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Terminal retrograde turn of rolling rings
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We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known
that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts
its motion with a kinematics similar to disks, i.e., moving along a cycloidal path prograde with the direction of
its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the
ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging
and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a
ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground
changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have
potential applications in designing topologically new surface-effect flying objects capable of performing complex
reorientation and translational maneuvers.
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I. INTRODUCTION

It is a common experience to spin a coin or a thin disk
on a table and observe its rolling motion. As the coin keeps
rolling, its inclination angle with respect to the table decreases
while it generates a sound of higher and higher frequency
before stopping. According to the equations of motion of a
rolling rigid body with nonholonomic constraints [1–6], the
spin rate must diverge to infinity when the disk rests on the
table. In real world experiments, however, the spin of the disk
vanishes within a finite duration of time. Both theoretical and
experimental studies [7–11] suggest that the finite lifetime of
this process is due to a combination of air drag and slippage
that drain the disk’s kinetic energy, but an accurate model of
dissipative mechanisms is still unknown.

Increasing the thickness of the disk changes the dynamics
because of the existence of an unstable, inverted-pendulum-
like, static equilibrium [4,12,13]. Nevertheless, the center of
mass of the disk with the global position vector rC always
moves on a spiral trajectory [5,6] for low inclination angles,
while the orbital angular momentum vector L = rG × ṙC per
unit mass is almost aligned with the angular velocity ω of
the disk and we have L · ω > 0. Here rG is the position
vector of the center of mass with respect to the contact
point of the body with the surface. We call this spiraling
motion a prograde turn. One expects a similar behavior for
a ring, but experiments reveal a new type of motion, with
a retrograde turning phase, which we investigate in this
paper.

We present the governing dynamical equations of rolling
rings in Sec. II, and report experimental and simulation results
in Sec. III, where we modify the equations of motion for
the effect of air drag, and show how the rolling dynamics
of rings is distinct from disks. The physical origin of
retrograde turn is explained in Sec. IV. We conclude the
paper by remarks on the significance of the retrograde turn
in rigid-body dynamics, and its analogy with other observed
phenomena.

II. DYNAMICS OF ROLLING RINGS

We describe the rotation of a ring of the outer radius
R, width h, thickness w, and mass m by a set of 3-1-2
Euler angles (φ,θ,ψ) as shown in Fig. 1(a). The unit vectors
(e1,e2,e3) are along the principal axes of the ring, e1 is
always parallel to the surface of the table, and e2 is along
the symmetry axis of the ring. It is remarked that the ring
in Fig. 1(a) has not been used to quantitatively study the
kinematics and dynamics of motion. It is used only for
the definition of ring geometry, and in the Supplemental
Material video 1 [14]. The angular velocity of the ring thus
becomes ω = θ̇e1 + (φ̇ sin θ + ψ̇)e2 + φ̇ cos θe3. We denote
the inertia tensor of the ring by I and its angular momentum
with respect to the center of mass by LG = I · ω. The equations
of the coupled rototranslatory motion thus read

I · ω̇ + � × LG = −rG × F, rG = (h/2)e2 + Re3, (1)

mr̈C = F − mg(sin θe2 + cos θe3), (2)

where g is the gravitational acceleration, rC is the global
position vector of the center of mass, F is the boundary force at
the contact point of the ring and the table, and � = ω − ψ̇e2.
Throughout our study we assume that the ring is in pure
rolling condition and the constraint vC = ṙC = ω × rG holds.
Equations (1) and (2) can therefore be combined to obtain the
evolutionary equations of angular velocities:

I · ω̇ − mrG × (rG × ω̇)

= −� × LG, −mrG × (� × vC)

+mg[R sin θ − (h/2) cos θ ]e1. (3)

It is almost impossible to track the motion of the center of mass
experimentally. We therefore use the center of the top circular
edge of the ring [point A in Fig. 1(a)], with the position vector
rA = rC + (h/2)e2, for measuring the position and velocity of
the ring. The velocity of point A is related to the speed of the
center of mass through ṙA = ṙC + � × (h/2)e2. We normalize
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FIG. 1. (Color online) (a) Geometry of a ring spun on a horizontal
table. The dashed line is perpendicular to the surface of the table. The
origin of the coordinate frame defined by (e1,e2,e3) coincides with
the center of mass of the ring, point C. The point A is the center
of the upper circular edge. (b) The quasiperiodic trajectory of rA(t)
projected on the surface of the table, and in the absence of dissipative
effects. We have set the initial conditions to θ0 = 0.55 rad, φ̇0 = 4.5,
and ψ̇0 = 0. All other conditions have been set to zero.

all lengths and position vectors to the mean radius R − w/2.
Accelerations have been normalized so that the initial value of
Rφ̇2 at t = 0 equals the experimental value ≈20.2g.

Integration of Eq. (3) for initial conditions θ̇0 = 0 and
θ0 > arctan[h/(2R)] show that the center of mass of the
ring moves on a generally quasiperiodic cycloidal orbit. A
typical quasiperiodic orbit is shown in Fig. 1(b) for R = 1.025,
h = 0.88, and w = 0.05, which correspond to the ring in our
experiments discussed below. The size of the inner turning
loop of cycloids is a function of ψ̇0/φ̇0 and θ0. Such orbits,
however, are not observed in real world experiments. Spinning
a wedding ring on a glass or wooden table shows that the
motion is composed of two prominent phases. In the first
phase, the ring spins and travels similar to the prograde turn
of a coin or disk, but in contrast with a disk that continues
prograde spiraling until its resting position, it abruptly makes a
retrograde spiral turn before stopping (Supplemental Material
video 1 [14]). The retrograde turn does not belong to the phase
space structure of Eq. (3), nor is it observed in spinning disks.

III. EXPERIMENTAL RESULTS AND
THEORETICAL SIMULATIONS

To understand the ring dynamics, we prepared a high-
speed imaging setup and spun a ring of R = 20.66 mm,
w = 1 mm, and h = 18 mm on a polished and waxed wooden
table. The ring has been cut from a steel tube with circular
cross section. We rotated and released the ring by hand,
but assured that the initial conditions satisfy θ̇0 ≈ 0 and
θ0 > arctan[h/(2R)]. To trace the translational and rotational
motions, we put four marks in a cross configuration at the
top circular edge of the ring, and stored their coordinates (in
pixels) while filming the motion [Fig. 2(a)]. The centroid of
these marks has the position vector rA. Figures 2(a) and 2(b)
and Supplemental Material video 2 [14] show the projection
of the trajectory of rA(t) on the surface of the table for
one of our experiments. The Euler angles θ and ψ can be
computed from the formulas 1 + sin2(θ ) = (L2

13 + L2
24)/D2

and 1 + sin2(ψ)[sin2(θ ) − 1] = L2
13/D

2, where L13 and L24

are the apparent distances between the points 1 and 3, and 2
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4
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FIG. 2. (Color online) (a) First cycloidal turn of the ring. The
four marks for motion tracking have been labeled by numbers 1, 2,
3, and 4. (b) The full trajectory of the center of the top circular edge,
point A, of the ring. The ring undergoes a directional walk along the
arrow. (c) The first few prograde turns of the rolling disk. (d) The
trajectory of the center of mass of the disk until it reaches a small
inclination angle.

and 4, respectively, and D = 2R − w is the mean diameter
of the ring. Our experimental error level in computing rA(t)
has been ≈5% because of image distortions. There are two
reasons behind image distortions: perspective effects and
barrel distortions (the field of view of the lens is bigger than
the CCD size). Perspective distortions are functions of (i) the
distance of the ring from the line of sight of the camera, and
(ii) the Euler angles. The mean error threshold due to all these
effects is roughly the measured value of 1 − (L13 + L24)/(2D)
after the stopping of the ring.

The trajectories of point A displayed in Figs. 2(a) and 2(b)
and Supplemental Material video 2 [14] unveil unique features
of the ring’s motion. An initial prograde turning phase occurs
along cycloidal curves similar to what we observe in Fig. 1(b).
As time elapses, the inner turning loops of cycloids shrink and
evolve to cuspy turning points that connect half-circle-shape
arcs. The radii of half-circle steps decrease and the motion
becomes directional along the arrow until a retrograde spiral
turn begins at an inflection point.

To better distinguish the differences between the trajectories
of rings and disks, we repeated our experiment for an
aluminum disk of diameter D = 63.5 mm and width h =
6.14 mm, and recorded its trajectory. Figures 2(c) and 2(d) and
the Supplemental Material video 3 [14] show the inspiraling
motion of the disk’s center of mass. This is a generic behavior
of rolling disks, regardless of their thickness [6].

Using the coordinates of the four markers on the ring,
we have computed the magnitude of the velocity vp = vA −
(vA · e⊥)e⊥, which is parallel to the surface of the table, and
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FIG. 3. (Color online) Experimentally computed velocity of the
ring parallel to the surface of the table. The magnitude of vp in
units of pixel/frame vs the frame number n. The imaging speed has
been 300 frames per s, and approximately 135.6 pixels correspond to
40.3 mm.

plotted it in Fig. 3 versus the frame number n. Here e⊥ =
sin(θ )e2 + cos(θ )e3 is the unit vector normal to the surface. At
the highest (θ = θmin) and lowest (θ = θmax) vertical positions
of the center of mass, vp becomes identical to vA. The envelope
of the velocity profile has a shallow decline up to and after the
retrograde turn, followed by a steep fall and termination of the
motion.

We have repeated our experiments with rings of different
h/R ratios and observed the retrograde turn in all cases. The
spiral turn is more prominent for h/R ≈ 1 as in the ring of
Fig. 2. Several mechanisms like rolling friction, slippage [4],
air drag [7], and even elastic vibrations [15] can be held
responsible for the phenomenon. Our numerical calculations
in Sec. IV show that the normal contact force multiplied by the
coefficient of friction never exceeds the lateral frictional force,
and therefore, slippage does not play any role in the occurrence
of the retrograde spiral turn. Moreover, elastic vibrations may
change the course of motion only if their frequencies resonate
with the precession frequency φ̇ of the ring. We have not
observed any signs of resonances in the signals of vp and φ̇.
It is shown that including only the air drag fully captures the
physics of the retrograde turn. In the presence of external drag
torques, Eq. (3) takes the form

J · ω̇ = f(ω,θ ) + Tdrag,

f = −� × LG − mrG × (� × vC)

+mg[R sin θ − (h/2) cos θ ]e1,

J = I + m

⎡
⎣

h2/4 + R2 0 0
0 R2 −hR/2
0 −hR/2 h2/4

⎤
⎦, (4)

where J is a constant matrix, f is a vector function of the
angular velocity ω = � + ψ̇e2 and the Euler angle θ , and Tdrag

is the resultant drag-induced torque. The exact value of drag
force on a general bluff body undergoing a three dimensional
motion is very difficult to calculate, and is not available. In fact,
the behavior of the viscous drag is so complicated that even
for basic symmetric two dimensional objects under uniform
transnational motion we need to entirely rely on empirical
formulas [16]. If the bluff body in rotation is symmetric, then
in order to estimate the drag moment the best approximation
is to use the rotational drag coefficient and implement it on

the net angular velocity vector [17]. This gives a drag moment
vector in the same direction as of the angular velocity vector.

If the bluff object is not symmetric, then it is clearly not
possible to define a single rotational drag coefficient for the
general three-axes rotations. For a general three dimensional
object, every direction of the angular velocity corresponds to
a different rotational drag coefficient that needs to be found
empirically. Here and as an approximation, we assume that
the vector J−1 · Tdrag is proportional to ω. This means rotation
about a given axis does not induce angular acceleration about
other axes. The rational comes from the observation that
releasing the ring from a stationary initial condition with
θ > 0 and ω = 0 yields a simple accelerating rotation about
the unit vector e1 until the ring hits the ground. Therefore,
the air drag does not couple ω2 and ω3 to ω1. Moreover, the
drag force corresponding to a pure rotation about e3 does not
affect ω2 and ω1 when θ → π/2. The main approximation
made here is for rotation about e2: as the ring rotates about e2

and undergoes a translational motion along e1 due to rolling
constraint, even a small-amplitude rotation about e3 couples
drag force components. Finding a more accurate model for
J−1 · Tdrag is beyond the scope of this study. We are not aware
of any systematic method to experimentally determine drag
force components near a boundary. The only reliable way is to
use computational fluid dynamics (CFD) methods, which can
be considered as potentially interesting problems for future
works. Below it is shown that even our approximate model
captures the physics of the problem very well.

We define the three rotational drag coefficients Ci (1,2,3)
corresponding to the three major axes of the ring and write

τ ≡ J−1 · Tdrag = −
3∑

i=1

Ci |ωi | ωiei , ωi = ω · ei . (5)

Variants of this approach are used in naval hydrodynam-
ics [18], flight dynamics [19], and low Reynolds number
swimming [20]. The rotational drag coefficients Ci implicitly
depend on the Reynolds number Re and the reference area
of the ring exposed to airflow. If the ring was far from any
wall or surface, the rotational symmetry about the e2 axis
would imply C1 = C3, but for rolling rings this identity does
not necessarily hold. Let us define the Reynolds number as
Re = 2|ṙC |R/νa , where νa in the kinematic viscosity of the
air. According to the velocity data of Fig. 3, the Reynolds
number satisfies Re � 800.

Equations (4) and (5) yield ω̇ = J−1 · f(ω,θ ) + τ . We
numerically integrate this equation using the initial conditions
that we measure at the first inner turning point of Fig. 2(b).
In that specific position, the angular velocity θ̇ vanishes,
and we find θmin ≈ 0.55 rad, φ ≈ −0.38 rad, ψ̇ ≈ 0, and
φ̇ = vA/[R sin(θmin) − (h/2) cos(θmin)] ≈ 4.5. The computed
initial angular velocities are dimensionless. Without loss of
generality, we assume ψ(0) = 0. The initial velocity of the
center of mass is calculated using the rolling condition. To
the best of our knowledge, the drag coefficients of a ring
have not been measured or tabulated so far. Therefore, we
constrain the parameter space (C1,C2,C3) by generating all
orbits that resemble the experimental trajectory displayed in
Fig. 2(b). We find the best match between theoretical and
experimental trajectories by setting C1 ≈ 0.03, C2 ≈ 0.063,
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FIG. 4. (Color online) (a) Projection of the simulated trajectory
of rA(t) on the surface for the same ring of Figs. 1(a) and 1(b) and
with (C1,C2,C3) = (0.03,0.063,0.085). We have also reproduced the
experimental trajectory of Fig. 2(b) for comparison. The motion
between the initial prograde and final retrograde turning phases
is directional along the arrow. (b) Same as panel (a) but for
(C1,C2,C3) = (0.2,0.063,0.2). All lengths and position vectors have
been normalized to the mean radius R − w/2 of the ring. (c) The
variation of the friction force Ff vs time for the models of panels (a)
and (b). Variables are in dimensionless units.

and C3 ≈ 0.085. The projection of the simulated trajectory
of rA(t) on the surface has been demonstrated in Fig. 4(a)
together with the experimental trajectory. According to our
computations, the topology of the trajectory is not sensitive to
the variations of C1 over the range 0.01 � C1 � 0.1 when the
quotients C1/C2 and C1/C3 are kept constant. By varying C1

we observe only minor differences in the location and size of
the terminal spiral feature.

The actual and simulated trajectories are similar in many
aspects, including 9 and 15 cycles that they make, respectively,
before the directional walk and retrograde turn phases. Their
major differences are the long-lived last spiral stage of the
simulated trajectory, and a drift. We suspect that the observed
drift has been due to (i) uncertainties in calculating the initial
angular velocities through the deprojection of the images and
(ii) slippage at some cuspy turning points that has slightly
changed the direction of vA. For the existing discrepancy in
the final spiral path we have the following explanation: as the
motion of the ring slows down, Re decreases and the drag
coefficients increase. Consequently, the lifetime of the spiral
turn is shorter in reality. We would expect a better match with
the experiment if the accurate profiles of the drag coefficients
were known in terms of Re. We have repeated our experiments
on glass sheets and polished steel plates, and obtained similar
results. Therefore, deformation of the surface does not play a
decisive role in the onset of retrograde turn.

IV. PHYSICAL ORIGIN OF RETROGRADE TURN

A fundamental question is the following: why do disks not
make a retrograde turn like rings? This returns to differences in
their aerodynamic properties near the ground: air can always
flow through the central hole of the ring, with the drag force
components Ci (i = 1,2,3) in all directions coming mostly
from the skin friction scaled by O(Re−1/2) in the laminar
flow conditions (with Re � 800) of our experiments [21].
For disks, however, air is trapped and compressed between
the disk and the ground, the contribution of the form drag
to C1 and C3 is significant, and the drag coefficients C1

and C3 ∼ O(1) are (almost) independent of the Reynolds
number when Re > 100 [21]. Therefore, for rolling disks
we expect C1/C2 � 1 and C3/C2 � 1. By taking the same
initial conditions for the ring in our experiments, we used
C2 = 0.063 and C1 = C3 = 0.2, and found that the corre-
sponding simulated trajectory of rA(t) [Fig. 4(b)] is a single
prograde spiral analogous to the experimentally measured
trajectory of Fig. 2(d). This shows the role of enhanced
drag torque about the diameter in maintaining the prograde
turn.

We have found that the evolution of the lateral component
Ff = F · [cos(θ )e2 − sin(θ )e3] of the frictional force at the
contact point is the dynamical origin of the retrograde turn.
The ring maintains its motion on a trajectory as in Figs. 1(b)
and 2(d) if the lateral force satisfies Ff > 0 and supports
the centrifugal acceleration needed for the prograde turn,
especially when the center of mass passes through its lowest
vertical position (with θ = θmax and θ̇ = 0) at each cycle. At
this point, the kinetic energy of the center of mass is maximum
and its potential energy takes a minimum. We remark that
the component F1 = F · e1 of F is also caused by friction,
but it helps the rolling and cannot balance the centrifugal
acceleration at turning points. Our computations [Fig. 4(c)]
show that because of drag torques, a local minimum that
develops on the profile of Ff at θmax gradually becomes
spiky and flips sign from positive to negative. As the ring
experiences the strong negative kicks of Ff , the centrifugal
acceleration switches sign as well, and the ring starts to
revolve around a new point by retrograde turning. This process
does not happen for disks, for ω1 and ω3 decay quickly due
to a large C1 and C3, and the orbital angular momentum
rG × ṙC is dominated by the e2 component. Consequently,
Ff that supports the centrifugal acceleration remains positive
as θ → π/2 [Fig. 4(c)]. The coefficient of static friction for
the surface on which we had spun our ring was μ ≈ 0.4.
We computed the normal component of the contact force
FN = F · e⊥ over the entire motion of the ring and found
that the inequality μFN > [F 2

1 + F 2
f ]1/2 holds at all turning

points with θ = θmax. Therefore, slippage is not expected
to play any major role in the qualitative features of the
motion.

In summary, the aerodynamic interactions of spinning
bodies can lead to complex, and sometimes unpredictable,
results depending on the shape of the object and the initial
conditions of its motion. Three well-known examples of
spinning objects that significantly change their course of
motion are the returning boomerang, soccer balls, and frisbees
that fly along curved paths. Neither a boomerang nor a frisbee
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can move on curved trajectories without aerodynamic effects.
Our finding for spinning rings is a case where the frictional
force and aerodynamic forces near the surface collaborate to
change the course of motion.
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