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We present a theoretical study of solitonlike solutions and their dynamics of ultracold superfluid Fermi gases
trapped in a time-dependent three-dimensional (3D) harmonic potential with gain or loss. The 3D analytical
solitonlike solutions are obtained without introducing any additional integrability constraints used elsewhere.
The propagation of both bright- and dark-soliton-like solutions is investigated. We show that the amplitudes of
dark-soliton-like solutions exhibit periodic oscillation, whereas those of the bright-soliton-like ones do not show
such behavior. Moreover, we highlight that the oscillation periods of dark-soliton-like solutions predicted by
our approach are matched very well with those observed in a recent experiment carried out by Yefsah et al. [T.
Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S. Bakr, and M. W. Zwierlein, Nature (London) 499,
426 (2013)] in both Bose-Einstein condensation and unitarity regimes.
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I. INTRODUCTION

Self-stabilization against dispersion via a nonlinear inter-
action can induce a class of fascinating shape-preserving wave
phenomena, termed solitons, in nonlinear media. They are
characterized as localized solitary wave packets that sustain the
ability of surviving mutual collisions without changing shapes
and velocities due to the mathematical integrability of the un-
derlying equation of motion [1]. Solitons have nowadays been
discovered in a wide range of physical research fields from
particles to astrophysics, as well as in acoustics and optics [2].
They might be either bright or dark, relying on the details
of effective nonlinearity and boundary conditions, where the
bright soliton is a peak in the intensity while the dark one is
a notch with a typical phase step across it [3]. Although there
were lots of investigations on solitons in the classical frame,
the creation of nonspreading matter-wave packets in Bose-
Einstein condensates (BECs) and degenerate Fermi gases in
laboratories witnesses the renaissance of soliton studies in the
quantum scenario [4–9]. In these quantum coherent systems,
solitons display the nonlinear behavior of collective modes
which reveals the rich physics of ultracold atoms and displays
well-controlled characteristics [10]. In the last few years, both
bright and dark solitons were observed in BECs with attractive
and repulsive interactions, respectively, in a few pioneering
experiments [11]. Their dynamics such as reflections [12],
collisions [13], and even solitonic vortices [14,15] in ultracold
atoms have also been recently reported.

On the other hand, the successful experimental realization
of the superfluid from the Bardeen-Cooper-Schrieffer (BCS)
state to the BEC in ultracold, trapped Fermi gases initiated
considerable efforts in the study of BCS-BEC crossover [16].
In contrast to the intensive work on linear collective excita-
tions, studies on the nonlinear behavior of collective modes in
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superfluid Fermi gases are still rare. From the mathematical
viewpoint, this is because the Bogoliubov–de Gennes (BdG)
equation, which describes the motion of superfluid Fermi
gases, is much more difficult to solve analytically than the
Gross-Pitaevskii equation (GPE), which describes the motion
of BECs. It is known that many properties from the BCS state to
the BEC limit across unitarity evolve smoothly [17]; recently,
an order-parameter (macroscopic wave function) equation
controlling the dynamics of trapped superfluid Fermi gases
at zero temperature was suggested, which has the form of
the nonlinear Schrödinger (NLS) equation with polytropic
nonlinearity [18–20]. This equation, which is called the
generalized Gross-Pitaevskii equation (GGPE) [21–29], can
be used to study the collective behaviors, such as solitonlike
dynamics, in the BEC and the unitarity regime for the positive
atom-atom scattering length.

We also note that dimensional reduction of the system was
usually used in previous works to avoid complex and unstable
solutions. It is known that for BECs with one-dimensional
setup, an exact soliton solution can be reached [30,31].
Such an exact soliton solution comes from the integrability
of the model, and its amplitude and velocity are directly
related to conserved constants of the motion. However, in real
experiments, the ideal homogeneous one-dimensional (1D)
setup is impossible. A quasi-1D layout using tight harmonic
trapping confinement in radial directions is a useful solution,
which intrinsically breaks the integrability and prevents exact
soliton solutions. Nevertheless, in such case a solitonlike
solution can be reached if the border of the system does
not affect the wave propagation over relevant experimental
timescales, which retains many similar properties with the
exact soliton solution [32–37].

In this work, we present the study of solitonlike solutions
and their dynamics in a superfluid Fermi gas trapped in a
time-dependent three-dimensional (3D) harmonic potential
with gain or loss. We note that analytical 3D solitons in a
trapped BEC have been examined by a few studies [38,39],
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recently. However, no such studies have been carried out in the
context of superfluid Fermi gases as far as we know. To obtain
the analytical solitonlike solutions, we solve the GGPE based
on the self-similar approach combined with scale and phase
transformations, ruling out any integrable constraints used
elsewhere (e.g., in Refs. [40–45]). We study the propagation
of both bright- and dark-soliton-like solutions, as well as their
dynamics, and find that the amplitude of dark-soliton-like
solutions exhibits periodic oscillation, whereas the amplitude
of bright-soliton-like solutions shows no periodic behavior.
In addition, we highlight that the oscillation periods of dark-
soliton-like solutions predicted by our theory are matched very
well with those observed in a recent experiment [46], in both
BEC and unitarity limits.

This paper is arranged as follows. The next section gives
the self-similar approach for obtaining the analytical 3D
solitonlike solutions of the GGPE. In Sec. III, we discuss the
propagation of dark- and bright-soliton-like solutions. Their
dynamics are also investigated in detail. We find that our results
are matched very well with the experimental observations. In
the last section a summary and discussion of main results
obtained in this work are given.

II. SELF-SIMILAR SOLUTIONS OF THE GENERALIZED
GROSS-PITAEVSKII EQUATION

We consider a superfluid Fermi gas, in which fermionic
atoms (i.e., 6Li or 40K) have two different internal states
with equal atomic number. In the ground state all atoms
are paired with the condensed atom pair density, denoted
as ns . By means of the Feshbach resonance technique the
BCS-BEC crossover can be realized easily by tuning an
applied magnetic field [16,17] and, hence, changing the s-wave
scattering length as . Usually, a dimensionless interaction
parameter η ≡ 1/kF as (where kF is the Fermi wave number)
is introduced to distinguish different superfluid regimes, i.e.,
the BCS regime (η � −1), the BEC regime (η � 1), and the
BEC-BCS crossover regime (−1 < η < 1). The special case
η = −∞ (η = +∞) is called the BCS (BEC) limit, while
η = 0 is called the unitarity limit. The smooth transition from
BCS to BEC means that the dynamical behavior of superfluid
Fermi gases in various superfluid regimes can be investigated
in a unified way [16].

Recently, an order-parameter (macroscopic wave function)
equation governing the dynamics of trapped superfluid Fermi
gases near the BEC and unitarity regime at zero temperature
was suggested, which is referred to as the GGPE [21–29]. The
dimensionless form of this equation is

iψt + ρ0(t)�ψ + g0(t)|ψ |2γ ψ +
∑

j

k0j (t)x2
j ψ = i�0(t)ψ,

(1)

where j = x,y,z and � is the Laplacian operator in the
Cartesian coordinates. The time-dependent functions ρ0(t),
g0(t), k0j (t), and �0(t) characterize the quantum pressure
(which provides the necessary dispersion for the formation
of a soliton), nonlinearity (induced from interatomic inter-
actions), trapping potential (usually harmonic), and gain and
loss, respectively. In obtaining Eq. (1) we have utilized the
scale transformation r

√
2m/� → r with m being the atomic

mass. The polytropic power index γ is a function with
respect to the interatom interaction (s-wave scattering length)
[21–29], varying continuously from γ = 1 for the BEC limit
(corresponding to η = +∞) to γ = 2/3 for the unitarity limits
(corresponding to η = 0, respectively) [47–50].

In general, the procedure for obtaining analytical solutions
of Eq. (1) needs extra integrable constraints; however, in the
following, we show a path for obtaining exact solutions without
using any integrable constraints between coefficients of the
equation. First, we scale the spatial and temporal coordinates
as r ′ = σ (t ′)r and t ′ = ∫

ρ0(t)σ 2(t)dt , with σ (t) being a time-
dependent function to be determined in the ensuing steps. The
original wave function is transformed as

ψ(r,t) = σ 3/2(t ′) exp

[
σt ′(t ′)
σ 3(t ′)

∑
j

x ′2
j

]
ϕ(r ′,t ′). (2)

Changing notation from (r ′,t ′) to (r,t) and using Eq. (2), the
transformed GGPE is of the form

iϕt + �ϕ + g(t)|ϕ|2γ ϕ +
∑

j

kj (t)x2
j ϕ = i�(t)ϕ, (3)

where g(t) = g0(t)σ 3γ−2(t)/ρ0(t), �(t) = �0(t)/[ρ0(t)σ 2],
and ki(t) = {4k0j (t) + σ 2

t (t)/σ 2(t) − [σt (t)/σ (t)]t}/[4ρ0(t)
σ 4(t)].

The self-similar projective equation of the 3D GGPE (3) is

iuτ + εuςς + δ|u|2γ u = 0, (4)

which admits bright- and dark-soliton-like solutions of the
form [20,21]

u+(ς,τ ) = C+sech1/γ B+(ς + cτ ) exp[i(d1ς + d2τ )],

δ > 0, (5a)

u−(ς,τ ) = C−tanh1/γ B−(ς + cτ ) exp[i(b1ς + b2τ )],

δ < 0, (5b)

for attractive (δ > 0) and repulsive (δ < 0) interactions,
respectively. Here C±, B±, c, b1,2, and d1,2 are free parameters
determining the amplitude, width, central localization, group
velocity, and phase of the solitons, respectively. Now we
introduce the similarity ansatz for ϕ as

ϕ(r,t) = A(t)u[ς (r,t),τ (t)] exp[ia(r,t)], (6)

where u(ς,τ ) is the solution of Eq. (4); A(t), ς (r,t), τ (t),
and a(r,t) are undetermined functions which are differentiable
with respect to the spatial and temporal coordinates. Substi-
tuting the solution (6) into GGPE (3) and putting the resultant
equation into the same form as Eq. (4), we obtain the following
relations:

2gA2γ − δτt = 0, (7a)∑
j

ςjj = 0, (7b)

∑
j

ς2
j − ετt = 0, (7c)

ςt + 2
∑

j

ςjaj = 0, (7d)
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2At − 2�A + 2A
∑

j

ajj = 0, (7e)

at + a2
x + a2

y + a2
z −

∑
j

kj x
2
j = 0, (7f)

which result in

A(t) =
√

3δ

εg
G, (8a)

ς (r,t) = −6C1

∫
G2dt + G

∑
j

xj + C2, (8b)

τ (t) = 3

ε

∫
G2dt + C3, (8c)

a(r,t) = gt + 2�g

4g

∑
j

x2
j + C1G

∑
j

xj − 3C2
1

×
∫

G2dt + C4, (8d)

with j = x,y,z, G = exp[−∫
(gt/g + 2�)dt], and C1,2,3,4

being the integral constants. Then, the general consistence
condition reads

4�2 + 4
gt

g
� + 2�t + gtt

g
− 4

3

∑
j

kj (t) = 0. (9)

Since the functions �(t), g(t), and kj (t) are all dependent on
σ (t), the condition (9) actually imposes a requirement of σ (t),
while the functions ρ0(t), g0(t), k0i(t), and �0(t) are allowed
to change freely. The ansatz (6) together with the condition (9)
present the exact 3D solitonlike solutions of GGPE (3).

The ansatz (6) leads to the final solutions of the 3D GGPE
in the form of bright or dark solitons indicated by Eqs. (5).
However, the obtained set of analytical solutions is not the only
possible solitonlike solution of the 3D GGPE. In principle, one
can write the ansatz in the following general form:

ϕ(r,t) = A(t)H (u[ς (r,t),τ (t)]) exp[ia(r,t)]. (10)

Here H (u) is a function of u(ς,τ ), which can be solved by a
certain 1D nonlinear partial differential equation. In this work,
we are interested in the solutions which have the simplest form
[i.e., the ansatz (6)] and possess the most evident physical
meaning as shown below.

III. DARK AND BRIGHT SOLITONS IN DEGENERATE
FERMI GASES

A. Dark-soliton-like solutions

Now we consider a practical case in which k0j (j = x,y,z)
are all time independent and satisfy the condition k0x = k0y =
k⊥ > k0z with ρ0(t) = 1. In this case the ansatz (6) allows a
dark-soliton-like solution indicated by solution (5b), reading

|ψ(r,t)| = D3Dσ (t)3/2A(t)tanh1/γ

×
[
σ (t)p(t)

∑
j

kcj xj + q(t)

]
, (11)

where D3D is a constant, p(t) = exp(−2�0t/ρ0), and q(t) =∫
exp(−2�0/ρ0t)σ 2(t)dt according to Eqs. (8). We are in-

terested in this case which can be compared with the one

observed in the experiment carried out by the MIT group [46].
To this end, we take a(r,t) = s(t)

∑
j x2

j + s1(t)
∑

j xj + s2(t)
according to Eqs. (8), where s1(t) and s2(t) are determined from
the initial condition and can be set to zero in the laboratory
reference frame. In addition, we have p(t) ∝ A2/3(t) and g ∝
σ 3γ−2(t) with experimental proportional constants. Setting
p(t) ∝ σ ν(t), with ν being a constant determined by the
normalization at a certain time (e.g., t = 0), we reach the
expression δ = σβ(γ )(t).

From Eqs. (7c) and (7d), we get the relation σ 1+α(γ )(t) =
A2/3. Using this relation, we obtain

s(t) = −1 − α(γ )

4

(
σt ′(t)

σ (t)

)
t ′
. (12)

Noticing that dt ′/dt = σ 2(t) and substituting Eq. (12) into
Eq. (7f), we further obtain the equation for σ (t) as

kcj

{
[α2(γ ) − α(γ )]

(
σt (t)

σ (t)

)2

− α(γ )
σtt (t)

σ (t)

}
+ k0j σ

2(t) = 0,

(13)

which requires that kcx/k0x = kcy/k0y = kcz/k0z equals a
constant with the constraint kcx + kcy + kcz = 3 [in fact, one
can define kcx = kcy = 3λ/(1 + λ) and kcz = 3/(1 + λ) with
λ being the aspect ratio]. Equation (13) accommodates the
periodic solution which makes the density (the square of
the amplitude of the wave function) oscillate. Now we
apply the parameters used in the MIT experiment to
calculate this period. When the aspect ratio λ = 6.1, in the
BEC limit (γ = 1) with α(γ ) = 1, Eq. (13) has a solution of
σ (t) = sinν ωt with ν turning out to be 1 and ω = √

(4�k0i)/3,
and we get Ts = 4.98Tz. Notice that Ts = 4.4Tz was reported
in the experiment in Ref. [46]; thus, the analytical result
matches the experimental one very well. In the unitarity
limit (γ = 2/3) with α(γ ) = −1, Eq. (13) has a solution
of σ (t) = (a tan2 ωt + b)q [the equations for ω,a,b,q are
obtained from the equations 2h1q + 2h2(q − 1) + 3h2 = 0,
kz a + 8h1q

2 aω2 + 8h2 q(q − 1)a ω2 + 2h2qω2(3b + 4a) = 0,
kzb + 2h1q

2 aω2 + 2h2 q(q − 1)aω2 + h2qω2(4b + a) = 0,
and kzb + 2h2qaω2 = 0, with h1 = α(γ ) and
h2 = α2(γ ) − α(γ )] with ω =

√
(
√

6 − 1)�k0i/5, and
we get Ts = 13.08Tz. Notice that Ts = 14Tz was reported in
the experiment in Ref. [46]; we have a good match again.

For very strong confinement in the radial direction,
we can introduce a parameter λ = k⊥/k0z 
 1 and define
χ (t) = σ 2λ−2(t). It is obvious that χ (t) → 0 for |σ (t)| <

1. Considering the modified transformation (x,y,z) →
σ (t)(

√
χ (t)x,

√
χ (t)y,z), Eqs. (7) are modified as follows:

2gA2γ − δτt = 0, (14a)

χ (t)(ςxx + ςyy) + ςzz = 0, (14b)

χ (t)
(
ς2

x + ς2
y

) + ς2
z − ετt = 0, (14c)

ςt + 2[χ (t)(ςxax + ςyay) + ςzaz] = 0, (14d)

2At − 2�A + 2A[χ (t)(axx + ayy) + azz] = 0, (14e)

at + χ (t)
(
a2

x + a2
y

) + a2
z −

∑
j

kj x
2
j = 0. (14f)
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FIG. 1. (Color online) (a) The evolution of |ψ |2 as a function of axial position (x + y + z) and t in the BEC limit (γ = 1). (b) The oscillation
of the soliton position (horizontal notch) with time t . (c) |ψ |2 as a function of t/Tz at axial position x + y + z = 0 in the BEC limit where
γ = 1 (solid line) and in the unitarity limit where γ = 2/3 (dashed line). The oscillation period of the solitonlike solution is Ts/Tz = 4.98 in
the BEC limit (γ = 1) and Ts/Tz = 13.08 in the unitarity limit (γ = 2/3). The parameters are taken as N = 2 × 105 and Tz = 93.76 ms for
6Li atoms.

The equations for σ (t) are the same as those given in
Eqs. (12) and (13) with α(1) = 2 (BEC limit) and α(2/3) = 1
(unitarity limit), corresponding to Ts/Tz = 2.63 and 10.52
in the BEC and unitarity limits, respectively. In general,
Ts/Tz = 2.63(2/γ − 1)2.

The analytical results presented here agree very well with
the experimental observation on Ts/Tz which demonstrates
the validity of polytropic approximation in the mean-field
GGPE description and the applicability of the corresponding
theoretical approach adopted for the 3D case. Figure 1(a)
shows the 3D evolution of a dark-soliton-like solution for the
6Li system with γ = 1 in the BEC limit while Fig. 1(b) shows
the oscillation of soliton position with time t . Figure 1(c)
shows the oscillation behavior of the solitonlike solution in
time with γ = 1 (BEC limit) and γ = 2/3 (unitarity limit).
The number of atoms is N = 2 × 105 and the trapping period
is Tz = 93.76 ms. A large difference in oscillation period
can be observed between the BEC and the unitarity limits
due to the different interaction strengths determined by the
different polytropic index γ in the model. Referring to Eq. (3),
we have g = σ (t) for γ = 1, whereas g = 1 for γ = 2/3,
and trivial interdependence between σ (t) and A(t) occurs.
This corresponds to the fact that only a minute fraction of
atoms from the soliton contribute to the pairing, causing
exponentially large effective mass which leads to the large
difference in the soliton’s oscillation periods (compared with
that from BEC limit), as pointed out in Ref. [46].

B. Bright-soliton-like solutions

Now we focus on the case of attractive interaction where
g0 > 0 in Eq. (1). From Eqs. (5) and (6), it can be seen that
the solution is bright solitonlike. For simplicity and taking into
account the realistic experiment, we assign ρ0(t), k0(t), g0(t),
and �0(t) as constants and get the ordinary differential equation
for σ (t) from the consistence condition Eq. (9), reading

λ1ytt + λ2yt − B1y
1+1/2θ − B2y

1+1/θ = 0, (15)

where y(t) = σ−4θ (t), B1 = k0, and B2 = �2
0/ρ0 with λ1 and

λ2 being constants. The power index θ satisfies 3[γ (3γ − 1) +
1]θ2 − 8(3γ + 1)θ + 16(3γ + 1) = 0.

Referring to Eqs. (5), (6), and (8), the modulus of the wave
function could be written as

|ψ(r,t)| = B3Dσ (t)3/2e−2�tsech1/γ

×
[
B+σ (t)e−2�t

∑
j

xj + b3e
−2�t + b4t

]
, (16)

where B3D and b3,4 are constants determined by the normal-
ization condition and the initial condition, and B+ is the same
as in Eqs. (5). One can clearly see that the solution indicated
by Eq. (16) is a bright-soliton-like solution with its width
evolving as e2�t/

√
σ (t). Equation (15) is integrable through

the intermediate ansatz yt = β1y
1+1/4θ + β2y. The analytical

solution of Eq. (15) takes the form of σ (t) = 1/
√

C5e−t + C6

with constants C5 and C6 determined by initial condition, and it
is apparently not periodic. The nonperiodicity of solution (16)
is mainly due to the fact that the switching of sign for g0 in
Eq. (1) makes σ (t) an exponential-like function instead of a
trigonometric-like function.

In Fig. 2, we give the time evolution of σ (t) with the
initial condition σ (0) = 1.0 and σt (0) = 0 through numerical
calculation for N = 2 × 105 and Tz = 93.76 ms for 6Li. We
can see that σ (t), which determines the soliton evolution,
approaches finite values at t → ±∞ while it reaches its

10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

t

Σ
t

FIG. 2. (Color online) Time evolution of the parametric function
σ (t) with the initial conditions σ (0) = 1 and σt (0) = 0 for N = 2 ×
105 and Tz = 93.76 ms with 6Li atoms.
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FIG. 3. (Color online) (a) The evolution of |ψ |2 as a function of axial position (x + y + z, for example) and t . (b) |ψ |2 at t = 0 as a function
of x + y + z in the BEC limit with γ = 1 (solid line) and unitarity limit with γ = 2/3 (dashed line). (c) |ψ |2 at x + y + z = 0 as a function
of time t in the BEC limit (γ = 1) and the unitarity limit (γ = 2/3).

maximum at t = 0, exhibiting the nonperiodic feature. We
already know that σ (t) is a constant when the zero external
potential is applied. The varying σ (t) contributes to the
modulation of soliton width which is induced from the trapping
effect of the external harmonic potential.

We show in Fig. 3(a) the 3D evolution of the bright-soliton-
like solution in the BEC limit with γ = 1. A comparison of
the bright-soliton-like solution between γ = 1 (BEC limit)
and γ = 2/3 (unitarity limit) at fixed time t = 0 and position
x + y + z = 0 is given in Figs. 3(b) and 3(c). From the figures
we see that |ψ(x,y,z,t)| decreases with time while its shape
is retained. This is due to the existence of dissipation of the
system; i.e., �0 < 0. We also find that the amplitude (height)
of |ψ(x,y,z,t = 0)| is smaller (larger) in the γ = 1 (γ = 2/3)
case. This is because the interaction between atoms in the
BEC limit is weaker than in the unitarity limit. In addition, the
maximum of |ψ(x,y,z,t = 0)| does not occur in the center. We
also see from Fig. 3(c) that when we choose a fixed position
x + y + z = 0, the time evolution of |ψ | for different values
γ = 1 and γ = 2/3 tends to approach the same value although
their initial values are slightly different.

Notice that based on the availability of the multisoliton
solutions of 1D GGPE (4), we can also construct multisoliton
solutions of 3D GGPE (1) from ansatz (6). On the other hand,
the results we obtained may also be used in the context of
optics, where the model is given by the Maxwell equation
governing the beam propagation in a bulk medium with
the potential induced by the modulation of the refractive
index. Also, the oscillatory solution of the 3D GGPE for the
bright-soliton case can be explored by using different ansatz
with different amplitude and phase transformation, which can

be treated as an extension of the result presented in this
work.

IV. CONCLUSION

In conclusion, we study the solitonlike solutions and their
dynamics in a superfluid Fermi gas trapped in a time-dependent
3D harmonic potential with gain or loss. To obtain 3D
analytical solitonlike solutions, we solve the generalized
Gross-Pitaevskii equation based on the self-similar approach
combined with scale and phase transformations, ruling out
any integrable constraints used elsewhere. We study the
propagation of both bright- and dark-soliton-like solutions, as
well as their dynamics in detail. We find that the amplitude
of dark-soliton-like solutions exhibits periodic oscillation,
whereas the amplitude of bright-soliton-like solutions shows
no periodic behavior. We highlight that the oscillation periods
of dark-soliton-like solutions predicted by our theory are
matched very well with the recent experiment reported by the
MIT group [46], in both BEC and unitarity limits. Our results
are useful not only for acquiring a better understanding of the
experimental results, but also for guiding relevant experiments
in the superfluid regimes, especially from the BEC to the
strongly interacting unitarity regime.
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