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Lagrangian chaos and particle diffusion in electroconvection of planar nematic liquid crystals
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Two types of spatiotemporal chaos in the electroconvection of nematic liquid crystals, such as defect turbulence
and spatiotemporal intermittency, have been statistically investigated according to the Lagrangian picture. Here
fluctuations are traced using the motion of a single particle driven by chaotic convection. In the defect turbulence
(fluctuating normal rolls), a particle is mainly trapped in a roll but sometimes jumps to a neighboring roll. Its
activation energy is then obtained from the jumping (hopping) rate. This research clarifies that diffusion in the
defect turbulence regime in electroconvection can be regarded as a kind of hopping process. The spatiotemporal
intermittency appears as a coexistent state of ordered grid domains and turbulent domains. The motion of a
single particle shows weak and strong diffusion, respectively, in the ordered and turbulent domains. The diffusion
characteristics intermittently change from one to another with certain durations as the domains change. This
research has found that the distribution function of the duration that a particle remains in an ordered area has a
power-law decay for which the index is different from that obtained by the Eulerian measurement.
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I. INTRODUCTION

Spatiotemporal chaos is a kind of weak turbulence in
nonlinear dissipative systems that is characterized by the
coexistence of order and disorder in space and time [1]. In other
words, the system can be characterized by macroscopic fluctu-
ations. To understand the system, therefore, it is necessary to
clarify the properties of fluctuations from statistical mechani-
cal viewpoints. Historically, such research has been conducted
for thermal fluctuations and for fully developed turbulent
fluctuations [2]. Various transport coefficients and energy
transport spectra have then been obtained. For spatiotemporal
chaos, there are difficulties in clarifying even the statistical
mechanical properties of fluctuations, because they show the
coexistence of order and disorder and nonuniformly distributed
fluctuations. Systems that contain such spatiotemporal chaos
are called mesoscopic fluctuation systems.

Research on spatiotemporal chaos has been mainly
based on the Eulerian picture using order parameters [3].
However, transport properties of chaotic fluctuations are
closely related to the Lagrangian picture using particle motion
[4–7]. Furthermore, the Lagrangian picture, compared with
the Eulerian picture, provides different information about
the fluctuations. Chaotic behavior appearing only in the
Lagrangian picture is called Lagrangian chaos or chaotic
advection. For fully developed turbulence, information
essential to determining the transport properties can be
obtained from the mixing motion of many particles. For
spatiotemporal chaos, however, the observation of the average
behavior of particles is insufficient, because the coexistence
of order and disorder mentioned above appears to create
complex dynamics. We have thus experimentally investigated
the statistical mechanical properties of spatiotemporal chaos
occurring in electroconvective systems of a nematic liquid
crystal from the motion of a single particle driven by chaotic
advection, i.e., nonthermal Brownian motion [8].
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The electroconvection of nematic liquid crystals involves
various types of spatiotemporal chaos owing to the nonlinear
interaction between the nematic director and convective flow
[9–11]. Electroconvection has thus been regarded as a useful
and convenient system for deep and broad research on
spatiotemporal chaos. Therefore, including spatiotemporal
chaos, various nonlinear phenomena in electroconvection have
fascinated us for the last several decades. There has been
recent research on soft-mode turbulence in a homeotropic
nematic system, where the nematic director behaves as a
Nambu-Goldstone mode, considering the Lagrangian picture
[8,12–14] as well as the Eulerian picture [15,16]. However,
there has been only limited research on spatiotemporal chaos
employing the Lagrangian picture of a planar system [17]. In
this paper, we report the statistical mechanical properties of
spatiotemporal chaos, such as defect turbulence [see Fig. 1(a)]
and spatiotemporal intermittency [see Fig. 1(b)], employing
the Lagrangian picture for the planar system by measuring
chaotic advection.

In response to an increase in the applied voltage V , the
normal rolls (stripe pattern) become unstable and fluctuate.
Because the fluctuations induce defects in the stripe pattern,
this state is called defect chaos or defect turbulence [18]. The
phenomenon called defect turbulence (chaos) also occurs in the
complex Ginzburg-Landau equation (defect-mediated turbu-
lence) [19] and the Rayleigh-Bénard convection (spiral defect
chaos) [20]. The defect turbulence in electroconvection of
nematics occurs by the different mechanism from them. Long-
wavelength fluctuations in the stripe pattern are expressed by
the spatiotemporal change of phase that accompanies breaking
of a continuous translational symmetry with forming the stripe
pattern. The defect corresponds to a singular point of the phase.
In the defect turbulence in electroconvection of nematics,
locally regular structures are maintained, and the correlation
length corresponding to the average distance between defects
is sufficiently larger than the roll size. The defect turbulence is
thus a type of weak turbulence, namely spatiotemporal chaos,
that occurs by weak nonlinearity [21] and has been investigated
as a typical example of spatiotemporal chaos [22,23].
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FIG. 1. Typical patterns of spatiotemporal chaos in a planar
nematic system: (a) defect turbulence and (b) spatiotemporal
intermittency.

The density of defects increases with an increase in V in
defect turbulence. Finally, the motion of defects is frozen
in portions of the system, and three-dimensional regular
convection called a grid pattern (GP) appears [24]. The GP
has also been studied as a research subject of nonlinear
physics [25,26]. Unlike normal rolls, the GP does not appear
uniformly and is localized in space [27]. GP clusters then
form in the defect turbulence and coexist with the defect
turbulence. The clusters dynamically change in size and shape.
In other words, there is spatiotemporal intermittency, such as in
ubiquitous spatiotemporal chaos [28–36], where ordered and
disordered states coexist [21]. In past studies employing the
Eulerian picture, area binarization analysis, which separates
ordered and disordered areas, has investigated the statistics of
the fraction of the ordered area to the whole area, the size
distribution of clusters, and the distribution of the duration
of the order or disorder state at each fixed location [31–34].
In the present research, however, we compare the properties
of spatiotemporal intermittency obtained in the Lagrangian
picture with those obtained in the Eulerian picture.

II. EXPERIMENT

The sample cell used in the present research was prepared
by employing the standard method for the planar alignment
of a nematic liquid crystal p-methoxybenzylidene-p’-n-
butylaniline (MBBA) [37]. The area of the square electrodes
was 1.0 × 1.0 cm2, and the thickness of the cell was 67 μm.
Thus, the aspect ratio of the convective system was � = 149.
The director of the nematic liquid crystal was parallel to
the x direction, and an alternating-current voltage Vac(t) =√

2V cos(2πf t) was applied to the sample in the z direction. In
all measurements, the temperature was kept at 30.00 ± 0.03◦C.
The relative dielectric constant and the electric conductivity
perpendicular to the nematic director of the sample cell
were ε⊥ = 5.4 and σ⊥ = 3.7 × 10−7 �−1 m−1, respectively.
At voltages V beyond a threshold Vc, electroconvection
occurred and a convective stripe pattern referred to as normal
rolls appeared in the planar nematic system. The wave vector of
the stripe pattern was parallel to the x direction. Hereafter, we
use the normalized voltage ε = (V 2 − Vc

2)/Vc
2 as the control

parameter. The critical frequency fc separating the conductive
regime from the dielectric regime of the electrohydrodynamic

instability was obtained by fitting the frequency dependence
of the convective threshold voltage Vc with the theoretical
equation [38]. The present study was performed for f =
0.65fc, where fc = 2964 Hz.

To observe chaotic advection, small particles (Micropearl
KBS-5065, Sekisui Chemical, Osaka, Japan) were introduced
into the sample cell. The diameters of the particles were 6.48 ±
0.17 μm and the density of particles was 1.22 × 103 kg/m3,
which was a little higher than that of the MBBA (1.02 × 103

kg/m3). The x-y plane of the sample cell was observed from
the z direction using a digital microscope (VHX-900, Keyence,
Osaka, Japan). Time sequences of observed images I (x,y; t)
were stored on a magnetic disk for computer analysis. From
I (x,y; t), the motion of a particle (X(t),Y (t)) was recorded
using motion analysis software (VW-H1MA, Keyence). Self-
made software and ImageJ [39] were used for the analyses of
I (x,y; t) and (X(t),Y (t)).

In the measurements of the defect turbulence, two particles
were observed over a period of 1800 s, and the spatial
and temporal resolutions of (X(t),Y (t)) were 0.96 μm and
3 s/frame, respectively. Because the motion in the x direction
characterizes fluctuations of the defect turbulence, we discuss
only X(t).

With increasing V , the GP area fraction Sg in the
spatiotemporal intermittency increased and decreased, thus
showing a maximum. The measurements of the spatiotemporal
intermittency were made at ε = 3.9 (beyond the maximum)
and Sg was 0.79 ± 0.05. A video was also taken for the period
of 1800 s to observe both the spatial pattern and the particle
motion. The spatial and temporal resolutions of (X(t),Y (t))
were 1.82 μm and 0.47 s, respectively. The study objects were
10 particles, and the full observation time was 10,953 s. For
comparison between the Lagrangian and Eulerian pictures,
a temporal sequence of images I (x,y; t) was also captured.
The space and time resolutions of the images were 1.82
μm/pixel and 1.0 s/frame, respectively. The size of each
image was 800 × 480 pixels. Binarization analysis of each
image I (x,y; t) was conducted as follows. A partial area
around an objective location was extracted from an image,
and there was either GP or turbulence according to the spatial
power spectrum of the area. By carrying out this process for
all locations in the image, a binarized image was obtained.
Dichotomous time series having length of 1800 s were
obtained at 180 points of the spatial sequence. The duration
(life) τ of the GP state was measured from the time series.

III. RESULTS AND DISCUSSION

A. Defect turbulence

Figure 2(a) shows X(t) of a particle for ε = 0.20, which
is slightly above the threshold of the defect turbulence. In the
normal rolls with no fluctuation, the particle was trapped in a
roll, and the motion showed almost only periodic oscillation
owing to the circular flow of the convection. In the defect
turbulence, there was hopping to the neighboring roll owing to
the weak fluctuation as seen around t = 350 s in Fig. 2(a). For
higher ε, because the convective flow is fast, particles could not
follow the convective flow. The periodic motion of a particle
was thus no longer observed for ε = 0.32 as shown in Fig. 2(b).
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FIG. 2. (Color online) X(t) of a particle for (a) ε = 0.20 and
(b) ε = 0.32. The red arrows in (b) indicate hopping of the particle.

However, there were occasional large motions as indicated by
the arrows in Fig. 2(b). These motions corresponded to the
hopping between neighboring rolls.

The ε dependence of the hopping rate defined as the
number of hops per second was measured. Because the
fluctuation intensified with an increase in ε, the hopping
rate also increased. We treated these data from the following
viewpoint. The periodic arrangement of convective rolls in the
normal rolls can be regarded as a one-dimensional periodic
potential in space, and a particle trapped in a roll remains at a
minimum of the potential. The defect turbulence is recognized
as a fluctuation of such potential. The particle hops to the
neighboring minimum in response to the fluctuation.

Generally, the hopping rate k for a potential barrier can be
described by the Kramers formula:

k = k0 exp(−E/M), (1)

where k0 is a constant, E is the height of the potential, and
M is the intensity of the fluctuation. If the hopping occurs
because of thermal fluctuations, then M = kBT , where kB is
the Boltzmann constant and T is the temperature. In the present
case, M is an increasing function of ε that corresponds to the
energy injected into the system. Experimental evidence that
ε plays a similar role to that of temperature has been found
for soft-mode turbulence by taking the analogy of thermal
fluctuation [13,40,41]. Although the behavior of the soft-mode
turbulence and that of the defect turbulence are different, the

FIG. 3. (Color online) 1/ε versus log10 k, where k is the hopping
rate defined as the number of hops per second. The number of hops
was measured over a period of 3600 s (1800 s × 2 particles).

two forms of turbulence are generated by nonlinear interaction
between convection and the nematic director. Based on this
common property, M = ε can be supposed also in this case of
the defect turbulence. In fact, log k linearly depends on 1/ε as
shown in Fig. 3, indicating that the relation k = k0 exp(−Ek/ε)
is held. Thus, Ek = 0.39 ± 0.04 is obtained from the slope of
the linear relation, which corresponds to the activation energy
of the potential in the unit of ε.

Each of the two time series of X(t) for a period of 1800 s
is divided into four, and from the eight samples, we obtain the
effective diffusion constants defined as

D = 〈|X(T1) − X(0)|2〉
2T1

, (2)

where 〈· · · 〉 is the ensemble average of the eight samples, and
T1 = 450 s. The relation D = D0 exp(−ED/ε) is obtained
as shown in Fig. 4, where D0 is a constant. From the slope

FIG. 4. (Color online) log10 D versus 1/ε, where D is the diffu-
sion constant expressed by Eq. (2).
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of the linear relation shown in Fig. 4, another activation
energy is obtained as ED = 0.35 ± 0.04. The relation D =
D0 exp(−ED/ε) and ED � Ek suggest that hopping plays a
dominant role in the diffusion of the defect turbulence.

The concept of hopping diffusion in a periodic potential has
been introduced in solid state physics [42] and biophysics [43].
However, such systems are microscopic, and the fluctuating
forces are usually regarded as thermal. The present results
show that this concept is available also for macroscopic
convective systems with nonthermal (chaotic) fluctuations.

B. Spatiotemporal intermittency in the GP

Figure 5 show typical particle trajectories in a GP area
[Figs. 5(a)–5(c)] and in a turbulent area [Figs. 5(d)–5(f)]. The
particle fluctuates in a single GP cell, while it moves widely
in a turbulent area. The trajectory of a particle over a period
of 1800 s is shown in Fig. 6. Both stagnation in GP areas
and fast motion in turbulent areas are observed; i.e., there is
intermittency owing to irregular alternation between slow and
fast diffusion.

To extract the property of the intermittency, the following
function is proposed:

	(t) = {X(t + T	) − X(t)}2 + {Y (t + T	) − Y (t)}2

4T	

, (3)

where T	 is chosen as 40 s to be sufficiently larger than
the correlation time of the velocity in the turbulent area.
Equation (3) therefore gives the diffusion coefficient in the
period from t to t + T	. The comparison between 	(t) shown
in Fig. 7 and the observation of particle motion reveals that
the particle was located in GP areas when 	(t) was relatively
small and in turbulent areas when 	(t) was relatively large.
In the spatiotemporal intermittency, therefore, the diffusion

FIG. 5. (Color online) Typical particle trajectories in (a–c) a grid
area and (d–f) a turbulent area. The blue dots and red lines indicate
the position at t and trajectory from 0 s to t , respectively. (a, d) t = 0
s; (b, e) t = 10 s; (c, f) t = 20 s.

FIG. 6. Trajectory of a particle over a period of 1800 s in the
spatiotemporal intermittency.

coefficient should be described not as a constant but as a
spatiotemporal variable.

	(t) can be binarized as well as GP and turbulent areas. To
do so, the average value 	̄ of 	(t) is used as a threshold. From
the binarized time series, we obtain the distribution function
PL(τ ) of the duration τ in which a particle exists in a GP area.
Thus, PL(τ ) in the Lagrangian picture well fits a power-law
function as shown in Fig. 8.

Let us compare the above result with that of the Eulerian
picture. The distribution function PE(τ ) of the duration time
obtained from the area binarization analysis well fits a
power-law function with an index 1.53 ± 0.04 as shown in
Fig. 9 in the Eulerian picture. Thus, both cases well fit a
similar power law τ−η but with ηL = 1.00 ± 0.06 for PL(τ )
and ηE = 1.53 ± 0.04 for PE(τ ). In the Lagrangian picture,
because both random particle motions and pattern dynamics
are simultaneously effective, the particles are rarely able to stay
at the same area and are driven to move away. Therefore, PL(τ )
tends to decrease more quickly than PE(τ ) for long τ . Thus,
we expect that ηL is larger than ηE. However, our observation

FIG. 7. (Color online) 	(t) defined by Eq. (3). The blue line
indicates 	̄.
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FIG. 8. (Color online) Distribution function PL(τ ) of the duration
in which a particle exists in a grid area.

disagrees with the expectation. This can be explained by
tracing a single particle as follows. A turbulent domain appears
to flick a particle as if there is a wall, and a particle therefore
stays longer in an ordered state. In addition, even if a particle
can enter a turbulent domain, the particle only ever stays for a
very short time because of flicking from the turbulent regimes.
The particle thus stays longer in ordered states, and the lifetime
in the Lagrangian picture is longer. In other words, less mixing
for long τ is observed in the Lagrangian picture than in the
Eulerian picture. This explains why ηL is smaller than ηE.

There has been much research on spatiotemporal intermit-
tency by analogy with percolation, especially directed percola-
tion that includes temporal development [31–34]. The critical
behavior of statistics such as the size distribution of the ordered
domain has been investigated. Similar to the case of directed
percolation [44], the distribution function has a power-law
decay only at a critical point. In the present research, however,

FIG. 9. (Color online) Distribution function PE(τ ) of the duration
of the ordered state.

it is thought that the distribution function of the ordered
state has a power-law decay in a wide range of ε, because
our case ε = 3.9 is not a critical point but rather a normal
point. This behavior is a kind of “generic scale invariance”
that is characteristic of spatiotemporal chaos [45]. The GP is
a spatially ordered pattern that appears reentrantly from the
defect turbulence and contains background macrofluctuations.
These chaotic fluctuations may break the order partially;
consequently, the spatiotemporal intermittency is enhanced.
As mentioned in Ref. [45], the reason for the generic scale
invariance may be that the noise that induces a transition
between ordered and disordered states is not of thermal
origin but of nonthermal origin, i.e., deterministic chaos.
Such nonthermal fluctuations should have long-wavelength
and long-time correlation that may induce the critical behavior.
However, the detail of the critical behavior has not yet been
clarified.

IV. SUMMARY

The properties of spatiotemporal chaos in the electrocon-
vection of a planar alignment system of a nematic liquid
crystal were investigated from the viewpoint of the Lagrangian
picture. In the defect turbulence, a particle that was trapped in
a convective roll rarely hopped to a neighboring roll. Making
the assumption that the strength of fluctuations in the Kramers
formula for the hopping rate is proportional to ε, the activation
energy for transition from one convective roll to another was
obtained from the ε dependence of the hopping rate. The
activation energy was also obtained directly from the diffusion
coefficient of particle motions using another method. The
two activation energies were almost the same, suggesting that
hopping diffusion was dominant in the defect turbulence.

We finally summarize our observations of the spatiotem-
poral intermittency made in the present study. There is a
clear boundary between the GP domain and defect turbulence
domain. The boundary randomly moves and the domains
therefore dynamically change in space and time. Because of
this boundary motion, there is intermittent switching of low
diffusion velocity in a GP area and high diffusion velocity in
a turbulent area. This particle diffusion can be regarded as a
Lagrangian process. Because of this switching, the distribution
of the duration in which a particle exists in a grid area follows
a power law. This result shows that intermittent switching
between low and high diffusion velocities is not a Poisson
process and may indicate a type of critical state. Moreover, the
distribution function of the lifetime of ordered GP patterns,
like that in the Eulerian picture, follows a power law. The two
functions can be described by similar power laws; nevertheless,
the index of the power law is 1.00 ± 0.06 in the Lagrangian
picture and 1.53 ± 0.04 in the Eulerian picture. This difference
suggests different dynamics, which are presently unknown, in
the two pictures.
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