensions
of a. The thickness of the film h is several orders of magnitude
smaller than a (h is less than 1 μm in the experiments while a is
several millimeters or centimeters), therefore the dynamics can
be modeled two-dimensionally. The dynamics is essentially
surface dominated and the ratio of bulk to surface forces on
the film is O(h/a) ≈ 10−5 [26]. The origin of the Cartesian
coordinate system is assumed to be at the center of the film,
so the film is located in −a/2 < y < a/2, −a/2 < x < a/2
and z = 0. There are two conducting electrodes connected to
the film. One occupies the region x > a/2, − a/2 < y < a/2
and the other occupies the region x < a/2, − a/2 < y < a/2.
The capacitively coupled plates are two large parallel vertical
plates separated in the y direction, each having a distance of
D/2 from the center of the film (D � a). The plates have a
voltage of ±Vex/2. The magnitude of the external electric field
as defined before would be Eex = Vex/D. The fluid has a two-
dimensional mass density of ρ, viscosity of μ, and conductivity
of σ , each being related to their 3D counterparts by a factor of
thickness h.

Recalling from the literature on electroconvection [38],
the governing equations addressing electrohydrodynamics in
suspended thin liquid films are as follows. In this context,
magnetic forces and dielectric effects are negligible:

∇ · u = 0 (1)
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ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇P + μ∇2u + q E, (2)

∂q

∂t
= −∇ · (σ E + qu), (3)

q = −2ε0∂zψ3|z=0+ , (4)

∇2
3ψ3 = ∇2

2ψ3 + ∂2ψ3

∂z2
= 0, (5)

ψ2 = ψ3(z = 0). (6)

The first two equations are the continuity and momentum
of Navier-Stokes equations, in which u is the fluid velocity, P

is pressure, q is surface charge density, and E is the electric
field in the fluid, which is related to the potential on the film
by E = −∇2ψ2. In the second equation, the electric charge
multiplied by the electric field is a driving force and therefore is
a source of momentum. The third equation is the conservation
of charge, which is transferred by an ohmic conduction term
σ E and an advection term qu. ε0 is the vacuum permittivity.
The subscripts denote two- and three-dimensional potentials
and gradients. The 2D charge density q obeys Eq. (4), a
Maxwell equation that describes the nonlocal relationship
between the charge density and the potential on the film ψ2.
The factor of 2 in Eq. (4) corresponds to two (upper and
lower) free surfaces of the film. The 3D potential outside the
film ψ3 obeys a Laplace Eq. (5), since there are no free charges
outside the film. Equation (6) expresses the fact that the electric
potential is continuous everywhere, so the 2D potential on the
film ψ2 is equal to the 3D potential ψ3 in the representative
point. Thus, Eq. (4) acts as a boundary condition for Eq. (5),
therefore having the charge distribution on the film, these
equations could result in finding the potentials on the film
and in the 3D space above.

The fluid velocity is subject to a no-slip boundary condition
at the edges of the film. Although this assumption is argued
in the theory of Shiryavea et al. [33] for the liquid film motor,
the no-slip behavior is directly observable in the experiments.
The potential ψ2 is −Vin/2 on one electrode and Vin/2 on the
other electrode.

To simplify the fluid dynamics, we employed the stream-
function-vorticity formulation for the primitive variables in the
simulation. The stream function φ and vorticity ω are defined
in 2D as [22]

u = ∇φ × z, ∇ × u = ωz. (7)

With the stream-function-vorticity formulation, the pres-
sure will be eliminated from the calculations and the unknown
velocity vector field in Eqs. (1) and (2) will be replaced by the
two simpler scalar fields, ω and φ.

To derive dimensionless equations, we rescaled lengths with
the film dimensions a, time with the viscose relaxation time
τv = ρa2/μ, electric potential with the mean voltage Vm =√

VinEexa, and charge density with ε0Vm/a. We obtain the

following dimensionless governing equations:

∇2φ = −ω, (8)

∂ω

∂t
+ (u · ∇)ω = ∇2ω + F∇ × (q E), (9)

∂q

∂t
+ (u · ∇)q = 1

P∇2ψ2, (10)

∇2
3ψ3 = 0, q = −2∂zψ3|z=0+ (11)

ψ2 = ψ3(z = 0). (12)

The important dimensionless parameters in this phenomenon
are

F ≡ ρaε0V
2
m

μ2
, P ≡ ε0μ

ρaσ
, and C ≡ aEex

Vin
. (13)

The main control parameter, F , is a measure of the relative
strength of applied electric forcing to viscose dissipation.P is a
fluid parameter that characterizes the ratio of electric relaxation
time (τE = ε0a/σ ) to viscose relaxation time and in the case
of electroconvection, it is named the Prandtl-like number
because of the analogy to Rayleigh-Benard convection. The
other control parameter is C, which is the ratio between the
external electric field intensity to the internal electric field
intensity. Note that C does not appear in the equations, but
is needed for the boundary conditions for the 3D Laplace
Eq. (11), Vex = CVinD/a.

Here we could define the Reynolds number, which corre-
sponds to the ratio of the inertial forces to the viscose forces;
R = ρaumax/μ, where umax is the maximum velocity. By
the dimensionless scaling applied in this paper, the Reynolds
number is the same as the maximum nondimensional velocity
magnitude.

Also, there is a difference in our nondimensional equations
and those of other references on thin film electroconvection,
which usually rescale time with the electric relaxation time.
The reason this formulation is chosen is to obtain results
which show explicitly that the dynamics becomes independent
to conductivity in low Prandtl-like numbers. This point is
explained in Sec. V.

IV. NUMERICAL SIMULATION

We constructed a time-stepping numerical simulation to
solve the dimensionless governing equations. If the dynamics
becomes steady in the iterative solution, the final steady answer
to the equations is obtained. In specific cases with high forcing
numbers, the iteration does not converge to a steady solution.
This might be because of a real physical unsteady phenomenon
(such as turbulent flows in high Reynolds numbers) or a
numerical instability. In this paper, we focus on the cases in
which a steady solution is found.

Our method for solving the hydrodynamics of this problem
was based on a fully implicit scheme for the stream-function-
vorticity formulation. We used a method similar to Ref. [40],
which has solved the Navier-Stokes equations to solve the
cavity flow problem and acceptable results were achieved.
From the computational point of view, the hydrodynamics of
this problem is similar to the cavity flow problem, in which
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a closed loop advection is formed and numerical errors could
be magnified when repeated in the loop. The elimination of
pressure from the Navier-Stokes equations and decoupling of
stream function and vorticity enables us to solve the set of
equations for stream function and vorticity separately.

∂φ

∂t
= ∂2φ

∂x2
+ ∂2φ

∂y2
+ ω, (14)

∂ω

∂t
= ∂2ω

∂x2
+ ∂2ω

∂y2
+ ∂φ

∂x

∂ω

∂y
− ∂φ

∂y

∂ω

∂x
+ F∇ × (q E). (15)

Numerically, we calculate the time derivatives using ex-
plicit first-order approximation, and the other terms on the
right-hand side are treated implicitly, with the derivatives
centered in space and forward in time:

∂cn
i,j

∂t
= cn+1

i,j − cn
i,j

�t
, (16)

∂cn
i,j

∂x
= cn+1

i+1,j − cn+1
i−1,j

2�x
, (17)

∂2cn
i,j

∂x2
= cn+1

i+1,j − 2cn+1
i,j + cn+1

i−1,j

�x2
. (18)

Here the superscripts of n denote the time-step number, and
i and j in the subscripts represent the position indices.

By applying this discretization, a system of L equations
and L unknowns will be formed in each time step for each
of the two hydrodynamic Eqs. (14) and (15). Here L is
the number of grid points and the unknowns are the stream
function and vorticity in the next time step, φn+1 and ωn+1,
respectively. The equations are solved and the stream function
and vorticity in the next time step are found. This implicit
method is unconditionally stable, and provided that it leads to
a steady solution, the solution is independent of the time step.

As mentioned, the body force that appears in the Navier-
Stokes equation is resulted from the charge and electric field.
For the electric calculation, we have the charge distribution in
the present time step and should find the charge distribution
in the next time step. The charge derivation is calculated
according to Eq. (10). For this purpose, the relation between
charge and potential on the film needs to be known, which
is a consequence of Eq. (11); so if we have the charge
distribution, it will be treated as a boundary condition for the
3D Laplace equation addressing the potential above the film,
and by solving the equation, the potential will be found.

For this calculation, we made a 3D grid with the film
positioned at the central part of its lower boundary. The
geometry space has dimensions of 10 × 10 × 5, as shown
in Fig. 2. The two sides of this space along the y direction
are assumed to be the capacitively coupled plates, and have
the specific potentials (±Vex/2) as the boundary conditions.
Also, the region that is supposed to be the conducting
electrodes would have the specific voltage of ±Vin/2 as
boundary conditions. In each point on the liquid film that is
a lower boundary of this 3D area, the boundary condition is
a function of the charge density on the corresponding point.
In this boundary condition, the gradient of electric potential
is defined in Eq. (11). The rest of the boundaries are assumed

FIG. 2. (Color online) Top view (left) and side view (right) of the
three-dimensional grid for calculation of the charge-potential relation.
Dimensions of the box are 10 × 10 × 5, the film being a 1 × 1 square
at the bottom center of the box. The box has 83 × 83 × 43 grid points,
and the film is 43 × 43 points, uniform and square structured.

to have a normal potential gradient of zero. For each finite
difference point in the computational space, there is one
equation [Laplace Eq. (11)] and one unknown (3D potential
in that point). For solving both the hydrodynamic and electric
equations, we constructed the system of linear equations in the
form of a sparse matrix and solved it using the built-in function
mldevide in MATLAB, which solves the linear system using LU
factorization with partial pivoting.

Since the Laplace equation is linear, we applied a superpo-
sition to simplify the calculation of the electric equations. So
instead of solving the 3D Laplace equation in every iteration
of the main solution, we first made a series of calculations with
which the 4D matrix A was computed:

ψi,j =
M∑

k=1

N∑
l=1

qi,jAi,j,k,l . (19)

The matrix A is then employed in the main solution, which
demonstrates the charge-potential relation. So in each time
step, having the charge distribution qN , the potentials are
calculated, and the charge distribution in the next time step
is obtained by explicitly applying the advection term and the
current divergence term:

qN+1 = qN − (uN · ∇)qN + 1

P∇2ψ. (20)

Therefore, the ultimate solution procedure is a repetition of
time steps, in which the electrical equations are solved to find
the charge and potential at the next time step, which will be
used to compute the source term in the stream function vorticity
formula. Next, the hydrodynamic equations are solved to find
the stream function and vorticity in the next time step. The
time-step sequences proceed until the solution converges to
a steady state. The convergence criterion is based on defined
residuals for stream function and charge. The residual for any
quantity c at time step n is calculated as follows:

Res = [max(cn − cn−1)/ max(cn)]/�t. (21)

Here, “max” denotes the maximum value among all of the
finite difference points. Convergence is assumed when both
the residuals for charge and stream function are less than 10−4.
After convergence, the stream function is used to find velocity
components for visualization and postprocessing.
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FIG. 3. (Color online) The base states: Contours of charge density for different field ratio numbers. Left to right: C = 2, 4, 10, 40. The
capacitively coupled plates are at the top (positive) and bottom (negative) sides of the film, and the conductive electrodes are at the right
(positive) and left (negative) sides.

V. RESULTS AND DISCUSSION

The simulation was performed in different ranges of the
dimensionless numbers and results are reported and discussed
in this section. First the “Base state” for potential and charge
distribution is discussed, then the low Prandtl-like number
regime is explained, which is the case where the motion of the
film does not change the charge distribution from its base state,
and also the most common condition when experimenting with
water-based solutions. Finally, the general case is discussed,
in which the conductivity is not high enough to allow the
consideration of a low Prandtl-like number regime. In this
case the charge distribution is affected by the motion of the
fluid, and all equations [Eqs. (8)–(11)] are involved in the final
solution. The explanation in this order helps the understanding
of the phenomenon step by step.

To be able to comprehend the conditions of the experiments,
an estimation of the nondimensional numbers is made. The
field ratio number C has usually been between 10 and 100.
The force number F is usually between 102 and 106. The
Prandtl-like number is a function of the material’s conductivity.
For water solutions, P was usually less than 10−7.

A. Base state for potential and charge distribution

Assuming that there is no motion on the film or that the
charge distribution on the film is not affected by the motion
of the film, the nondimensional charge distribution and the
potential on the entire film can be found only as a function
of the field ratio C. This is the case for the very small
Prandtl-like numbers, as in Eq. (10) the advection term could
be totally neglected. Understanding this charge distribution is
an essential part of understanding the rotation mechanism.

Solving Eqs. (10) and (11) with the appropriate boundary
conditions, the base state was calculated and is shown in
Fig. 3.

B. Low Prandtl-like number regime

In the low P regime, the conductivity is so high that the
charge distribution is not affected by the mechanical motion of
the film. As explained before in Sec. II, in this case, changing
the conductivity has no effect on the motion of the film. This is
the usual case when experimenting with water-based solutions.

The electrical charge distribution in this state is the same as the
base state, which is only a function of the applied voltages, and
is independent of the motion of the film and the Prandtl-like
number (Fig. 3).

In this case, the motion is expected to be independent of
the conductivity, as the electrical forces are caused by the
charge distribution and the charge distribution would only
be a function of the applied voltages and not the motion
or the conductivity values. This assumption was verified by
simulating the phenomenon in differentP values. As explained
in the next section, the differences between different results
became negligible as the Prandtl-like number becomes less
than 10−3. Therefore, to simulate the low P condition, we
eliminated the charge distribution calculation from each time
step, and instead the steady charge distribution was calculated
once at the beginning of the simulation.

To investigate the effect of the actuating forces on the
motion, the dimensionless number F was varied, and the
steady-state results were obtained. F is the ratio between
the electrical forces to viscous forces. Low values for F
indicate that the viscous forces are dominant. A series of
simulation was performed with a constant field ratio C equal
to 30. In this set, the force number F was varied in a range
between 102 to 105. The dimensionless velocity magnitudes
and vorticity increase as F increases, which is because the
actuating forces inducing the motion increase. The relation
between the maximum velocity and the force number obeys
a quite linear trend in our simulation range, as illustrated in
Fig. 6.

Several facts in the results agree with those of the experi-
ments. The velocity profile is very similar to the experimental
results, with velocity being zero at the edges and the center, and
the maximum velocity encounters somewhere in the midway.
Figure 4 shows a typical velocity vector field for our results,
which is in agreement with those of the experiments [29].

As the results indicate, in the low Prandtl-like number
regime the maximum velocity of the motion is directly
proportional to the force number. It is also observed that as
the force number increases, the streamlines of the motion
tend to become circular as shown in Fig. 5. This is a result
of domination of the advection term in the Navier-Stokes
equations to the diffusion terms, which means that inertial
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FIG. 4. (Color online) Typical form for a velocity vector field.
F = 100, C = 30, and P = 10−8.

forces dominate viscous forces. In other words, in small force
numbers, the velocity in a specific point is proportional to the
electric force at the same point. As the force number increases,
the Reynolds number also increases, therefore the fluid tends
to maintain its velocity due to inertia, leading to a circular
motion. Also, in higher Reynolds numbers, the behavior of the
flow might become unsteady.

We also changed the field ratio C to observe its effect in the
low Prandtl-like number regime. As explained in the previous
subsection, in high-field ratio numbers C, where the Eex is
much higher than the internal field, the charge distribution is
a function of y; positive charges will be accumulated near the
negative plate and vice versa. As the field ratio decreases,
the charge distribution approaches to the corners, positive
charges approaching to the positive electrodes, and vice versa.
Figure 3 shows the base states of charge for different field
ratios.

We simulated the low Prandtl-like number regime for F =
50, and different field ratios from 1 to 50. We observed that
changing C caused no noticeable change in the motion of the
film; i.e., changing the internal and external voltages does

not change the motion of the film provided that their product
remains the same. This fact could be interpreted as follows: The
body force inducing motion (vector field of f ) is a product of
the electric field (E) and the charge on the film (q). The electric
field is directly proportional to the electrode voltages (Vin), and
the capacitively coupled plates cannot cause an electric field
inside the film. The charges are induced both by the electrodes
and the capacitively coupled plates, and due to linearity of
electric equations, can be assumed to be a sum of two charge
distributions caused by the electrodes (qin) and capacitively
coupled plates (qex):

f = E(qin + qex). (22)

Now both E and qin are symmetrical about the x-z plane,
therefore their product cannot cause a nonsymmetrical rotation
around the z axis. So it is the term E · qex that should lead to
rotation. E is linearly proportional to the conducting electrodes
voltage and qex is linearly proportional to the external voltage.
This could show why when the field ratio changes but the
product of the voltages remain constant, the motion does
not show a significant change in the low Prandtl-like number
regime. Note that this conclusion is not valid for high Prandtl-
like numbers, since both the voltages and charges would be
affected by the motion of the film.

C. General case

So far we assumed that the charge distribution is the same
as the base state, however, in fluids with conductivities much
less than water, this assumption cannot be true. This is the case
where the Prandtl-like number is very high, and the effect of
fluid motion on charge distribution can no longer be neglected.
We call this state the general case.

In the general case, the Prandtl-like number cannot be
assumed to be very small, and thus the fluid motion affects
the charge and potential distribution. It is the advection term
in Eq. (10) [(u · ∇)q] that causes the charge distribution to
vary from its base state by the fluid motion. The greater
the Prandtl-like number, the more the charge distribution
is affected by the motion. At first, this effect changes the
charge density distribution and the electric field intensity and
direction, which usually reduces the effecting forces on the

FIG. 5. (Color online) Contours of velocity magnitude for different force numbers F . From left to right: F = 102, 103, 104, and 105.
C = 30 and P = 10−8. Note that as the force number increases, the flow becomes advection dominated; therefore, inertial forces dominate
leading to smooth circular flows.
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FIG. 6. (Color online) The relation between the maximum veloc-
ity and the force number F for different Prandtl-like numbers and
C = 30. In the low Prandtl-like number regime, the relation is linear
and the result is independent of the Prandtl-like number. However,
in high Prandtl-like numbers, the relation becomes nonlinear as the
force number increases.

fluid, and slows the rotation as shown in Figs. 6 and 7. In small
force numbers, the velocities are small, and thus the change
of charge distribution becomes negligible. However, in large
force numbers, the effect becomes significant. This leads to
the nonlinear effect that is seen in the diagram.

As well as reducing the maximum velocity, the effect also
changes the profile of the motion as shown in Fig. 8. The
simulation results for different values of the nondimensional
parameters are shown in Fig. 9. When the charges are dragged
with the moving fluid, they tend to move back to their stable
position. At the steady state, the deformation of the charge
distribution leads to a rotation resisting effect, i.e., the motion
of fluid near the sides displaces the charges, and a charge

FIG. 7. (Color online) The relation between the maximum veloc-
ity and the force number F for different field ratios C and P = 10−2.

FIG. 8. (Color online) The velocity profile for F = 50 and C =
30. It is shown that increasing the Prandtl-like number tends to stop
the motion from the center, leading to motion near the edges only.

motion at an inner layer exerts an opposite force, canceling the
inner motion. As the Prandtl-like number increases, the effect
cancels the motion at the center. As a result, in high Prandtl-like
numbers and high enough force numbers, the motion velocity
will be maximized somewhere near the edges of the film, and
the center becomes stationary as shown in Fig. 8. Figure 7
shows the variation of velocity magnitude with the field ratio
number C. Increasing the field ratio number C increases the
amount of charge density and increases the effect of charge
distribution variation on motion. Also, when the force number
F increases, since the velocity magnitude increases, again the
deformation of charge distribution will be more significant,
and the velocity incrementation will be different than the low
Prandtl-like number regime.

This effect has already been observed clearly in experi-
ments [29], that for poor conductive liquids (high P), like
1-Bromo-3-fluorobenzene, and high enough field ratios, the
maximum velocity regime approaches the sides of the film,
and our results provide a theoretical explanation of this effect.

VI. CONCLUSION

We have derived the governing equations of the dynamics
for the liquid film motor by following the well-known cal-
culations on thin film electroconvection and electrohydrody-
namics. A three-dimensional computer model is constructed,
and simulation results illustrate the rotation mechanism of the
liquid film motor. Free electrical charges are accumulated on
the free surfaces of the film, both by the charge-conducting
electrodes and the capacitively coupled plates. The internal
electric field exerts a certain force to the charged film. The
three-dimensional calculation is vital in the explanation of the
accumulated charges.

Several experimental results are explained by this theory
and simulation, a number of which have been explained for the
first time. These results include the form of motion, including
the no-slip boundary condition, the independency of motion
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FIG. 9. (Color online) Effect of Prandtl-like number on the liquid film motor. Left to right: Contours of charge density, contours of
electric potential, contours of velocity magnitudes, and streamlines. Top to bottom: P = 10−3, 10−2, 10−1, and 1. C = 30 and F = 30. As the
Prandtl-like number increases, the charge distribution becomes more and more affected by the fluid motion. Therefore, potentials change from
the base state, and so does the surface forces exerted to the fluid. The tendency of the fluid to become stationary at the center is a result of this
complicated behavior.
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to conductivity for conductive liquids like water (i.e., the low
Prandtl-like regime), and the tendency of the fluid to move
near the sides only for weakly conductive liquids.

Our theory relies on previously well-known princi-
ples, as in the electroconvection, and is consistent with
other related phenomena, such as the liquid film electric
generator.
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Fluids 48, 747 (2005).

033002-9

http://dx.doi.org/10.1016/B978-1-4831-9993-1.50011-3
http://dx.doi.org/10.1016/B978-1-4831-9993-1.50011-3
http://dx.doi.org/10.1016/B978-1-4831-9993-1.50011-3
http://dx.doi.org/10.1016/B978-1-4831-9993-1.50011-3
http://dx.doi.org/10.1103/PhysRevLett.75.3886
http://dx.doi.org/10.1103/PhysRevLett.75.3886
http://dx.doi.org/10.1103/PhysRevLett.75.3886
http://dx.doi.org/10.1103/PhysRevLett.75.3886
http://dx.doi.org/10.1063/1.2337997
http://dx.doi.org/10.1063/1.2337997
http://dx.doi.org/10.1063/1.2337997
http://dx.doi.org/10.1063/1.2337997
http://dx.doi.org/10.1103/PhysRevA.41.2243
http://dx.doi.org/10.1103/PhysRevA.41.2243
http://dx.doi.org/10.1103/PhysRevA.41.2243
http://dx.doi.org/10.1103/PhysRevA.41.2243
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1016/0167-2789(89)90145-0
http://dx.doi.org/10.1016/0167-2789(89)90145-0
http://dx.doi.org/10.1016/0167-2789(89)90145-0
http://dx.doi.org/10.1016/0167-2789(89)90145-0
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1103/PhysRevLett.46.119
http://dx.doi.org/10.1103/PhysRevLett.46.119
http://dx.doi.org/10.1103/PhysRevLett.46.119
http://dx.doi.org/10.1103/PhysRevLett.46.119
http://dx.doi.org/10.1063/1.91534
http://dx.doi.org/10.1063/1.91534
http://dx.doi.org/10.1063/1.91534
http://dx.doi.org/10.1063/1.91534
http://dx.doi.org/10.1051/jphyscol:1979399
http://dx.doi.org/10.1051/jphyscol:1979399
http://dx.doi.org/10.1051/jphyscol:1979399
http://dx.doi.org/10.1051/jphyscol:1979399
http://dx.doi.org/10.1063/1.445600
http://dx.doi.org/10.1063/1.445600
http://dx.doi.org/10.1063/1.445600
http://dx.doi.org/10.1063/1.445600
http://dx.doi.org/10.1080/13583149208628589
http://dx.doi.org/10.1080/13583149208628589
http://dx.doi.org/10.1080/13583149208628589
http://dx.doi.org/10.1080/13583149208628589
http://dx.doi.org/10.1103/PhysRevE.72.046311
http://dx.doi.org/10.1103/PhysRevE.72.046311
http://dx.doi.org/10.1103/PhysRevE.72.046311
http://dx.doi.org/10.1103/PhysRevE.72.046311
http://dx.doi.org/10.1103/PhysRevE.72.036211
http://dx.doi.org/10.1103/PhysRevE.72.036211
http://dx.doi.org/10.1103/PhysRevE.72.036211
http://dx.doi.org/10.1103/PhysRevE.72.036211
http://dx.doi.org/10.1103/PhysRevE.64.036212
http://dx.doi.org/10.1103/PhysRevE.64.036212
http://dx.doi.org/10.1103/PhysRevE.64.036212
http://dx.doi.org/10.1103/PhysRevE.64.036212
http://dx.doi.org/10.1103/PhysRevE.76.026305
http://dx.doi.org/10.1103/PhysRevE.76.026305
http://dx.doi.org/10.1103/PhysRevE.76.026305
http://dx.doi.org/10.1103/PhysRevE.76.026305
http://dx.doi.org/10.1103/PhysRevLett.92.084503
http://dx.doi.org/10.1103/PhysRevLett.92.084503
http://dx.doi.org/10.1103/PhysRevLett.92.084503
http://dx.doi.org/10.1103/PhysRevLett.92.084503
http://dx.doi.org/10.1103/PhysRevE.53.6101
http://dx.doi.org/10.1103/PhysRevE.53.6101
http://dx.doi.org/10.1103/PhysRevE.53.6101
http://dx.doi.org/10.1103/PhysRevE.53.6101
http://dx.doi.org/10.1103/PhysRevE.56.1706
http://dx.doi.org/10.1103/PhysRevE.56.1706
http://dx.doi.org/10.1103/PhysRevE.56.1706
http://dx.doi.org/10.1103/PhysRevE.56.1706
http://dx.doi.org/10.1103/PhysRevE.55.2682
http://dx.doi.org/10.1103/PhysRevE.55.2682
http://dx.doi.org/10.1103/PhysRevE.55.2682
http://dx.doi.org/10.1103/PhysRevE.55.2682
http://dx.doi.org/10.1103/PhysRevE.58.650
http://dx.doi.org/10.1103/PhysRevE.58.650
http://dx.doi.org/10.1103/PhysRevE.58.650
http://dx.doi.org/10.1103/PhysRevE.58.650
http://dx.doi.org/10.1007/s10404-008-0349-6
http://dx.doi.org/10.1007/s10404-008-0349-6
http://dx.doi.org/10.1007/s10404-008-0349-6
http://dx.doi.org/10.1007/s10404-008-0349-6
http://dx.doi.org/10.1007/s00348-010-0938-5
http://dx.doi.org/10.1007/s00348-010-0938-5
http://dx.doi.org/10.1007/s00348-010-0938-5
http://dx.doi.org/10.1007/s00348-010-0938-5
http://dx.doi.org/10.1007/s10404-012-0943-5
http://dx.doi.org/10.1007/s10404-012-0943-5
http://dx.doi.org/10.1007/s10404-012-0943-5
http://dx.doi.org/10.1007/s10404-012-0943-5
http://dx.doi.org/10.1007/s10404-014-1413-z
http://dx.doi.org/10.1007/s10404-014-1413-z
http://dx.doi.org/10.1007/s10404-014-1413-z
http://dx.doi.org/10.1007/s10404-014-1413-z
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1103/PhysRevE.80.041603
http://dx.doi.org/10.1103/PhysRevE.80.041603
http://dx.doi.org/10.1103/PhysRevE.80.041603
http://dx.doi.org/10.1103/PhysRevE.80.041603
http://dx.doi.org/10.1103/PhysRevE.62.2238
http://dx.doi.org/10.1103/PhysRevE.62.2238
http://dx.doi.org/10.1103/PhysRevE.62.2238
http://dx.doi.org/10.1103/PhysRevE.62.2238
http://dx.doi.org/10.1017/S0022112007004880
http://dx.doi.org/10.1017/S0022112007004880
http://dx.doi.org/10.1017/S0022112007004880
http://dx.doi.org/10.1017/S0022112007004880
http://dx.doi.org/10.1103/PhysRevE.83.026303
http://dx.doi.org/10.1103/PhysRevE.83.026303
http://dx.doi.org/10.1103/PhysRevE.83.026303
http://dx.doi.org/10.1103/PhysRevE.83.026303
http://dx.doi.org/10.1103/PhysRevE.85.036314
http://dx.doi.org/10.1103/PhysRevE.85.036314
http://dx.doi.org/10.1103/PhysRevE.85.036314
http://dx.doi.org/10.1103/PhysRevE.85.036314
http://dx.doi.org/10.1063/1.870226
http://dx.doi.org/10.1063/1.870226
http://dx.doi.org/10.1063/1.870226
http://dx.doi.org/10.1063/1.870226
http://dx.doi.org/10.1063/1.4907254
http://dx.doi.org/10.1063/1.4907254
http://dx.doi.org/10.1063/1.4907254
http://dx.doi.org/10.1063/1.4907254
http://dx.doi.org/10.1002/fld.953
http://dx.doi.org/10.1002/fld.953
http://dx.doi.org/10.1002/fld.953
http://dx.doi.org/10.1002/fld.953



