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Dynamical stability of dipolar Bose-Einstein condensates with temporal modulation
of the s-wave scattering length

S. Sabari,1,2 Chandroth P. Jisha,3,* K. Porsezian,2,† and Valeriy A. Brazhnyi3
1Department of Physics, University of Pune, Pune 411007, Maharashtra, India

2Department of Physics, Pondicherry University, Puducherry 605014, Puducherry, India
3Centro de Fı́sica do Porto, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre 687, Porto 4169-007, Portugal

(Received 20 May 2015; revised manuscript received 25 July 2015; published 14 September 2015)

We study the stabilization properties of dipolar Bose-Einstein condensate by temporal modulation of short-
range two-body interaction. Through both analytical and numerical methods, we analyze the mean-field Gross-
Pitaevskii equation with short-range two-body and long-range, nonlocal, dipolar interaction terms. We derive the
equation of motion and effective potential of the dipolar condensate by variational method. We show that there is
an enhancement of the condensate stability due to the inclusion of dipolar interaction in addition to the two-body
contact interaction. We also show that the stability of the dipolar condensate increases in the presence of time
varying two-body contact interaction; the temporal modification of the contact interaction prevents the collapse of
dipolar Bose-Einstein condensate. Finally we confirm the semi-analytical prediction through the direct numerical
simulations of the governing equation.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensates
(BECs) of 52Cr [1–4], 164Dy [5,6], and 168Er [7] with long-
range dipole-dipole (DD) interaction superposed on the short-
range atomic interaction marks a major development in ultra-
cold quantum gases. Because of the long-range nature and
anisotropic character of the DD interaction, the dipolar BEC
possesses many distinct features and new exciting phenomena
such as the dependence of stability on the trap geometry [1,2],
new dispersion relations of elementary excitations [8–10],
unusual equilibrium shapes, roton-maxon character of the
excitation spectrum [10–17], and novel quantum phases,
including supersolid and checkerboard phases [18–20]. These
features arise due to the interplay between the s-wave contact
interaction and dipolar interaction.

The ability to tune the contact interactions using Feshbach
resonance has attracted a considerable interest in the study of
dipolar BECs [10–12,14,21–32]. One of particular interest is
macroscopically excited BEC, such as solitons. Solitons are
localized waves that propagate over long distances without
change in shape or attenuation. The existence of solitonic
solutions is a common feature of nonlinear wave equations,
so that solitons appear in many diverse physical systems. The
theoretical description of a dilute weakly interacting dipolar
BEC can be formulated by including a nonlocal DD interaction
term in the Gross-Pitaevskii (GP) equation [1–4,33–35]. The
nonlinear terms in the GP equation characterized by both
DD interaction and the two-body s-wave scattering length
can support both dark and bright matter-wave solitons. In
the conventional BEC, bright (dark) matter-wave solitons
form when the negative (attractive) s-wave scattering length
exactly balance with the dispersion and the attractive contact
interaction [36–38]. In the dipolar BECs, a nonlocal DD
interaction term is involved in the nonlinear part with the
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s-wave contact interaction. DD interaction has been a subject
of active investigation in disparate physical systems during
the past decades. DD interaction plays a crucial role in the
physics of solitons and modulational instability [39,40]. The
new prospect for the formation of matter-wave bright solitons
in BECs are suggested by the presence of DD interaction.
Hence, in the presence of DD interaction, one can get a
bright soliton even for positive (repulsive) s-wave scattering
length (a > 0), which can be controlled by means of the
Feshbach resonance with a tunable time-dependent magnetic
field [34]. Further, in recent years, study of temporal and
spatial modulated nonlinearities have attracted considerable
attention in several areas, for example, nonlinear physics [41],
optics [42–47], and conventional BECs [48–52].

In conventional BECs, the periodic temporal modifica-
tion of the atomic scattering length achieved by Feshbach
resonance has been used to stabilize the bright solitons in
higher dimensions. Through the GP equation with constant
and oscillatory part of the two-body interaction, Saito and
Ueda stabilized the trapless matter-wave bright solitons in 2D
by temporal modulation of contact interaction [51]. Adhikari
examined the problem and stabilized the untrapped soliton in
3D and the vortex soliton in 2D by temporal modulation of
contact interaction [49]. Abdullaev et al. studied the stability
of trapped BECs in 2D and 3D with periodic modulation of
contact interaction [50]. We studied the stability of the 3D
BEC with constant and oscillatory part for both the two- and
three-body interactions in our previous work [48]. Besides,
Wang et al. [53] and Wu et al. [52] discussed 2D stable
solitons and vortices for BECs with spatially modulated cubic
nonlinearity and a harmonic trapping potential, respectively.

The objective of the present work is to study the significance
of both constant and oscillatory part of short-range contact
interaction on the stability of dipolar BECs. The effective
strength of the DD interactions can be controlled by adjusting
the orientation of the dipoles with respect to the axis of the
linear trap, while the strength of the contact interactions may
be effectively tuned by means of the Feshbach resonance, as
shown in the condensate of 52Cr and 168Dy atoms.
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Studies of dipolar BECs with periodic temporal modifica-
tion of the s-wave scattering length has not been reported so far
and could lead to interesting results. In the present work, we
investigate the stability of the dipolar matter wave with both
constant and oscillatory part of the two-body s-wave scattering
length. From our theoretical analysis, we suggest that one can
increase the stability of the dipolar BEC by considering the
oscillatory part of the contact interaction. This is the main
result of this paper.

A numerical study of the time-dependent GP equation
with nonlocal DD interaction term is of interest, as this
can provide solutions to many stationary and time-evolution
problems. The time-independent GP equation yields only the
solution of stationary problems. As our principal interest
is in time-evolution problems, we shall consider the time-
dependent equation in this paper. In the present study we
analyze the stability of the dipolar BECs and point out that
a temporal modification of the contact interaction can lead to
a stabilization of the dipolar system. In this paper, in addition
to analytical studies, we also perform numerical verification
for the stability of a dipolar BEC. In particular, by analyzing
the GP equation using the variational method and direct
numerical integration, we analyze the stability properties of the
dipolar BEC with constant and oscillatory part of the contact
interactions. Our analysis strongly suggests that the inclusion
of oscillatory part of the contact interaction can help stabilize
the dipolar BEC.

The organization of the paper is as follows. In Sec. II, we
present a brief overview of the mean-field model. Then, we
discuss the variational study of the problem and point out
the possible stabilization of a dipolar BEC in 2D with and
without the oscillatory part of the two-body contact interaction.
In Sec. III, we report the numerical results of the time-
dependent GP equation through split-step Crank-Nicholson
(SSCN) method. Finally, we give the concluding remarks in
Sec. IV.

II. MODEL EQUATION AND VARIATIONAL EQUATIONS

Consider a dipolar BEC of N particles with mass m and
magnetic dipole moment μ. At sufficiently low temperatures
the ground and excited states of the condensate is described by
the time-dependent, dimensionless GP equation with nonlocal
DD interaction term [1–4,33–35],

i
∂ψ(r,τ )

∂τ
=

[
−1

2
∇2 + V (r) + 4πa(t)N |ψ(r,τ )|2

+N

∫
Udd(r − r′)|ψ(r′,τ )|2d3r ′

]
ψ(r,τ ),

(1)

with DD interaction Udd(X) = 3add(1 − 3 cos2 θ )/X3, X =
r − r′. Here θ is the angle between X and the polarization
direction z and the normalization is

∫ |ψ(r,τ )|2d3r = 1. The
constant add = μ0μ̄

2m/(12π�
2) is a length characterizing the

strength of the DD interaction and its experimental value for
52Cr is 16a0, for 164Dy is 66a0, and for 168Er is 130a0 [1–4],
with a0 the Bohr radius, μ̄ the (magnetic) dipole moment of
a single atom, and μ0 the permeability of free space. The
dimensionless 3D harmonic trap is V (r) = (�2

ρρ
2 + �2

zz
2)/2,

where r = (ρ,z), with ρ the radial coordinate and z the
axial coordinate. In Eq. (1) length is measured in units of
characteristic harmonic oscillator length l = √

�/mω, angular
frequency of trap in units of ω, time t in units of ω−1, and
energy in units of �ω.

In the following, we consider Eq. (1) with strong axial trap
(�z � �ρ), the dipolar BEC is assumed to be in the disk-
shape. Then, the governing equation is the 2D GP equation
with a nonlocal DD interaction term. Equation (1) can be
written in the dimensionless form as follows [34]:

i
∂φ(ρ,t)

∂t
=

[
−1

2
∇2

ρ + �2
ρρ

2

2
+ g(t)|φ(ρ,t)|2

+ gdd

∫
d2kρ

(2π )2
eikρ ·ρn(kρ)h2D

(
kρdz√

2

)]
φ(ρ,t),

(2)

where, g(t) = 4πNa(t)/
√

2πdz, gdd = 4πNadd/
√

2πdz,
n(kρ) = ∫

eikρ ·ρ |φ(ρ)|2dρ, dz = √
1/�z, h2D =

2 − 3
√

πξeξ 2
erf c(ξ ), and kρ = (kx,ky). The dipolar

term has been written in the Fourier space after taking the
convolution of the corresponding variables [34].

In order to obtain the governing equation of motions of the
condensate parameters, we use the variational approach with
the Gaussian trial wave function for the solution of Eq. (2):

φ(ρ) = 1

R
√

π
exp

(
− ρ2

2R2
+ iβρ2

)
. (3)

The Lagrangian density for generating Eq. (2) is

L = i

2
(φtφ

∗ − φ∗
t φ) − |∇ρφ|2

2
− �2

ρρ
2|φ|2
2

− a(t)N |φ|4

− addN |φ|2
∫

d2kρ

(2π )2
eikρ ·ρn(kρ)h2D

(
kρdz√

2

)
, (4)

where, N = (2
√

2π/dz)N . The trial wave function Eq. (3)
is substituted in the Lagrangian density and the effective
Lagrangian is calculated by integrating the Lagrangian density
as Leff = ∫

L dz. The Euler-Lagrangian equation for the
variational parameter R and β yield the following equation
for width R,

∂2R

∂t2
= 1

R3
− �2

ρR + N√
2π

[2a(t) − addg(κ)]

R3dz

, (5)

with g(κ) = 2 − 7κ2 − 4κ4 + 9κ4d(κ)/(1 − κ2)2, d(κ) =
atanh

√
1 − κ2/

√
1 − κ2 and κ = R/dz.

Since, we consider a periodic modulation of the s-wave
interaction of the form a(t) = ε0 + ε1 sin (ωt) on the stability
of dipolar BEC, where ε0 and ε1 are the amplitudes of
constant and oscillating part of s-wave contact interaction,
respectively, a Kapitza averaging scheme can be used to treat
these oscillatory terms [54]. Such a modulation of the contact
interaction is possible by manipulating an external magnetic
or optical field near a Feshbach resonance [41–44,46,48–53].

After including the oscillating nonlinearity in the contact
interaction part, we get the following second-order differ-
ential equation for the evolution of the width for radial
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coordinates [34],

∂2R

∂t2
= 1

R3
− �2

ρR + N√
2π

[2(ε0 + ε1 sin(ωt)) − addg(κ)]

R3dz

,

(6)

Now R can be separated into a slowly varying part A(t)
and a rapidly varying part B(t) by R(t) = A(t) + B(t). When
ω � 1, B(t) becomes of the order of ω−2. Keeping the terms
of the order of up to ω−2 in B(t), one may obtain the following
equations of motion for A(t) and B(t) [54],

B̈(t) = 2Nε1 sin(ωt)√
2πdzA(t)3

, (7)

Ä(t) = 1

A(t)3
− �2

ρA(t) + N√
2πdz

[2ε0 − add g(κ(t))]

A(t)3

− 6N√
2π

ε1〈B(t) sin(ωt)〉
dzA(t)4

, (8)

where 〈· · · 〉 denotes the time average over the rapid os-
cillation. From Eq. (7) we can get B(t) = −2Nε1 sin(ωt)/
[
√

2πdz ω2A(t)3] and substituting it into Eq. (8), we obtain
the following equation of motion for the slowly varying part:

Ä = 1

A3
− �2

ρA + N√
2πdz

[2ε0 − add g(κ)]

A3
+ 3N2ε2

1

πdzω2A7
.

(9)

The variational approximation suggests that the effect of the
DD interaction is to reduce the constant part of the contact
interaction for add > 0. Immediately, one can conclude that
the system effectively becomes attractive for add > ε0. So one
can have the formation of bright soliton even for positive
(repulsive) scattering length a, provided that add > ε0. The
effective potential U (A) corresponding to the above equation
of motion can be written as

U (A) = 1 + �2
ρA

4

2A2
+ N

2
√

2πdz

[2ε0 − add f (κ)]

A2

+ N2ε2
1

2πdzω2A6
, (10)

where f (κ) = [1 + 2κ2 − 3κ2d(κ)]/(1 − κ2). Now, we ana-
lyze the nature of the effective potential U (A) versus A in the
presence and absence of add and ε1. At this point, it is worth
mentioning that Eq. (6), and hence Eq. (10), could be consid-
ered formally equivalent to the equation governing a charged
particle in an inhomogeneous electric-field (particularly if only
the two-body interaction terms are considered) resulting in the
so-called ponderomotive force [55]; the concept was used to
design the Paul trap [56] and can also be used to trap laser
light in plasma [57].

We concentrate in the study of a weak trap such that �ρ 	 1.
In this case, the dipolar condensate is generally unstable for
low values of the constant two-body interaction term. In
Figs. 1–3, we show the stability properties of the dipolar
condensate by considering the effects of both constant and
oscillatory part of the s-wave contact interaction enlightening
the effect of each terms on the stability of the condensate.
Figure 1(a) shows that the effect of the dipolar term as well
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FIG. 1. (Color online) The effective potential using Eq. (10)
showing the stability properties of the condensate. (a) Dotted curve
represents the potential in the presence of constant part of the
contact interaction alone, dashed curve for dipolar interaction alone,
dash-dotted curve for both constant and oscillatory part of the
contact interaction alone, and continuous curve for dipolar with both
constant and oscillatory part of the contact interactions. (b) Effective
potential curves for different values of constant part of contact
interaction in the presence of dipolar interaction and oscillatory
part of contact interaction as marked. Other parameters are taken as
add = 16a0, ε0 = −10a0, ε1 = 4ε0, ω = 10π , N = 10 000, dz = 1,
and �ρ = 0.04 (weak trapping).

as the constant two-body interaction term (because of the
catastrophic collapse of the 2D condensate in the presence of
constant two-body interaction alone) is to expand the BEC as
there is no potential minimum (see the dashed and dotted lines).
A condensate with only two-body interaction (no dipolar term)
can be stabilized in the presence of oscillatory two-body
interaction (see dash-dotted line). But a dipolar condensate
is considerably stabilized in the presence of constant and
oscillating two-body terms as can be seen from the solid lines.
Figure 1(b) further stresses this point where the effect of the
amplitude of the constant part of the two-body interaction in
the stabilization of the condensate is illustrated.

In Fig. 2, we show the importance of the oscillating
nonlinearity on the stability of the condensates. For low values
of constant contact interaction, in the absence of oscillating
nonlinearity, no minimum in the potential depth appears in the
effective potential (dotted, dashed, dash-dotted) curves. But if
we switch on the oscillating nonlinearity, due to the confining
nature of the oscillating term, the system can now have a
minimum in the effective potential even for smaller values of
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FIG. 2. (Color online) The effective potential using Eq. (10)
showing the importance of the oscillating nonlinearity. Dotted curve
represents the potential in the presence of constant part of the
contact interaction alone, dashed curve for dipolar interaction alone,
dash-dotted curve for both constant and oscillatory part of the contact
interaction alone, and continuous curve for dipolar with both constant
and oscillatory part of the contact interactions. Other parameters
are taken as ω = 10π , N = 10 000, dz = 1, and �ρ = 0.04 (weak
trapping). The values of ε0, ε1, and add are as marked in the figure.

constant contact interaction, say ε0 = −3a0. Furthermore, in
Fig. 3, the effect of the amplitude of the oscillatory part of the
two-body interaction as well as the frequency of oscillation is
depicted. The condensate is more stable for lower amplitude
of ε1 and for higher frequency of oscillation ω. It is evident
from Figs. 1–3, that there is a stability region for the dipolar
BEC for relatively smaller values of two-body constant contact
interaction (ε0 = −3a0) as well as an enhancement in the
stability region of dipolar BEC for relatively large values of
the two-body constant contact interaction (ε0 = −10a0) due
to the inclusion of oscillatory part of the contact interaction.
In the following, we confirm these predictions using direct
numerical integration of the governing equation.

III. NUMERICAL RESULTS

We solve the GP Eq. (2) by employing real-time propa-
gation with split-step Crank-Nicolson method applied to the
diffraction operator [58]. The DD interaction is evaluated by
fast Fourier transform [12,13]. The typical discretized space
and time steps for the numerical grid is 0.05 and 0.005,
respectively. In the following, we present results for 52Cr atoms
which has a moderate dipole moment with add = 16a0 [1–4].
Here, we use Eq. (3) as an initial wave function for dynamical
evaluation of the system with R(= R0) = 0.25 and β = 0. The
condensate consists of 10 000 atoms.

We consider different dynamical regimes wherein we alter-
natively study the effects of inclusion of the time-dependent
periodic two-body interaction as well as the DD interaction so
as to understand their effects on the BEC dynamics. In Fig. 4,
we illustrate the dynamical evolution properties of the dipolar
BEC in the absence of both constant and oscillatory part of
contact interaction, i.e., ε0 = 0, and ε1 = 0 but with a nonzero
DD interaction. As can be seen from the input and output
profiles after t = 50, over time, the condensate collapses. Next,
we study what is the effect of the two-body interaction term
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FIG. 3. (Color online) The effective potential using Eq. (10)
showing the stability properties of the condensate. (a) Potential
curves for varying values of the amplitude of oscillating nonlinearity
(ε1 = 4ε0 for dashed curve, ε1 = 3ε0 for dash-dotted curve, and
ε1 = 2ε0 for solid curve). (b) Potential curves for varying values of
frequency of oscillation of the two-body interaction term (ω = 10π

for dashed curve, ω = 20π for dash-dotted curve, and ω = 30π for
solid curve). Other parameters are taken as add = 16a0, ε0 = −10a0,
N = 10 000, dz = 1, and �ρ = 0.04 (weak trapping). It can be clearly
seen that time-periodic two-body interactions help in stabilization of
the DD BEC.

by including the contact terms. The time dynamics of the
condensate for various ε0,1 values is depicted in Fig. 5. As
can be seen, the instability of the condensate is progressively

 0.1

 0.3

 0.5

-25 -12.5  0  12.5  25

|ψ|2

x

Initial Final

FIG. 4. (Color online) Transverse profiles of the dipolar BEC
without constant and oscillatory part of contact interaction at the input
(solid line) and after t = 50 (distorted curve) showing the instability
of the BEC in time in the presence of DD interaction alone. Parameters
are taken as N = 10 000, add = 16a0, ε0 = 0, and ε1 = 0.
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FIG. 5. (Color online) Stabilization of the dipolar BEC with N =
10 000 atoms by tuning the constant part of the contact interaction
alone. (a) ε0 = 0a0, (b) ε0 = −6a0, (c) ε0 = −7a0, (d) ε0 = −8a0,
and (e) ε0 = −10a0. Other parameters are add = 16a0, ε1 = 4ε0, and
ω = 10π .

decreasing with increasing two-body interaction; both the
constant and oscillatory part. Here the frequency of oscillation
of the time-periodic term is kept constant at ω = 10π . It is
clear that oscillating contact interaction can help in stabilizing
the condensate, because the effect of the oscillatory term is to
induce an additional potential due to Kapitza averaging [47,54]
the profile and magnitude of which depends on the frequency
of oscillation.

Now we illustrate the effect of varying frequency of
oscillation of the time-periodic oscillatory part of the contact
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FIG. 6. (Color online) Stabilization of the dipolar BEC with N =
10 000 atoms by tuning the frequency of oscillation of the time-
periodic contact interaction. (a) ω = 10π , (b) ω = 14π , (c) ω = 16π ,
(d) ω = 18π , and (e) ω = 20π . Other parameters are add = 16a0,
ε0 = −10a0, and ε1 = 4ε0.

interaction keeping all other parameters, i.e., amplitude of the
constant and oscillatory part of the contact interaction as well
as the dipolar interaction as constant. The results are depicted
in Fig. 6 for various frequency of oscillation ω. As can be
seen, increase in oscillation frequency further helps in the
stabilization.

IV. CONCLUSION

In conclusion, we have theoretically investigated the sta-
bility of dipolar BECs by considering constant and oscillatory
part of the contact interaction, that is the nonlinearity due to the
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two-body interaction is considered to be time-periodic. Such
periodic behavior can be obtained by modulating the scattering
length using Feshbach resonance. The effect of the oscillatory
term in the contact interaction is to provide an additional
confining potential which helps in the stabilization of the
dipolar condensate. To illustrate this, we first performed a
variational analysis on the governing equation and obtained the
equations of motion. For this a Kapitza averaging scheme was
employed to separate the slow and fast varying components in
the contact interaction term. Using this we derived the effective
potential which is experienced by the condensate. A minimum
in the potential signifies a possible stable state. We obtained
the potential using experimental values for the dipolar BEC
52Cr and found that the fast varying contact interaction term
can help in stabilizing the BEC. To further prove this point, we
performed direct dynamical evolution of the condensate using
the harmonic oscillator solution to understand the stability
properties. As from variational analysis, numerically also
we conclude that the dipolar BEC is stabilized and also the

stability of the dipolar condensate is highly enhanced by the
time-periodic contact interaction in addition to the constant
part of the contact interaction.
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