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Multifractality of quantum wave functions in the presence of perturbations
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We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations.
We study diverse representative models displaying multifractality, including a pseudointegrable system, the
Anderson model, and a random matrix model. We apply several types of natural perturbations which can be
relevant for experimental implementations. We construct an analytical theory for certain cases and perform
extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods
including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down
following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic
length which decreases with perturbation strength. In the second one, multifractality is affected at all scales
and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of
these scenarios can be present in certain cases. This study could guide experimental implementations in order to

observe quantum multifractality in real systems.
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I. INTRODUCTION

Many physical systems display patterns that repeat them-
selves faithfully at every scale. When such systems are
characterized by a single noninteger dimension, they are called
fractals (see, e.g., Ref. [1]). More generically, multifractality
corresponds to the case when different fractal dimensions are
required to describe the system. Multifractality characterizes
many complex classical phenomena: stock option analysis
[2], turbulence [3], and cloud imaging [4]. In quantum
physics a seminal example where multifractality occurs is
the Anderson model for the transport of an electron in a
disordered crystal [5]. In the metallic phase the electron wave
functions are spread uniformly inside the sample, whereas
in the insulator phase they are strongly localized. Exactly at
the threshold of the transition wave functions show highly
nontrivial fluctuations leading to anomalous transport. These
fluctuations can be precisely described by a multifractal
analysis, see, e.g., Ref. [6] and references therein. Such
types of multifractal wave functions can also be found in
dynamical systems whose classical limit is neither integrable
nor fully chaotic, which are dubbed pseudointegrable systems
[7-9]. Quantum multifractality in various related systems
has been intensively studied on the theoretical side from a
condensed matter perspective [6,10-19] for both one-body
and many-body models and from a semiclassical point of
view [20-33]. However, experimental characterization of
multifractality has been much more challenging, despite some
indirect recent attempts in disordered conductors [34] and cold
atoms [35-39]. It is worth mentioning that a recent acoustics
experiment simulating the Anderson model has allowed such
a measurement [40].

As multifractality has been difficult to observe experimen-
tally, it is crucial to assess how it is affected by perturba-
tions. This analysis is also important from a fundamental

1539-3755/2015/92(3)/032914(19)

032914-1

PACS number(s): 05.45.Df, 05.45.Mt, 71.30.4+h, 05.40.—a

viewpoint, since disturbances of the system may affect the
wave function at different scales. Considering that multifrac-
tality is a multiscale phenomenon, this could lead to a wealth
of possible behaviors. The main goal of the present paper
is thus to analyze how quantum systems with multifractal
properties behave under the effect of an external perturbation.
We have considered three paradigmatic one-body models, one
being the power-law random banded matrix model (PRBM),
the second one the Anderson model, and the third one being
representative of pseudointegrable systems. In these systems,
we have investigated several natural perturbations in order
to specify the robustness of quantum multifractality. At the
same time these natural perturbations could account for real
experimental situations. We have recently conjectured that
quantum multifractality can be in general destroyed by a
perturbation following two scenarios [41]. In scenario I,
there exists a characteristic length below which multifractality
is unchanged; the perturbation acts only by changing the
characteristic length. In scenario II, multifractality is affected
at all scales and vanishes uniformly when the perturbation
increases. In the present paper, we confirm these two broad
scenarios by new detailed analytical and numerical results.
We also introduce a double scaling analysis to describe a
variant of the second scenario where a modified multifractality
is observed only below a characteristic scale.

In Sec. II the models we have studied are more precisely
introduced and the numerical methods used to obtain our
results are described. In Sec. III we consider a first type of
perturbation natural for pseudointegrable models, namely the
smoothing of singularities in the potential. In Sec. IV we
consider a change of parameters which moves the system
away from criticality. In the case of a specific pseudointegrable
system, we are able to predict the change of multifractal-
ity through an analytical theory that we expose in detail.
In Sec. V we study the perturbation corresponding to a
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change of basis. Eventually we draw some conclusions in
Sec. VL.

II. MODELS AND METHODS
A. Models

Many theoretical investigations on multifractals were first
carried out on the example of the PRBM model [14] (see also
Refs. [6,11]). This model is defined (in the real periodic case)
as the ensemble of symmetric N x N matrices with random
real coefficients, with zero mean value, and a variance given,
forl <i,j < N,by

=1 =1+ (2o (72)) T
(D

The parameter b (effective band width) allows us to tune
the multifractality of the model from a regime of strong
multifractality (b < 1) to weak multifractality, where states
are close to extended (b >> 1). The PRBM can be related to a
disordered tight-binding Hamiltonian with long-range hopping
[42]. We will use this model as a benchmark at specific places,
especially since some analytical results are available [6,11].

The second model we consider originates from semiclas-
sical physics [20] (see also Ref. [21]) and describes the
discrete time dynamics of one quantum particle kicked in
one dimension with a classical limit between integrability and
chaos (pseudointegrability). This model, called the intermedi-
ate map, is defined as the quantization of an interval-exchange
map on the torus. The classical map is defined by

Pn+1 = pn+y mod 1,
(2)

Xn+1 = Xp +2pyy1 mod 1.

It is generated by the following Hamiltonian, defined on the
phase space as:

H(p,x)=p*+ V(X)) 8t —n), 3)

with V(x) = —y{x}, where {x} means the fractional part of x.

For integrable systems motion in phase space is restricted
to tori (surfaces of genus one), while for pseudointegrable
systems motion takes place on surfaces of higher genus. For the
classical intermediate map with rational y = a/b, motion with
initial momentum pj is restricted to the b one-dimensional tori
(circles) p = po + ky with 0 < k < b — 1, thus describing a
surface of genus b. For irrational y the motion is ergodic as in
chaotic systems, although no strong chaos is present.

The corresponding quantum map is a unitary operator U on
an N-dimensional Hilbert space. For the intermediate map it
is given in the momentum basis by the N x N unitary matrix

—2nik*/N 1 — gZimyN

N 1 — g2intk—I+yN)/N’

e

Uy = 0<kIL<N-1.

“4)

The dimension of the Hilbert space is related to the effective
Planck constant hesr = 2w /N. We also consider a random
version of the model, where e=27¥*/N i replaced by e =% [29],
with ¢ independent random variables uniformly distributed in
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[0; 2r]. This model allows us to get better statistics and gives
similar results as the nonrandom model, with some specificities
that we will present.

The spectral statistics of the quantum map (4) depend
on the value of the parameter y. For irrational y, the
spectral statistics follows the prediction for the circular unitary
ensemble (CUE) of random matrices characteristic of chaotic
systems. For rational y = a/b, the spectral statistics depend
on the arithmetical properties of b and are intermediate
between the Poisson statistics of integrable systems and the
random matrix result of chaotic systems [29,30]. In the case
where y is a rational number y = a/b, the eigenvectors of
the operator (4) in the momentum basis show multifractal
properties [33]. The multifractality strength depends on b,
from strong multifractality (small b) to weak multifractality
(large b).

The intermediate map corresponds to the quantization of
a dynamical system. It is also known that multifractality can
appear in the critical regime of disordered solid-state systems.
To discuss this class of systems, we will consider the famous
model proposed by Anderson in Ref. [5]. The d-dimensional
Anderson model is defined in the basis of lattice sites as

H =) eli)il+ )1, )
i (i.J)

where the random on-site energies ¢; are uniformly distributed
in [-W/2,W/2] and (i, j) denotes nearest neighbors. Eigen-
states of this model (5) are always exponentially localized
in dimensions one and two. The situation differs in three
dimensions. Indeed, for d = 3 all eigenvectors are localized
for large values of the disorder strength W, but the system
performs a localization-delocalization transition at a value
W. ~ 16.53 [12]. For W < W,, eigenstates in the vicinity of
E = 0 are extended. At the transition point W = W,, states
display multifractal properties [6].

B. Multifractal dimensions

There are several ways of defining multifractal dimensions
for quantum states, which in most cases yield similar results
[33]. In the present paper we will mainly use the box counting
method. A system of linear size L is decomposed into boxes
of size ¢, and a coarse-grained measure of each box k for a
wave vector |y) is defined as g = ), [V |2. We define the
moments P, (£) of order g as

Py(0) =) ui. ©)
k

In the limit of vanishing ratio £/L between the box size and
the system size, the presence of multifractality is characterized
by the following behavior:

Py(£) ~ (%) q, ¢/L — 0, @)

with a nontrivial exponent 7,. The main quantity which will
be used throughout this paper is the multifractal dimension
D, =1,/(g — D).

Another way of characterizing multifractality is to use the
scaling of the moments as a function of the system size [6,11].
In the systems we study, this method has been shown to be
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FIG. 1. (Color online) Multifractal dimensions D, (top left) and
singularity spectrum f(c) (right) for the intermediate map for y =
1/3and N = 2'2; blue solid line: annealed exponent; red bold dashed
line: typical. Bottom left: Correlation function R,(r); gray dashed line
corresponds to the exponent D, — 1 obtained from top left.

equivalent to the box-counting method [33]. Here it will allow
an analytical approach to be developed, which will be used
in Sec. IV B. Nevertheless, this method can be delicate to
use in certain cases, especially when looking at wave packets
[43]. Another drawback is that in the systems we consider
this approach makes it difficult to distinguish the physics at
different scales, which is crucial in our study.

Another signature of multifractality is the behavior of
correlation functions such as the 2-point correlation function,

Ro(r) = N*(i P 1igr 1), (8)

where N = L9 is the Hilbert space dimension for a system
of dimension d, and the average is taken over different
eigenvectors, disorder (when present) and all indices i. It is
related to the multifractal exponent D, [6,44] via
R NPT
m~(z) . o ©)
Alternatively, one may express multifractal properties via
the singularity spectrum f(c), which is the Legendre transform
of t,. Moreover, for disordered systems, one distinguishes
between the annealed exponents which describe the scaling
of the average moments, and the typical exponents which
characterize the average of the logarithm of the moments.
For all the systems considered here, the two sets of exponents
coincide over a relatively large range of ¢ values in the vicinity
of ¢ =0 [33]. As an illustration, Fig. 1 shows an example
of multifractal dimensions and singularity spectrum for the
intermediate map. In what follows we will mainly concentrate
on the set of annealed exponents. We also display in Fig. 1
the correlation function R, for the intermediate map, together
with the slope corresponding to D, illustrating relation (9).

C. Local multifractal exponents

Multifractality is mathematically defined as a scale invari-
ance which takes place at all scales. In a real setting, however,
multifractality can be valid only on a certain limited range
of scales, e.g., between a lower microscopic length and an
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FIG. 2. (Color online) Local multifractal dimension D,(¢) as a
function of the box size ¢ for the PRBM model (1) for two
values of b. Top: Weak multifractality regime b = 2. Bottom: Strong
multifractality regime b = 0.01. Black circles: N = 2!°; red squares:
N =2'"; green diamonds: N = 2'2; blue triangles: N = 2'3. Dotted
dashed orange line: Analytical prediction D, = 2b for b < 1 and
Dy =1— L forb > 1[6].

upper macroscopic length. As we will show, this is particularly
relevant for perturbed systems. In order to investigate the
ways in which multifractality is destroyed when a system
is perturbed, one can introduce [16,41] a local multifractal
exponent, which characterizes multifractality at a given scale.
It is defined as

~ 1 dinP,¥)
Dy(l) = ————— (10)

g—1 dln¢
In practice, as the scales £ are discrete numbers we compute
the local multifractal exponent at scale £ as the slope between
scale £ and the scale immediately above.

The local multifractal exponents typically show a plateau
which corresponds to the global multifractal exponent defined
by (7); as an example, Fig. 2 displays the local multifractal
exponents for the PRBM model, together with analytical
predictions from Ref. [6], and Fig. 3 displays this quantity
for the intermediate map. Both figures show that D~q (¢) indeed
presents a plateau for a significant range of £ values. However,
deviations can occur for the smallest values of ¢ as in Fig. 2,
which are due to the fact that coarse graining is necessary to
obtain converged results.

Deviations can also occur at large scales, as is the case
for the intermediate map in Fig. 3. The plateau at small ¢
coincides with the value D, from Fig. 1, but at large scales
D~q (¢) saturates to 1. This is a specificity of the model,
which for y = a/b exhibits a characteristic length E = N/b,
arising from the existence of the underlying classical structure
described in Sec. IT A. The characteristic length can also be
seen on the data shown on Fig. 1 for the correlation function,
where b peaks of typical width N/b are clearly visible.
Below the characteristic length E, the value of ﬁq (£) shows a
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FIG. 3. (Color online) Local multifractal dimensions for the in-
termediate map for y = 1/5 and increasing system sizes N = L. The
full lines correspond to ¢ = 2 while the dashed lines correspond to
g = 1.Blackcircles: N = 2°; red squares: N = 2!°; green diamonds:
N = 2" blue up-triangles: N = 2'2; orange left triangles: N = 2'3;

brown down-triangles: N = 2%, Left: Raw data. Right: All the box
sizes are rescaled by E = N/5.
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plateau indicating asymptotic multifractal behavior. Figure 3
shows that after rescaling the box size £ by this characteristic
length, all ﬁq(Z) collapse to a single curve following the law
Dq (£) = F,(£/ &), where F,(u) is a function independent of
N.

D. Natural perturbations and scenarios

In the following sections, several types of natural pertur-
bations will be applied to these different models. For the
intermediate map (4) three types of perturbations naturally
arise: (i) The singular potential in (4) can be smoothed, (ii) the
parameter y which controls multifractality can be varied away
from its critical values, and (iii) the measurement basis can
be changed. Clearly, all these perturbations can arise in a real
experimental setting, such as cold atom [35-39] or photonic
lattice [45] implementations. In the case of the Anderson
model (5), the natural perturbations correspond to a change
of disorder strength away from criticality and a change of
measurement basis.

We will develop a scaling analysis of numerical data
combined with analytical approaches in order to show that
the different paths to multifractality breakdown always follow
one of the two scenarios presented in Ref. [41] and outlined
in the Introduction: Scenario I corresponds to the existence
of a characteristic length below which multifractality is un-
changed; above this characteristic length which decreases with
increasing perturbation strength, multifractality is destroyed.
Scenario II corresponds to a multifractality which is affected
at all scales and vanishes uniformly when the perturbation
increases. We will see that there can be interesting variations
depending on the interplay between characteristic lengths of
the model and the perturbations.

PHYSICAL REVIEW E 92, 032914 (2015)

III. SMOOTHING THE SINGULAR POTENTIAL

In this section several types of smoothing of the intermedi-
ate map are described, which aim to account more realistically
for experimental constraints. Indeed, in pseudointegrable
systems, generally singularities are present and are one of
the reasons for which the classical dynamics is neither inte-
grable nor chaotic. Experimentally, discontinuities such as in
the potential in (3) have to be smoothed out. In this section we
will consider several types of smooth potentials approximating
the exact one in different ways. These perturbations have been
thought to be relevant for an experimental implementation of
the intermediate map. One could envision photonic crystal im-
plementations [45] where time is taken as a spatial dimension
and the potential is etched on a substrate whose refractive
index is varied. In this context, the potential singularity will be
smoothed over a certain distance which depends on the etching
technique. Another possible implementation corresponds to
cold atom experiments where atoms are subjected to potentials
constructed from laser light standing waves [35-39]. In this
context, the smoothing of the potential will take place through
the presence of only a fraction of the Fourier components
needed to build the exact potential in (3). Three possible ways
of smoothing the potential V (x) are considered below, adapted
to these two experimental possibilities. We consider both the
model with random phases and the deterministic model (4)
(see Sec. IT A) more realistic for experiments.

A. Polynomial smoothing

We first consider a more realistic version of the model
for photonics experiments [45]. In this context, we chose to
approximate the potential V (x) as

0<x<1—c¢
l—e<x<1

—yx,
a3x3 + a2x2 +aix + agp,

’

(1)

where the a; are chosen to make the potential and its first
derivative continuous at x = 1 — e and x = 1. The original
model (4) is recovered when € = 0 so € can be seen as a
small perturbative parameter. Typical examples of the resulting
potential are shown in Fig. 4 (top), while typical results for the
moments P, (£) of the random intermediate map are shown in
Fig. 4 (bottom) for N = 3°.

In Fig. 5 the local multifractal exponent D(¢) is plotted
as a function of ¢ for several smoothing widths €. In the left
panel the raw data are shown: While at very small perturbation
strength € one observes a plateau at the unperturbed D,
(compare with Fig. 3), at larger values of € this plateau is no
longer visible and the curves D>(¢) increase monotonically.
Nevertheless, it turns out that one can put all these different
curves onto a single one by rescaling the lengths £ (right panel).
This shows that the local multifractal exponents obey a scaling
relation:

Vix)= {

B0 =6,| =1, (12)
! q[ae)]

with £(e) a scaling length which depends only on the
perturbation strength and which is well fitted by

E(e)oxce™ (13)
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FIG. 4. (Color online) Intermediate map smoothed by a polyno-
mial for N = 3° and y = 1/5. Top: Smoothed potential. Dark brown
full line: Exact potential. Dashed purple line: € = 0.05. Dot-dashed
magenta line: € = (.1. Bottom: Moment of the eigenvectors of the
random intermediate map for ¢ =2 as a function of box size.
Dark brown full line: Exact potential; dashed green line: € = 0.005;
dashed-dotted purple line: € = 0.05.

with a & 1 (see inset of Fig. 5) and G, is a scaling function
independent of €. This scaling behavior is valid for various
values of the parameters ¢ and N. Indeed, it was shown in
Ref. [41] to occur when N is of the form 2" while Fig. 5 shows
that it remains also valid for N of the form 3". Moreover, this
scaling behavior with exponent o &~ 1 applies for different
values of ¢ and y and also for polynomial smoothings (11) of
higher order (data not shown).

Multifractality in this perturbed model can be further
investigated using the two-point correlation function R,(r) as
defined in (8). In Fig. 6, R,(r) is shown for several smoothing
widths. Rescaling r by the same scaling parameter £(¢) o< 1/€
leads to the collapse of all the curves, see Fig. 6 (right).

A similar behavior can be observed for the model (4) with
nonrandom phases. In Fig. 7 the local multifractal exponent
D,(¢) for the deterministic model is shown to follow the
scaling law (12), in complete analogy with Fig. 5.

The noticeable difference lies in the exponent « of the
scaling length £(e) with respect to the smoothing width e,
which turns out to be @ = 0.67 rather than ~1 for the random
phase model. As in the case of the random model, this value
of @ &~ 0.67 depends neither on N nor y. Results for the two-
point correlation function are shown in Fig. 8 using the same
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FIG. 5. (Color online) Scaling analysis of the local multifractal
dimension D, for the perturbed random intermediate map for N =
3% and y = 1/5. The perturbation is the smoothing of the singular
potential over a length €. Left: Raw data. Right: Data after rescaling.
Inset: Variation of the scaling length & as a function of €; solid
line is the fit corresponding to (13) with o = 1.04. Black circles:
€ = 0.002; red squares: € = 0.003; green diamonds: € = 0.005; blue
up-triangles: € = 0.008; yellow left triangles: € = 0.01; brown down-
triangles: € = 0.02; gray right triangles: € = 0.03; purple plus: € =
0.05; cyan crosses: € = 0.07; magenta stars: € = 0.1.
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parameters as in Fig. 6. Again, the same scaling behavior is
observed, with an exponent o« = 0.67 for the rescaling of r. The
difference of the scaling exponent o between the random and
nonrandom model reflects the differences of the correlations
in the phases of the propagator coefficient (4).

The data discussed in this section show that this kind of
smoothing leads to the appearance of a characteristic length
below which multifractality is unchanged, indicating that in
this case multifractality breakdown occurs following scenario
I described in Sec. IID.

o0

pN

)

10° 10° 10* 107

FIG. 6. (Color online) Two-point correlation function R, as de-
fined in (8) for the random intermediate map smoothed by a
polynomial for N = 3° and y = 1/5. Left: Raw data. Right: Data
after rescaling the variable r by £ = 1/¢ following (13). The same
color code as in Fig. 5 is used.
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FIG. 7. (Color online) Same as Fig. 5 for the nonrandom inter-
mediate map for N = 3° and y = 1/5. Left: Raw data of the local
multifractal dimension D, for different perturbation strengths. Right:
Data after finite-size scaling. Inset: Variation of the scaling length
& as a function of €; solid line is the fit corresponding to (13) with
a = 0.67, differing from the result in Fig. 5. The same color code as
in Fig. 5 is used.

| IR RTIT B

10" 100 100 10
14

4 100

B. Fourier series smoothing

In a cold atom experiment the potential experienced by
the atoms can be created with standing waves of laser light.
In these setups the frequencies and the amplitude can be
controlled with a very high accuracy. One could think that
each Fourier component of a periodic potential can then be
simulated by one laser so any potential could be reproduced.
The limitation is that it is practically impossible to use a large
number of lasers so only potentials with a small number of
nonzero Fourier components can be modeled. The potential
of the intermediate map is acting on the torus so it can be
expanded as a discrete Fourier series. In this section we will

8

N

10° 102 107 10° 100 10
r/L 60'677“/L

FIG. 8. (Color online) Same as Fig. 6 for the nonrandom inter-
mediate map for N = 3° and y = 1/5. Left: Two-point correlation
function as defined in (8). Right: The variable r is rescaled by
£(e) = €097 differing from the scaling used in Fig. 6. The same
color code as in Fig. 5 is used.
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FIG. 9. (Color online) Potential of the intermediate map obtained
by truncation of Fourier series for y = 1/5 and N = 3% = 6561 for
different N;. Black full line: Ny = N = 6561; red squares: Ny =
6559; green diamonds: Ny = 6557; blue up-triangles: N, = 6555;
orange left triangles: Ny = 6001. Inset is a blow-up of the same data.

investigate how the eigenvector statistics changes when the
Fourier expansion of the potential is truncated to Ny terms.
For Ny = N the linear form is recovered. A plot of the
potential for different values of N is shown in Fig. 9. Contrary
to the preceding case, the modification of the potential is
no longer local. In particular, even for large values of Ny
oscillations remain visible far from the discontinuity, see
the inset in Fig. 9. In this case our investigation shows
that even for Ny close to N, when almost all the Fourier
components are kept, multifractality is completely destroyed.
This indicates that this kind of perturbation is always large and
cannot be made arbitrarily small due to the discreteness of the
Fourier series. This is illustrated by considering the two-point
correlation function in Fig. 10: contrary to Fig. 6 we do not
observe a systematic dependence on the perturbation strength,
even for Ny close to N. Our results therefore show that a

| | L L L
10" 10° 107

r/L

FIG. 10. (Color online) Two-point correlation function for the
random intermediate map with potential approximated by a truncated
Fourier series for N = 3% and y = 1/5. Contrary to Fig. 6, we do not
observe a systematic dependence on the truncation, indicating that
the approximation is never perturbative. The same color code is used
as in Fig. 9.
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FIG. 11. (Color online) Potential of the intermediate map ap-
proximated by a trigonometric smoothing with N, derivatives fixed
at x =0.5, N =2'2, and y = 1/5. From right to left on the left:
N, = 46 (red), N; = 80 (green), Ny, = 109 (blue); black straight
line is the exact potential.

naive truncation of the Fourier series is not a good approach
to experimentally observe multifractality in such systems.

C. Trigonometric smoothing

In view of the results of the preceding subsection, one
may try to search for better approximation schemes using a
modified Fourier expansion. Indeed, a more efficient way to
approximate the potential for cold atom experiments can be
devised by fixing a prescribed number N, of derivatives at
one point in order to force the potential to be approximately
linear around that point. Such a potential can be chosen as a
trigonometric sum:

K
Vix) = Z a; sin(rlx).

=1

(14)

We took K = 3N, and the g; are such that the potential obeys

the N, equations
V'(0.5) = —y, vNo(0.5) = 0.

15)

V0.5 =0, ...,

The resulting potential for several values of N, is shown in
Fig. 11. Compared with the simple truncation of the Fourier
series, the potential change now occurs only in a limited region
of space, which gets smaller and smaller as N, increases. We
found that a scaling analysis similar to the one in Sec. IIT A is
possible in this case. As an example, the two-point correlation
function for different N, is displayed in Fig. 12. The scaling
relation follows the formula

R R r 1
2 (r) = <%>, f(f)dg,

where € = 1/N,; and R is a scaling function independent of
Ng. This is similar to what is described in Fig. 6.

This way of expanding the potential as a trigonometric
series is thus more efficient in order to keep the multifractality
of the system, and the disappearance of scale invariance
corresponds to scenario I (see Sec. II D).

(16)
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FIG. 12. (Color online) Scaling analysis of the two-point cor-
relation function for the random intermediate map with potential
approximated by a trigonometric smoothing with N, derivatives fixed
at x = 0.5 for N = 2'2 and y = 1/5. Black full line: Exact model.
Red circles: N, = 46. Green squares: Ny, = 80. Blue diamonds:
Ny = 109. Left: Raw data; right: data rescaled with (16) with
€ =1/N,.

IV. MOVING A PARAMETER AWAY FROM CRITICALITY

In all the models considered, multifractality is predicted
only for certain critical values of a parameter. In this section,
we investigate the robustness of multifractal properties when
this parameter is moved away from criticality.

A. Change of W in the Anderson model

In the case of the three-dimensional (3D) Anderson model,
multifractality appears at the metal-insulator transition which
corresponds to a specific disorder strength W, ~ 16.53 in
the center of the band (E = 0) [12]. A natural choice of
perturbation is therefore to change the disorder strength
slightly below or above the critical value W,. In this case, it is
known that the eigenstates are either localized or delocalized
with a characteristic length £. In the insulating phase &
corresponds to the localization length, while in the metallic
phase it corresponds to the correlation length. Below this
characteristic length, the wave functions are multifractal with
the same critical multifractal spectrum, and they form a
“multifractal insulator” or a “multifractal metal” [46]. This is
a consequence of a one-parameter scaling law that governs the
multifractal spectrum in the vicinity of the transition [12]. This
type of perturbation therefore follows scenario I of quantum
multifractality breakdown: Quantum multifractality survives
unchanged below a certain characteristic length related to the
distance to the critical point.

B. Change of y in the intermediate map
1. Numerical results

The behavior of the intermediate map is richer, in the sense
that there is in principle an infinite number of critical values
of the parameter, i.e., values for which multifractality arises.
Indeed, in the intermediate map (4), multifractality is predicted
to appear for rational values of the parameter y (see Sec. II).
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FIG. 13. (Color online) Variation of the multifractal dimensions
D.(y) for the intermediate map (4) with random phases and N = 2'2
in the vicinity of the rational values y = 1/2 (top) and y =1/5
(bottom). The red solid line below 1 corresponds to D;(y) and the
blue one above 1 to D_;(y). Black dash-dotted parabolas correspond
to the theoretical expression Eq. (43) withk =1 and 2 for y =1/2
and x = 0 and 1 for y = 1/5. Inset: Zoom on the right part of the top
plot, corresponding to k = 2.

Multifractality manifests itself all the more strongly when
the denominator of y is small, that is, for y = 1/2,1/3, or
1/5, for instance [31]. In close vicinity of these rationals, one
should observe delocalized eigenstates. However, since this
difference in behavior only arises in the limit of infinite size,
we can expect at finite size N a persistence of multifractal
properties if one varies the parameter in some vicinity of these
low-denominator rationals. This is illustrated in Fig. 13, where
D, is computed for a fixed vector size N as a function of the
parameter y in the vicinity of two rationals, 1/2 and 1/5, up
to a distance of the order 1/N from these rationals. Clearly the
curve D, (y)is not singular at all rationals but rather smoothed
out. An advantage of this model is that it is amenable to analyt-
ical treatment via perturbation theory, which allows us to get a
clear picture of how parameter changes may affect multifrac-
tality. This approach will be carried out in the next subsection.
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FIG. 14. (Color online) Correlation functions for the random
intermediate map of size N = 2'2 in the vicinity of y = 1/5. Top:
Two-point function (8); bottom: higher-order correlation function.
The black dashed straight line corresponds to 1.68(r/L)*P+~2P271 as
expected from Ref. [44]. The curves correspondtoy = 1/5+¢€/(5N)
with (from top to bottom) € = 0 (black solid line), 0.127 (blue dashed
line), 0.255 (green dotted line), 0.382 (orange dash-dotted line), 0.509
(dark-red dash-dotted line), 0.637 (light-blue double-dashed line),
0.764 (purple dash-double dotted line), and 0.955 (red dashed line).

A crucial property of this type of perturbation, as our nu-
merical results show, is that multifractal properties for different
values of y do not depend on any characteristic length. This can
be shown by investigating the two-point correlation function
(8) for this model. Results displayed in Fig. 14 (top) show that
R, behaves as a power law as in Eq. (9) over a broad range
of scales and yields a well-defined multifractal dimension
D, which increases toward the ergodic value D, = 1 when
the parameter is tuned away from criticality. The fact that
multifractal dimensions change smoothly and uniformly at all
scales is a footprint of scenario II. To confirm this effect we
have also computed higher-order correlation functions, which
are known to involve other multifractal dimensions [6]. An
example is shown in Fig. 14 (bottom), showing that indeed
other multifractal dimensions follow scenario II.
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2. Outline of the perturbation theory

As mentioned above, it is possible to build analytically a
perturbation theory to describe the vicinity of rational values
of y. This is done by using a related mathematical model, the
Ruijsenaars-Schneider model [47]. As shown in Ref. [32], this
model also displays multifractal eigenvectors. It was already
used to describe a quantum version of the intermediate map
with unbounded phase space [43].

In this section we develop a perturbation theory for the
intermediate map when the parameter y depends on the matrix
size. Namely, we consider the intermediate map at parameter
value of the form y = 1/b + a/N, that is, when the parameter
of the map gets close to a rational at a speed which depends
on N. The Ruijsenaars-Schneider (RS) ensemble is defined as
the ensemble of N x N unitary matrices of the form
P,

e 1— eZnig

Unn = N 1 _ e2ritm—ntg)/N’

a7
with ®,, independent random phases uniformly distributed
between 0 and 27, and g some fixed parameter [32].

The perturbation expansion for multifractal dimensions of
the Ruijsenaars model was obtained in Ref. [32] in the weak
multifractality limit where g is close to a nonzero integer.
The intermediate map at parameter value y = 1/b+a/N
coincides with the Ruijsenaars map with parameter g = Ny =
N/b + a. Let r be the remainder of N modulo b. The weak
multifractality limit for (17) is obtained when N /b + a is close
to a nonzero integer, that is, when a = k — r/b + €, with k an
integer and € a small real number. For such a value of a, the
intermediate map corresponds to the map (17) with parameter
g =K +¢€,where ¢ = (N —r)/b + k is an integer. Thus we
expect multifractal dimensions for the intermediate map to be
given by a perturbation expansion in € similar as in Ref. [32],
but in the vicinity of an integer ¥ which depends on N. For
simplicity, we will consider the case where gcd(¢,N) = 1. We
can then define # ! as the inverse of & modulo N.

Multifractal dimensions can be obtained from the asymp-
totic behavior of

D W@ ~ N7PaD (18)

at large N. Here W, («) is the nth component of the ath
eigenvector of the system (17) of size N. In the unperturbed
case where states are extended, the multifractal dimensions are
DY = 1 forall g. The perturbative approach allows to express
eigenvectors of (17) at first order in €, and thus the moments
of the wave function. At € > 0, fractal dimensions are given
by D, = 1 — £d,, with d, some small number (the factor 3 is
put here for convenience). From (18) one then obtains

Z |\pn(a)|2q ~ N—(=qds/2)(g=D)
n

I 1
:qu[wqwz )dqlnN:|. (19)

The first-order correction to the multifractal dimension is thus
given by the logarithmic behavior of the perturbative correction
of the moments. We first find a closed expression for the
first-order correction of the wave-function moments averaged
over the whole spectrum and over disorder configurations
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[Egs. (28) and (37)], and then extract the dominant logarithmic
contribution in the limit N — oo [Eq. (42)], which gives us
the correction d,; sought for.

Eventually, the calculations detailed in the next paragraph
provide an analytical confirmation that a change of y in
the intermediate map leads to a multifractality breakdown
following scenario II.

3. Perturbation expansion

Let us consider a perturbation expansion of (17) around &,
setting g = & + €. Let M,,,, = U,p,e”™€1=1/N): This rescales
U, by a trivial factor, and

e sinme

N sin(re/N)

(1 _ eZniE)efine(lfl/N)
+(1 - 5m—n+i?) 1

M, = amfnﬂ?

_ leri(m—n-‘rl?-‘rs)/N (20)
(where § is the Kronecker § function) is then such that both
terms have a definite limit when € — 0. First-order expansion
of M,,, reads

. 2iTe . 1 —6m_niz

~ i Pm L i®, m—n—+ik
My = € 7" 8 _nai N [ i nioN " 21
We denote eigenfunctions and eigenvalues of M,,,,

respectively, by \IJ,,(oz) and A, . Unperturbed eigenstates, that
is, eigenvectors of /*"§,,_, ¢, are given by

WO(g) = ——eSetn@)
27 R
S, (a) = Wna—i—nd)—sz,;j, (22)
Jj=0
with eigenvalues
)"((10) _ ei&wﬂ‘%a’ (23)

where .CTD = % Z;\:ol D;. Standard first-order perturbation
expansion of eigenvectors gives

W, () = W)+ Y CapWV(B), (24)
B
with
(0)* 1)y (0)

W =)

and M{}) the order-€ (off-diagonal) term in (21). Replacing
WO by its explicit value (22) in Eq. (24) we get

1
Un(@) = 1+ Qu(@) + Q@) + Q@) (@) (26)
with
Qu(e) =Y ™I Cy g1
B

Taking (26) to the power g and summing over n we get, up to

order €2,

1 —1
Y@ = <+ 1D Y0, + O,

27)

(28)
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where terms linear in ¢ sum up to zero because of the
normalization of W. Identifying (28) and (19), we get

1
5 2[0n@) + Qi(@F ~dyIn N, (29)

so the correction to the unperturbed multifractal dimension
is indeed given by the logarithmic asymptotic behavior of the
sum in (29).

4. Model with random phases
From the definition (27) of Q, we have

1
5 2 n@?* =3 CaurpCaap (30)
n B
and

1
5 2 0 @Qi@ =) CaaspCloip G
n B

We are interested in quantities averaged over all eigenvectors
and random phases: We thus have to perform a sum over o
and an integral over the ®;. From Eqs. (21)—~(25), the explicit
expression of Cy g1 18

Co g = — fo—rivr ol — s — 1 2% 4+ &
“re =N & P N

r—1 K
2i 1
X exp —%(s%—z)ﬁ—iZQDM#—iZCbW
j=0 j=0

(32)

(we have changed the summation from m,n to r,s with

r=k 'nands =& 'm) and
€ —inx/N
=25 " ifx+#0, Ootherwise.  (33)
N sinmx/N

Similarly, Cy4 —p can be expressed by a sum over indices r’
and s’. The quantity Cy g+4Ca,q—p depends on o through a
factor expli(r —s —1+r ' —s — 1)2”7“]. Upon averaging
over «, one thus gets a coefficient 6,4, —y—» which kills the
terms ®. The averaging of Co,a+8Cq,a—p over random angles
then contains a coefficient

r—1 s r'—1 s’
<exp|:—iZ<D,;j+iZ<D,;j —izq>kj+izcb,;j:|>.
Jj=0 Jj=0 Jj=0 Jj=0
(34)

Since r —s+r'—s'—2=0 and t) = 0 (so contributions

with » = s 4+ 1 or ' = s’ 4 1 vanish), the average (34) can

only be nonzero when s = r’ — 1 and s’ = r — 1. This yields

-1 fs— 2 o
[#s—r+ 1)z .

(CowtpCaa—plad= — “W B (35)

2 a2 T8
4N?* 4~ sin? 22

Changing variables s —r 4 1 = x and summing over 8, we
get from (30) and (35)

2e? 1

1
<N;Qn(a)2> =~

a,® x,B

e~ VB

_ . (36)
s D WRX - B
S N Sln2 N
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In a similar way, averaging Co,a+5C, ,,p OVer a yields a
coefficient 8,_;_,y, and the average over ®; then yields the
condition r = r" and s = s’. An expression equivalent to (36)
can be found, which, summed together with Eq. (36), yields

2,2 _
< 1 S 104 + QZ(“)]2> _me x(N —x)
a, P

N & N3 £ sin2(w&x/N)’
(37)
where we have performed the sum over 8 by using the identity
N-1 . »
N
Z w = x(N — x). (38)
4 sin (mB/N)

From (29) we know that the lowest-order contribution to the
multifractal exponent is given by the logarithmic behavior of
the sum (37) for large N. Recall that ¢ = (N — r)/b + k with
k fixed. The sum in (37) can be split into b subsums, as

—1 [N/b]—1
2€2b1L/J

ST

c=0 x=0

(bx + c)(N — bx —¢)

2T o bt
Sin ”[b"‘ Nb ]

(39)

(we obviously omit the case ¢ = x = 0 in the above sum). The
logarithmic contribution (29) originates from regions where
the divergence of the sin” in the denominator is compensated
by a linearly vanishing numerator. This corresponds to the two
regions bx 4+ ¢ ~ 0 and bx + ¢ =~ N [in all other cases, either
the summand is ~1/x? and converges or it gives nonlogarith-
mic divergences which should be compensated by higher-order
terms in the perturbation expansion if we assume that the
behavior (29) holds]. The first region comes from the sum with
¢ = 01n (39) and the second one from the sum with ¢ = r.

The sum for ¢ = 0 in (39) can be rewritten as the sum of
two terms, namely

w22 W b (N = bx) HN? o)
N3 sin2 n(—("’;\,_’)x) (kb —r)2m2x |’

x=1

which is a Riemann sum converging to an integral with a
finite value, and

pe2 W be?
e S N 41
(kb —r)? ; x  (kb—r)? s “1

which is responsible for the logarithmic divergence. After a
change of variables x — (N —r)/b — x, the sum for ¢ =r
in (39) can be shown to yield exactly the same contribution as
¢ = 0. Summing both contributions, one gets

LS (0u@) + 03y 2 N @)
— 2 (o o ~— ,
N -~ " o (kb —r)?
which, by identification with (29), gives d,, and thus D,,. Since
y =1/b+ (k —r/b+ €)/N, one finally gets

q yb—1)\°
Dy=1—(l-N——. (43)

The first maxima of D, around y = 1/b correspond to
k=0,x1,£2... The dependence in N in Eq. (43)
indicates that this fractal dimension D, gives the behavior of
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wave functions of size N when the parameter y is considered
at a scale 1/N around the rational 1/b.

The theory can be compared with the numerical results;
Fig. 13 shows that indeed it describes correctly the vicinity of
rational points for finite N for positive or negative g.

5. The case of deterministic phases

It is instructive to also analyze the fractal dimensions in the
case where random phases are replaced by the phases ®; =
2mk?/ N of the deterministic intermediate model. Numerically,
this model yields results which are close but differ slightly from
those of the model with random phases. While the difference
is tiny for most values of the denominator b of the parameter,
the most significant discrepancy occurs in the case y = 1/2.
For instance, as illustrated in Fig. 15, when y is equal to 1/2
and N is a power of 2, the value of 1 — D; for deterministic
phases is twice the value for random phases given by Eq. (43).
The method used above can in fact be adapted to explain these
discrepancies. In this subsection we will show this fory = 1/2
and N = 2". Other cases can be treated by a similar approach.

To obtain the result for the deterministic model, the main
change in the perturbative calculation of D, comes from
Eq. (34), where the average over random phases is replaced by
a constant term &,,&,/y, with

22 [ X, &,
ErsZeXp|: N <_k2=(;k +kX:(;k >j| (44)

Performing the same steps as previously, one can show that

1 . 2\ 72e? fv(x)

o

(45)

0.7 L : _
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0.5006
~y

FIG. 15. (Color online) Multifractal dimensions D;(y ) for the in-
termediate map with random phases (blue solid line) and deterministic
phases (red dashed line) in the vicinity of y = 1/2 for N = 2'2,
Black dash-dotted parabolas correspond to the theoretical expression
Eq. (43) for x = 1,2 while black dotted parabolas correspond to
Eq. (43) with an additional prefactor 2 in front of ¢.
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FIG. 16. (Color online) Left: Function fy(x) defined in (46) (see
text) as a function of x for N = 2'! (black), and function x(N —
x) (dashed/red). Right: Same plot with a different ordering of the
abscissas. Points with abscissax = 2"79(2y + 1) withg = 1,2,...,n
and y = 0,1, ...,2972 are ordered by increasing ¢ and at fixed g by
increasing y. The last family (from 512 to 1024) corresponds to
q = n, that is, odd x.

where the numerator x(N — x) of Eq. (37) is now replaced by
a function

1
fN(x) = ﬁ Z U(S/ - S)Br—x—l—x

rr'ss’

(46)

X Re[ér,s(_ér’,s’ar’—s’—l-&-x + é;k/,s’(sr’—s’—l—x)]’
with o an N-periodic function defined for 0 < v < N — 1 by

2ir
e v P N2 —

1
o(v) = Xﬁ: ey R 20(N —v). (47)

As before, the logarithmic behavior of (45) is expected to come
from places where sin?(r&x/N) becomes close to zero while
the numerator approaches zero linearly. Previously, when the
numerator was given by x(N — x), this only occurred for x ~ 0
and x >~ N. Here the function fx(x) still has a linear behavior
in the vicinity of x ~ 0 but it is much more oscillating for
larger x. For illustration, we plot an example of fy(x) in
Fig. 16 (left panel) for N = 2"; we concentrate on indices
x € [0,N /2] since by symmetry the other half yields the same
contribution. The only linear contribution would seem to come
from x >~ 0. However, let us consider the case N = 2" and y =
1/2. If we rearrange the labels x by setting x = 2"79(2y + 1)
with ¢ =1,2,...,n and y =0,1, ... 2972 then we obtain
the right panel in Fig. 16. We see that the linear behavior
of fy(x) occurs not only for x >~ O but also for all families
x =2"79(2y 4+ 1) when y =~ 0. Namely, for all g and y small
we observe numerically that

fu@) = x(N —x) =2°"0Qy + D27 =2y — 1).  (48)

For ¢ = N/2 4+ 1 and even x, i.e., families x = 2""92y + 1)
with 1 < g < n — 1, we have

K 1 1 2 1
sin? % = sin® |:71<§ + N)x] = sin® %, (49)
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so (48) will partly compensate (49), and thus for small y each
g family with g # n will give a logarithmic contribution to
(45). As before, odd x do not contribute, since for x = 2y + 1
(the family g = n) we get
2 1
sin’ n_x = cos’ X = cos’ n(y——i-)’ (50)
N N 27

so vanishing of (50) does not correspond to a vanishing of
(48). Using (48) and (49), the contribution to (45) of a g family
x =2""9Q2y + 1) with 1 < g < n — 1 for small y reads

w2e? 22092y + 1)(27 — 2y — 1) 622(1 Z

3 2 T(2y+1)
N = sin? 5

2y +1°
(51)
Then, for large ¢,

242 24— 242

1 1
E — ~ —1In29, (52)
_— 2y 2

and the sum over all contributions (51) gives

2 n—1

€
€ N0~ € . 53
2N & n 2 ! (53)

So far we considered only the region x < N /2. The region x €
[N/2,N] contributes in the same way, so the total contribution
from the oscillating part of fy(x) is twice the result (53), that
is, €21n N. To this contribution one must add the contribution
from the linear part of fy(x), corresponding tox >~ 0 (and x =~
N), see Fig. 16 (left); the calculation is the same as for random
phases and thus yields the contribution given by Eq. (42). For
b =2 and x =1 this term is equal to €>In N. The total of
all contributions for deterministic phases is thus 2¢2In N, i.e.,
twice the total for random phases. Figure 15 illustrates this
factor 2 between random and deterministic phases.

V. CHANGE OF MEASUREMENT BASIS

An intriguing characteristic of multifractal properties is
their dependence on the basis choice. Indeed, it is known
for the intermediate map [20] that multifractal properties for
rational y, which are visible in the momentum basis, disappear
in the position basis. It is all the more surprising that a
recent conjecture [32] proposes to link the spectral statistics
(independent of the basis) to the multifractal spectrum (a priori
basis dependent). Apart from its fundamental interest, this
question is also important for experimental implementations.
Indeed, it is not always evident to choose the measurement
basis at will in an experiment, and it is thus interesting to assess
how multifractality is modified when different observables are
used. The main idea of this section is thus to identify how the
multifractality spectrum varies when the basis is changed.

The results of our analysis have shown that in this
case the multifractality breakdown follows the broad picture
of scenario II where the multifractality at small scales is
uniformly destroyed. However, we have found that this broad
picture admits several variants depending on the presence or
absence of a characteristic length in the model itself or in the
perturbation. In the absence of a perturbation, both the PRBM
and the Anderson models have no characteristic length, while
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the intermediate map exhibits such a length (see Sec. II).
When no characteristic length is present in the unperturbed
model, like for the Anderson model, we were able to construct
two kinds of perturbations, which themselves may or may not
exhibit an intrinsic characteristic length.

In the following, we first discuss in Sec. V A the PRBM
model and the Anderson model in the case where the pertur-
bation does not introduce a characteristic length, showing that
in this case the results correspond to scenario II. However, in
Sec. V B we consider the intermediate map and the Anderson
model when the perturbation has a characteristic length. In
both cases, we show through a two-parameter scaling anal-
ysis the presence of a perturbation-dependent characteristic
length, below which the multifractality is uniformly destroyed
(following scenario II). However, as we shall see, the behavior
differs above the characteristic scale.

A. Absence of a characteristic length
1. PRBM model

We first consider the PRBM model defined by (1). We con-
struct a generic change of basis through a smooth deformation
of the identity. The unitary matrix defining the basis change is
chosen to be

Ue) = &M, (54)

where € is the deformation parameter and M an element of the
Gaussian orthogonal ensemble (GOE) of random matrices. A
matrix H of the PRBM in the new basis becomes H' given by:

H =U(e)HU®@E) ™. (35)

In order to get generic results, we average over a sample of
matrices M from GOE.

Figure 17 displays the curves D;(£) of the eigenvectors
for different €, showing that an appropriate vertical rescaling
enables to collapse them (as opposed to the previous horizontal
rescaling performed in Sec. III). The rescaling here just
affects the height of the plateau and not the scale at which
it appears, clearly indicating that scenario II is followed: The
multifractality disappears uniformly when the perturbation is
increased. As Fig. 2 shows at € = 0, multifractal dimensions
are given by the plateau appearing at intermediate scales, and
therefore the rescaling should be made on these ranges of
scales. The scaling parameter D;(¢) (corresponding to the
mean value of the plateau) is displayed in Fig. 18, showing
that the multifractal dimension smoothly goes to the ergodic
value for large €. It was checked (data not shown) that the
same scenario also applies for different values of g.

2. Anderson model

Here we investigate a change of basis for the Anderson
model. We consider the effects on the multifractal spectrum
of arotation U of the critical states of the Anderson model. A
perturbation of the form (54) would require us to calculate the
exponential of a full matrix M of size L? for a 3D system up
to L = 120. Even the multiplication by a full unitary matrix of
size L* would be prohibitive. We will use instead the unitary
evolution operator associated with the so-called quasiperiodic
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FIG. 17. (Color online) Scaling analysis of the local multifractal
dimension D; for the PRBM model (1) for N = 8192 and b = 1
for different changes of basis (55). Left: Raw data. Right: Data after
vertical rescaling of D, by a factor D;(¢). Each curve corresponds
to a different value of the parameter € in (54). It is chosen to be of
the form € = 10%'"=3; black circles: n = 1; red squares: n = 3; green
diamonds: n = 5; blue up-triangles: n = 7; yellow left triangles: n =
9; brown down-triangles: n = 11; gray right triangles: n = 13; purple
pluses: n = 15; cyan crosses: n = 17; magenta stars: n = 19. 10
realizations of GOE matrices in (54) are taken in order to average
over 81920 vectors.

kicked rotor [48]:
»?
Hgr = > + K(t)cos x E,, 8(t — n), (56)

with IC(¢) = K[1 + 5 cos(wst) cos(wst)] a quasiperiodic kick-
ing amplitude with two frequencies w, = 27+/5 and w3 =
27 +/13 incommensurate with 277, K the stochasticity parame-
ter, ¢ the time, and p the momentum conjugate to the position x.
This 1D system is a variant of the famous periodic kicked rotor
[49,50] (obtained with n = 0), a paradigm of quantum chaos
known to exhibit the phenomenon of dynamical localization,
i.e., Anderson localization in momentum space. Due to
the additional incommensurate frequencies, the quasiperiodic
kicked rotor performs an Anderson transition between a

0.95
D (e)

09r .

0.000 00l 0l
€

FIG. 18. Scaling parameter D(¢) extracted from the analysis of
Fig. 17. It is normalized to correspond to the multifractal dimension
in the PRBM model (1) with N = 2'3, b = 1 in the limit ¢ — 0. The
perturbation parameter € quantifies a generic change of basis (55).
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FIG. 19. (Color online) Left: Moments P, of the Anderson model
with basis change (57) for different values of ¢/ try,, the Thouless time
associated with the quasiperiodic kicked rotor. W = 16.53 ~ W,
L =120, and ¢/7r, = 0 (black circles), 8.9 10~ (red squares),
1.1 10~° (green diamonds), 2.8 10~7 (blue up-triangles), 8.7 1076
(purple tilted triangles), 2.3 (brown down-triangles). Right: Local
multifractal dimensions D, as a function of £ /L for different values
of ¢ /v, same parameters and color code as in the left side. In both
figures each color corresponds to a different couple of ¢ and K;
unperturbed Anderson model (black circles); + = 10, K = 21 (red
squares); t = 10, K = 69.5 (green diamonds); ¢t = 21, K = 760.9
(blue up-triangles); r =59, K =2517.7 (purple tilted triangles);
t =100, K = 998784 (brown down-triangles). vy, = N2/D was
determined by a numerical determination of the diffusion constant
D of the 1D quasiperiodic kicked rotor.

10

localized phase at small K < K, and a diffusive metallic phase
atlarge K > K. [35-38,51]. The evolution operator associated
with (56) over a unit step of time is written as follows:

U = eii%eﬂ‘%, 67
where the value of the effective Planck constant is taken as
h = 2.89 [36]. We have used this evolution operator (57) in the
diffusive metallic phase K > K. ~ 4.7 for n = 0.8 to rotate
the eigenstates |W(«)) of the 3D Anderson model (5). More
precisely, we have considered (i |¥(«)) = W;(«) as a vector of
size N = L* in the p space of the quasiperiodic kicked rotor
and have made it evolve using the evolution operator U over a
time ¢.

Figure 19 represents the second moment P, as a function
of the box size for different changes of basis, i.e., different
values of the diffusion constant D of the quasiperiodic kicked
rotor and different evolution times. In the left panel, P, seems
to scale as a power law of the box size ¢ over the whole range
accessible. If we study more carefully the local multifractal
dimensions D, (right panel), they show approximate plateaus
with small variations but no systematic change which could
indicate the presence of a characteristic length. We also see that
the dimension D, defined as the average of D, over € increases
towards the value D, =3 when ¢/t — 1, with 7, the
Thouless time associated with the quasiperiodic kicked rotor,
T = N2 /D, N = L3, and D the diffusion constant of the
quasiperiodic kicked rotor. In the case ¢/, ~ 1, the rotated
eigenstates are uniformly distributed over the entire sample.
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FIG. 20. (Color online) Multifractal dimension D, for the Ander-
son model with basis change (57) as a function of (a) # /Ty, associated
to the 1D quasiperiodic kicked rotor and (b) ¢/ Tty associated with the
3D Anderson model for different sizes L from L = 40 to L = 120.
The scaling 7/ Tm, puts the curves for different system sizes on
top of each other. However, the ergodic limit D, = 3 is reached
when ¢/tm, & 1 associated with the 1D dynamics. This arises due
to the 1D character of our rotation. Each symbol corresponds to a
different size L; from right to left L = 40 (circles), 60 (squares), 80
(diamonds), 100 (up-triangles), and 120 (left triangles). Each color
(grayness) corresponds to a different value of K = /2Lh?/% with
F = Tt /Y9 0 an integer varying fromn = 0 to n = 9 (bottom
to top, i.e., black to magenta) and Ty = L®/(21%/2k?), Tmin = 50.
For each couple of symbol and color (grayness), different points
correspond to different times; ¢ = 10, 12, 16, 21, 27, 35, 46, 59,
77, and 100 from bottom to top. T, = N?/D and Ty, = L?/D were
determined by a numerical determination of the diffusion constant D
of the 1D quasiperiodic kicked rotor.

Note, however, that different system sizes L lead to a differ-
ent dependence of D; as a function of ¢ /tt,. When comparing
different system sizes, one should consider the Thouless time
associated with the 3D Anderson model Tr, = L?/D (with D
the diffusion constant of the quasiperiodic kicked rotor) instead
of Ty associated with the 1D quasiperiodic kicked rotor. This
is done in Fig. 20. Then the data for D, are seen to collapse
onto a single curve, apart from deviations at small #/ Try,. This
is at the expense of the physical meaning of the ergodic limit
D, = d = 3 which in this latter case arises when ¢/ Ty, ~ 108.
This is due to the fact that we have rotated the eigenstates of
the 3D Anderson model using a 1D diffusive dynamics. This
implies a very strong anisotropy in 3D as the distance between
two sites adjacent along the y axis is L in our vector of size
N, and L? for those adjacent along the z axis. It is then clear
that the ergodic limit is reached only when the z axis is filled,
and this arises when 7 reaches T, = N2 /D where N = L3 is
the effective size of the sample along the z axis.

The remarkable scale invariance observed in Fig. 19
suggests that the rotated Anderson model remains critical at
W = W,, whatever the amplitude ¢/ Tty of the perturbation.
Indeed, away from criticality one expects to observe the
emergence of one of the characteristic lengths discussed
in Sec. IVA (the localization length or the correlation
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FIG. 21. (Color online) Anderson transition for the Anderson
model with change of basis. Finite-size scaling analysis of 7, =
In leyp /InA for fixed A =¢/L = 0.1 as a function of disorder at
various system sizes L € [20,120]. The results for the standard
Anderson model are represented in (a) while (b) corresponds to the
rotated eigenstates with K = 115 and fixed 7/ T, =~ 40. The error
bars are standard deviations. The lines are the fit with a Taylor
expansion of the scaling function 7, = F(L/&)+ L™ Firr(L/§),
and & ~ |W — W,|™" the scaling length. The polynomial fit has 10
adjustable parameters, v and W, being fixed to their known values
v = 1.6 and W, = 16.53 (see Ref. [12]). In both cases the goodness
of fit is quite acceptable (larger than 0.1). We find y ~ 1.8 for the
unperturbed Anderson model and y ~ 1.5 for the rotated one. This
compares well with the simulations of Ref. [12].

length). We have checked that the rotated eigenstates
perform a localization-delocalization transition at the same
value of disorder strength W, as the unperturbed ones.
Following the analysis of Ref. [12], we have considered the
quantity 7, = In P,’*/In A with fixed A = ¢/L = 0.1 where
PZtyp = exp({In P,)) and (.) stands for an average over disorder
realizations, see also Sec. IIB. Figure 21 shows the result
of a finite-size scaling analysis for the standard Anderson
model and the rotated one. In both cases, we find that our
numerical data are compatible with a scaling v, = F(L/&) +
L™ Firr(L/§), where F and Fjrr are scaling functions and
with the localization or correlation length & ~ |W — W, |7
diverging at W, &~ 16.53 with the critical exponent v & 1.6.
The irrelevant exponent y controls the usual irrelevant
corrections (precise values are in the figure caption of Fig. 21
and quite compatible with the known results of Ref. [12]). The
effect of the rotation is most clearly observed when considering
the values of 7; = lim;_, o 72(W,) extracted from the finite-
size scaling analysis: 75 ~ 1.66 in case (a) and 75 ~ 2.33 in
case (b) of Fig. 21. The increase of 7; with the perturbation
strength 7/ Ty, is in good agreement with the results of Fig. 20.

B. Presence of a characteristic length
1. Intermediate map

We now consider a change of basis of the random
intermediate map (4). As for the PRBM model, we construct a
deformation matrix (54) and use it to transform the propagator
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FIG. 22. (Color online) Top: Local multifractal exponent for the
random intermediate map, y = 1/5, N = 2'3, ¢ = 2 under a generic
change of basis. Left: Raw data. Right: Rescaled data. The points
corresponding to £ = N /2, N /4, and N /8 have been dropped. Each
curve corresponds to a different value of the parameter € in (54). It is
chosen to be of the form € = 10%"~3; red squares: n = 4; blue up-
triangles: n = 8; yellow left triangles: n = 9; brown down-triangles:
n = 10; gray right triangles: n = 11; purple pluses: n = 12; cyan
crosses: n = 13. Bottom left: Variation of the scaling length & as a
function of €. Bottom right: variation of the second scaling parameter
D, (¢) as afunction of €. Black full symbols are exact data, and dashed
lines are fitting functions (respectively, exponential and second-order
polynomial).

U into a new matrix U’. Results are displayed in Fig. 22,
where the local multifractal dimension D, is plotted as a
function of the box size for various rotation parameters €. One
clearly observes a systematic dependence on ¢ which hints
to the presence of a characteristic length. However, contrary
to the results in Sec. III, a rescaling of the boxsize is not
sufficient to collapse the data. Indeed, a double rescaling (both
horizontal and vertical) is needed to collapse the data for
different € values (see Fig. 22 top). This indicates that there is
a scaling length &(¢) for the box size and a scaling parameter
for the multifractal dimension D;(€), both depending on €.
Above the characteristic length, multifractality is destroyed (all
multifractal dimensions equal to 1). Below the characteristic
length, multifractality survives but the multifractal dimensions
smoothly go to 1 when the perturbation is increased (see, e.g.,
Fig. 22 bottom right). The data are therefore fully compatible

PHYSICAL REVIEW E 92, 032914 (2015)

with a variant of scenario II including the presence of a
characteristic length, below which multifractality is uniformly
destroyed. Here the characteristic length does not come from
the perturbation as in Sec. III A but originates from the intrinsic
characteristic length of the intermediate map E (see Sec. II)
which is modified by the perturbation.

2. From momentum to position basis in the intermediate map

The intermediate map displays multifractal eigenvectors in
the momentum representation (4). However, in the position
basis eigenvectors are extended. It is natural to ask how
multifractality is destroyed when one goes from one basis to
the other. In this subsection we focus on a specific class of basis
changes which interpolate between momentum to position
basis and are linked to certain types of physical observables.

The Wigner function of a wave function v, in our
case discrete Wigner function (DWF), is a quasiprobability
distribution in phase space and thus provides an adequate
testing ground to probe the transition from momentum to
position. We use the DWF as described in Ref. [52]. If the
Hilbert space dimension is N, then we define a phase-space
grid of 2N x 2N points. Let us label the (2N)? points (X, P),
with 1 < X, P < 2N. If the state of the system is given by a
density matrix p, then the simplest expression for the DWF is

W(X,P) = Tr[A(X, P)pl. (58)

where A(X , P) are (so-called) point operators defined as the
discrete Fourier transforms of the translation operators

T(ay,a) = U V*® explimajay/N], (59)

with aj,a, integers. The translations in (59) are defined
by shifts U and V in position and momentum, such that
UlX)=|X+1)and V|P) = |P + 1).InRef. [52] itis shown
that the DWF thus defined complies with all the properties
expected from a Wigner function. Namely, >, W(X,P) is
the probability |1/x|*> associated with the wave function in
position representation. Similarly, ), W(X, P) is associated
with intensities in momentum representation. More generally,
summing W (X, P) along straight lines

aiP —aX = a3 (mod 2N) (60)

with fixed a;,a, and varying a3 yields the probability distribu-
tion associated with the wave function expressed in the basis
|as) of eigenvectors of T (aj,a,). In particular for a; = 1 and
a; = 0 we sum over vertical lines and we get momentum basis,
while for a; = 0 and a, = 1 we get the position basis. Note
that since N is a power of 2, whenever a;/a; is also a power
of 2 the lines will be horizontal for a; > a, and vertical for
a; < ap. We illustrate this in Fig. 23. By changing (a;,a;) we
can go from position to momentum basis.

In Fig. 23 we show an example of the (absolute value) of
the DWF for one eigenstate of the random intermediate map
with y = 1/3 as well as two examples of lines (60).

In Fig. 24 we show the local multifractal dimension
D,(¢) for different values of the slope a/a; of the lines
defined in Eq. (60) with a; = 1. In this case, the parameter
€ = log,(N/a;) gives the amplitude of the perturbation. The
data displayed in Fig. 24 show that, as in the preceding case, a
double rescaling enables to collapse the curves for different €.
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FIG. 23. (Color online) Discrete Wigner function of an eigen-
state of the random intermediate map for y = 1/3, color (grayness)
varies from blue (dark gray) (minimal value) to red (light gray)
(maximal value). The symbols represent lines a; P —axX = a3
(mod 2N) (x = X/2N and p = P/2N). Here N = 128, a, = 1 and
a; = 64 (circles) and 65 (squares).

Again, a characteristic length £(¢) depending on € separates
two regimes. Above the scale &(¢€), multifractality disappears,
while below this scale it is uniformly and smoothly destroyed
when € increases (see Fig. 25). We conclude that for this
more physical change of basis the multifractality breaks down
following again a variant of the second scenario.

3. Change of basis with characteristic length scale
in the Anderson transition

In the two previous cases considered, a length scale appears
below which multifractality is smoothly destroyed. In the case

8 s -
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FIG. 24. (Color online) Left: D, as a function of the box size £
for the random intermediate map with momentum to position basis
change for y = 1/3 and different values of N/a; = 2° (pentagons),
N/a, = 2* (squares), N/a, =23 (circles), N/a; = 2° (triangles),
N/a, = 2' (down-triangles), N/a; = 1 (diamonds), with N = 2'3
(size of the Wigner function is 2N). Right: Rescaled D, as a function
of the rescaled box size for the same data.
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FIG. 25. (Color online) Left: Scaling length & as a function of €
for the random intermediate map with momentum to position basis
change for y = 1/3 and N = 2'3. Right: Second scaling parameter
D;(€) as a function of € = log,(N/a;). The dashed lines are fitting
functions (respectively, exponential and second-order polynomial).
Same data as in Fig. 24.

of the PRBM model, however, there is no such feature. We
believe that the difference reflects the fact that the intermediate
map has an intrinsic length scale 2 = N /b while the PRBM
model does not. The change of basis rescales this characteristic
length and that is the reason for scaling laws with two
parameters.

In this respect, the Anderson model is similar to the PRBM
model: It has no intrinsic length scale in the critical regime. The
previous basis change using the quasiperiodic kicked rotor has
a characteristic length A = +/Dr associated with diffusion,
but since A > L for the parameters considered so far, this
characteristic length does not play any role, as observed in
Fig. 19.

In order to study the effect of such a length scale on the
basis change, we have to work in a regime where A < L.
Therefore we consider a rotation with the evolution operator
of a 3D kicked rotor:

Cosx 4+ cosy 4 cosz
3

2
H3KR=%+K

> 8t —n). (61)

with K = 10 and & = 2.89. For this choice of parameters, the
3D kicked rotor (61) is in the delocalized phase and displays
an isotropic 3D diffusion. We considered the evolution over
a certain number of periods ¢ of the critical states of the
Anderson model. We analyzed their multifractal properties
by considering the behavior of D, as a function of the box
size £, as plotted in Fig. 26. The curves obtained at different
perturbation strengths € = ¢t/ T, depend systematically on
£ and € and collapse onto a single scaling curve when
D, is rescaled by Ds(¢) and ¢ is rescaled by &(e). This
strongly suggests a picture similar to the scenario obeyed by
the intermediate map under a basis change: at small scales
£ K &(e), multifractality is smoothly and uniformly changed
by the perturbation, with D,(¢) going from its unperturbed
value at € = 0, D,(0) ~ 1.3 to D,(¢) =3 when € — 1 (see
Fig. 27).
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FIG. 26. (Color online) Double scaling analysis of the local
multifractal dimensions for the Anderson model with isotropic basis
change. Left: D, as a function of the box size ¢ for different
values of € = ¢/ Tyy: from bottom to top, € = 0, 0.000125, 0.00025,
0.00062, 0.0013, 0.0023, 0.0035, 0.005, 0.0068, 0.0089, and 0.011.
Here Tr, = L?/D, L = 80, and D ~ 0.403 the diffusion constant
determined numerically for the 3D isotropic periodic Kicked Rotor
(61) with K = 10 and / = 2.89. Right: Rescaled D, as a function of
the rescaled box size for the same values of €.

However, in the present case, &(¢) varies similarly to A =
\/E , and thus increases as a function of €. In addition, at large
scales £ >> £(¢), the unperturbed multifractality is recovered.
In a sense, the multifractal critical states are coarse grained to
a size A by diffusive evolution, which affects multifractality
only at small scales £ << A.

We think that these results are generic and would apply to
any type of change of basis showing a characteristic length. In
the opposite case where no characteristic length appears in the
perturbation, the multifractality will be affected at all length
scales as in Sec. V A.

NS NN
0.005 0.01 0
€ €

L 1 L
0.005  0.01

FIG. 27. Left: Box size scaling £(¢) as a function of € for
the Anderson model with isotropic basis change. Right: Scaling
parameter D,(¢) as a function of €. Same data as in Fig. 26.

PHYSICAL REVIEW E 92, 032914 (2015)

VI. CONCLUSION

In this paper, we have studied the destruction of quantum
multifractality in the presence of different natural pertur-
bations. The models we considered are representative of
several classes of systems displaying quantum multifractality.
The perturbations have been chosen to represent potential
experimental constraints in realistic systems. Our numerical
and analytical results confirm the conjecture presented in
Ref. [41]. We found that multifractality can be destroyed
in the presence of a perturbation following two scenarios.
In scenario I, the perturbation introduces a characteristic
scale below which multifractality is unchanged, and above
which it is completely destroyed. In our case, this describes
the smoothing of the singularity in the intermediate map
(Sec. IIT) and the Anderson model away from the critical point
(Sec. IV A). Scenario II corresponds to a uniform destruction
of multifractality at sufficiently small scales. Depending on the
presence of a characteristic scale in the system, there can be
two variants of scenario II. If there is no characteristic scale,
then multifractality is the same at all scales and smoothly
goes to the ergodic value for large perturbation. This is
illustrated by the case of the intermediate map for a change of
slope (Sec. IV B), and by the change of basis for the PRBM
model (Sec. VA1) and the Anderson model (perturbation
without characteristic scale, Sec. V A 2). If the system has a
characteristic scale, then scenario II corresponds to the uniform
destruction of multifractality as before but only below this
characteristic scale. This behavior can be revealed by a double
scaling analysis. Above the characteristic scale, multifractality
can be completely absent, as in the case of the change of basis
in the intermediate map (Secs. VB1 and VB2), or similar to the
unperturbed system as in the case of the Anderson model when
the change of basis has a characteristic length (Sec. VB3). Thus
the image presented in Ref. [41] is confirmed in this more
detailed analysis, but our results show that subtle variations on
this broad picture can appear.

The results presented in this paper also give some insight
concerning the experimental observation of multifractality in
various systems. Indeed, experimental setups are unavoidably
subject to imperfections, which will act as perturbations of the
ideal model that is implemented, including the measurement in
anonoptimal basis. The results of Sec. III show that smoothing
the singularity of the kicked potential in the intermediate
map preserves the original multifractality below a certain
scale, which imposes a minimal resolution to the experimental
measurements. This kind of perturbation can appear, e.g.,
if the model is implemented with photonic crystals. The
truncation of a Fourier series to simulate the intermediate
map could be envisioned in a cold atom context, but here our
results show that a huge number of harmonics are needed,
and other techniques should be devised to implement the
singular potential. Section IV shows that one can afford
an imprecision on the slope of the potential for finite-size
systems, but multifractality will be modified, however, in a
way which can be precisely predicted. In an experiment, there
will be more natural observables corresponding to specific
measurement bases. We have investigated the behavior of
multifractal properties under a change of basis by interpolating
between the momentum and position bases or using a generic
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change of basis built from random unitary matrices. It turns out
that a modified multifractality is observable for small rotations
of the basis, but subtle behaviors can emerge depending on the
presence or absence of a characteristic scale, originating either
from the model or the perturbation. This is particularly striking
in the case of the Anderson model, where different change of
bases could lead to different variants of our second scenario.
Interestingly, our results confirm that the change of basis in
this case conserves the criticality of the model.

Despite many theoretical works in the recent past, direct
experimental observation of multifractality on quantum wave
functions has remained elusive to date. Our results show
that experimental imperfections will eventually destroy the
multifractal properties if they exceed a certain level, but that
a range of parameters subsists where multifractality could
be observed. The scenarios for multifractality breakdown
confirmed in this paper could guide the design of future
experiments, which would reliably detect multifractality for
small imperfection strength and observe the scenarios for
larger perturbations.
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