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We report on the existence and properties of discrete gap solitons in zigzag arrays of alternating waveguides
with positive and negative refractive indices. The zigzag quasi-one-dimensional configuration of the waveguide
array introduces strong next-to-nearest neighbor interaction in addition to nearest neighbor coupling. Effective
diffraction can be controlled both in size and in sign by the value of the next-to-nearest neighbor coupling
coefficient and can even be canceled completely. In the regime where instabilities occur, we found different
families of discrete solitons bifurcating from the gap edges of the linear spectrum. We show that both staggered
and unstaggered discrete solitons can become highly localized states near the zero diffraction points even for low
powers. Stability analysis has shown that the soliton solutions are stable over a wide range of parameters and can
exist in focusing, defocusing, and even in an alternating focusing-defocusing array.
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I. INTRODUCTION

Diffraction effects in discrete optical systems strongly differ
from those in homogeneous and isotropic media. Peculiarities
in diffraction effects appear due to rotational symmetry
breaking into discrete optical systems, e.g., in arrays of
waveguides, and canonical laws of diffraction cease to hold.
Such systems allow one to control the diffraction either in
size or in sign by the input conditions (angle of incidence of
a beam) [1]. Diffractive beam spreading can even be arrested
and diverging light can be focused. Analytical explanation
of such phenomena comes from the mathematical relation
between longitudinal and transverse wave number components
of the wave vector. This relation is analogous to the dispersion
relation in the temporal domain and describes the diffraction
process in the system considered. In the case of waveguide
arrays this relation is strictly periodic; hence, either strength
or sign of diffraction depends on the transverse wave number
component periodically, which in turn is determined by the
tilt of the initial beam. Thus, the light beam can undergo
both normal and anomalous diffraction and even can cross
the array diffractionless. By using the diffraction properties
of waveguide arrays, it is possible to produce structures with
reduced, canceled, and even reversed diffraction. Results of
experiments with such waveguide arrays are presented and
compared with the predictions made by coupled-mode theory
in [2]. Similar effects have been demonstrated in photonic
crystals [3].

Diffraction effects play a significant role in the formation of
spatial self-localized states (solitons) in nonlinear media. Dis-
crete diffraction, as discussed above, has peculiarities and, as a
result, nonlinear response in discrete structures demonstrates
novel effects, which have no analogs in continuous systems. In
nonlinear optical waveguide arrays (NOWAs) spatial discrete
solitons can be formed due to the interplay between discrete
diffraction, arising from linear coupling, and waveguide
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nonlinearity. Due to the possibility of diffraction management
in waveguide arrays, different families of discrete solitons can
be formed. Thus, both self-focusing and self-defocusing have
been achieved experimentally in the same medium, structure
(waveguide array), and wavelength [4]. Also, it was predicted
analytically by Kivshar [5] that discrete self-focusing may
be realized in an array of defocusing waveguides when the
transverse wave number component of the wave vector lies at
the edge of a Brillouin zone. Contrariwise, for the base of the
Brillouin zone discrete self-focusing happened to be in an array
of focusing waveguides [6]. All these listed features of discrete
self-localized states (solitons) are consequences of the diffrac-
tion properties of the waveguide arrays mentioned above.

The studies discussed above are dedicated to the analysis of
linear and nonlinear properties of uniform waveguide arrays,
i.e., arrays composed of equally spaced identical waveguides.
However, analysis of nonuniform waveguide arrays (binary
arrays, arrays with defects, etc.) provides further degrees
of freedom. Binary waveguide arrays possess a band gap,
and may demonstrate symmetry breaking; thus, new kinds
of discrete gap solitons can be obtained in such structures
[7–15]. An interesting result was obtained in the case of a
binary array with periodic switching of the coupling between
successive waveguides (the coupling coefficients differ not
only in modulus, but also in the sign); flat-top and kink
solitons can be formed in this structure. Both stationary and
“walking” gap solitons moving along the spatial coordinate
with a tunable velocity exist for focusing, defocusing, and even
alternating focusing-defocusing nonlinearities [16]. Efremidis
and Christodoulides [17] proposed a zigzag configuration
of the waveguide array that can exhibit strong second-order
coupling in addition to the nearest neighbor coupling and
this extended coupling affects the lattice dispersion relation
within the Brillouin zone. As a result of this band alteration,
completely different families of discrete solitons can be
obtained, which are stable over a wide range of parameters.
Also, diffraction management is studied in this structure and
it can be employed to generate spatial discrete optical solitons
at low power levels.
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The achievements of modern technologies, i.e., nanotech-
nologies, allow the manufacturing of artificial materials with
unusual electromagnetic properties, i.e., metamaterials, which
possess negative refraction in the microwave range [18–23],
and more recently in the optical range without losses [24].
Compensation of energy losses in metamaterials can be
achieved by implantation of components with active molecules
or atoms into the structure of these artificial materials. The
properties of negative index media can be employed in various
new optical components for the integrated or fiber optics.
The nonlinear response of such negative index metamaterials
(NIMs) to the propagation of electromagnetic waves leads to
novel optical phenomena and has been studied thoroughly
in the last decade [25–27]. In particular, new regimes of
nonlinear wave mixing between forward and backward waves
can be brought about in NIMs [28–36] (for more examples of
studies, see the review papers in [35,36]). Also, the interface
between NIMs and positive index media (PIM) presents new
features of refraction or localization of electromagnetic waves
[37–41]. Interesting examples of mixed PIM-NIM structures
providing forward-backward wave interaction are nonlinear
oppositely directed couplers (NODCs) [42–45] and waveguide
arrays with alternating PIM and NIM waveguides [46–50].
Unique features of nonlinear wave propagation, such as optical
bistability [42], slit solitons [43,47,49], suppression of the
modulation instability effect [44,48,50], and discrete gap
solitons [45,46] were observed in these structures. In general,
the model of PIM-NIM NOWA described by the coupled-mode
equations can be applied to a broad range of metal-dielectric
photonic structures, including plasmonic waveguides and
metamaterials [51]. Energy localization can be significantly
modified by introducing extended interactions (next-to-nearest
neighbors) in PIM-NIM NOWAs. These extended interactions
may be introduced by exploiting the topological arrangement
of the lattice itself. The zigzag geometrical configuration
provides the necessary deformation of the lattice leading to
the emergence of second-order couplings in the PIM-NIM
NOWA and completely different families of discrete soliton
solutions can be obtained there in comparison with the
ordinary first-order coupling PIM-NIM NOWA. Also, the
dispersion relation of waves propagating in a zigzag PIM-NIM
NOWA contains a band gap due to the alternating sign of
the refractive index [49,50] that makes it different from the
model considered in Ref. [17]. Thus, zigzag PIM-NIM NOWA
provides further degrees of freedom for the manipulation
of energy localization effects, diffraction management, and
discrete solitons formation.

In a recent study, it was shown that the modulation instabil-
ity effect in the zigzag PIM-NIM NOWA disappears regardless
of the electromagnetic field power when the second-order
coupling coefficient exceeds a certain threshold, the value of
which depends on the transverse wave number component
of the wave vector [50]. Thus, a uniform field distribution
in the system in question can be both stable and unstable in
the same nonlinear medium depending on the second-order
coupling coefficient, and various regimes of nonlinear wave
propagation are possible.

In this paper, we report on the existence of spatially
localized modes for low powers in this quasi-one-dimensional
waveguide array consisting of alternating positive index guides

and negative index metamaterial guides. We show that the
effective diffraction of the array can be controlled both in size
and in sign, and can even be canceled at certain values of
the second-order coupling coefficient. Zero diffraction points
exist both at the base and at the edge of the Brillouin zone.
Both staggered and unstaggered bright solitons can become
highly localized states even at low power levels near these
zero diffraction points. We perform stability analysis of these
spatially localized states and demonstrate their stability over a
wide range of parameters. We present the effects of nonlinear
interaction of forward and backward waves in an example of
a periodic photonic structure.

II. PHYSICAL MODEL

The coupling between second-order neighbors can be con-
trolled by the angle θ between the perpendiculars connecting
neighboring waveguides [17]. When the value of this angle
is equal to π the second-order interactions are extremely
weak and the system is reduced to a first-order interacting
waveguide array. Reduction of this angle leads to the increase
of the second-order coupling coefficient and the waveguide
array takes a zigzag configuration (Fig. 1) (l is the distance
between adjacent waveguides). Thus, zigzag NOWAs belong
to a more general class of waveguide arrays which have
extended interactions (beyond the nearest neighbors). The
stationary field distribution in the physical system in question
is described by the following nonlinear discrete differential
equations [50]:

i∂zan + ωan + C1(bn−1 + bn) + C2(an−1 + an+1)

+ χ1|an|2an = 0,

− i∂zbn + ωbn + C1(an + an+1)

+ C2(bn−1 + bn+1) + χ2|bn|2bn = 0, (1)

where an and bn are normalized field amplitudes in PIM and
NIM waveguides, respectively, and n = 0, ± 1, ± 2, . . . is
the number of the coupler in the array (see Fig. 1), and z is
the propagation coordinate. C1 and C2 are first-order (near-
est neighbor interaction) and second-order (next-to-nearest
neighbor interaction) coupling coefficients, χ1 and χ2 are the
normalized nonlinear susceptibilities of the PIM and NIM
waveguides, respectively, and ω > 0 is the phase mismatch
between adjacent waveguides. Due to the opposite signs of
the Poynting vectors in the PIM and NIM waveguides an
effective feedback mechanism is introduced into the system
under consideration and there is a minus sign in front of the
spatial derivative in the second equation of the system (1)
unlike the first equation. Therefore, the physical inputs for the

FIG. 1. Zigzag PIM-NIM NOWA (cross section). Empty circles
indicate PIM waveguides; filled ones—NIM waveguides.
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field amplitudes an and bn are positioned at z = 0 and z = L,
respectively, where L is the length of the array along the z

direction. The boundary problem of the array in question can
be simplified by considering stationary field distributions in
waveguides [46] and, therefore, both fields can be given at
z = 0 (i.e., bn are given at their physical outputs).

We can determine the total power in the array as

P =
∑

n

Pn =
∑

n

(|an|2 + |bn|2), (2)

as well as the Hamiltonian

H = 2Re
∑

n

{C1(anb
∗
n + anb

∗
n−1) + C2(ana

∗
n−1 + bnb

∗
n−1)

+ 1

4
(χ1|an|4 + χ2|bn|4)} + ωP, (3)

from where one can obtain the equations of motion [Eq. (1)]
via iȧn = −∂H/∂a∗

n and iḃn = ∂H/∂b∗
n (an overdot stands

for a derivative with respect to z). It is important to note that
the Hamiltonian (3) and the total power (2) are conserved
quantities of Eq. (1).

In order to derive the equations of motion in the so-called
continuous approximation (i.e., slowly varying amplitudes),
we consider the more general case of Eq. (1) describing a
nonstationary field distribution in the linear array [49]:

i(∂z+∂t )an+νan+C1(bn−1+bn)+C2(an−1+an+1) = 0,

i(−∂z+∂t )bn+νbn+C1(an + an+1)+C2(bn−1 + bn+1) = 0,

(4)

where ν is a mismatch between propagation constants. One
can easily obtain the linear part of Eq. (1) by substitut-
ing the stationary fields an = an(z) exp(−iωk,q t) and bn =
bn(z) exp(−iωk,q t) into Eq. (4). Then, the phase mismatch ω

will be defined as a sum of the mismatch between propagation
constants ν and the frequency ωk,q . If we perform the
Fourier transform with an = ∑

k,q uk,q exp i(kz + qn − ωk,q t)
and bn = ∑

k,q υk,q exp i(kz + qn + q/2 − ωk,q t), it is easy
to obtain the following equation for the Fourier amplitudes:
L̂k,qχk,q = 0, where χk,q = (uk,q υk,q)T ,

L̂k,q =
[
ω − k + 2C2 cos q 2C1 cos (q/2)

2C1 cos (q/2) ω + k + 2C2 cos q

]
, (5)

and ω = ωk,q + ν, from where one can easily obtain the
dispersion relation of the system (4) via the equation det L̂k,q =
0, which determines the frequency ωk,q as a function of k and
q:

ω = −2C2 cos q ±
√

k2 + 4C1
2cos2q/2. (6)

We can introduce the slowly varying amplitudes as follows:

an = φ(z,t,n) exp i(k0z + q0n − ω0t),
(7)

bn = ψ(z,t,n) exp i(k0z + q0n − ω0t),

where φ and ψ are slowly varying functions; k0, q0, and ω0 =
ωk0,q0 are spatial and temporal carrier frequencies, respectively.
The frequencies of quasimonochromatic envelopes with nar-
row spectral widths slightly deviate from the carrier frequen-
cies. From Eq. (7) it follows that the Fourier images of slowly

varying amplitudes satisfy the relations χ̃k̃,q̃ = χk0+k̃,q0+q̃ and
L̂k0+k̃,q0+q̃ χ̃k̃,q̃ = 0, where χ̃k̃,q̃ = (φk̃,q̃ ψk̃,q̃)T , and k̃, q̃ are
small deviations from the carrier frequencies. Hence, we have
the following Taylor series expansion:

⎛
⎝L̂k0,q0 + k̃

∂L̂

∂k̃

∣∣∣∣∣
k̃=0

+q̃
∂L̂

∂q̃

∣∣∣∣∣
q̃=0

+ q̃2

2

∂2L̂

∂q̃2

∣∣∣∣∣
q̃=0

+· · ·
⎞
⎠χ̃k̃,q̃ =0.

(8)

Proceeding up to the fourth-order term in the Taylor series
one can obtain equations for the slowly varying amplitudes
φ and ψ (see Appendix) by applying the inverse Fourier
transform to Eq. (8):

iφz + iφt +d
(2)
1 ψ+iv(2)

g ψx +d
(2)
2 ψ2x +id

(2)
3 ψ3x + d

(2)
4 ψ4x

+ d
(1)
1 φ + iv(1)

g φx + d
(1)
2 φ2x + id

(1)
3 φ3x + d

(1)
4 φ4x = 0,

−iψz + iψt +d
(2)
1 φ+iv(2)

g φx +d
(2)
2 φ2x +id

(2)
3 φ3x +d

(2)
4 φ4x

+ d
(1)
1 ψ+iv(1)

g ψx + d
(1)
2 ψ2x + id

(1)
3 ψ3x + d

(1)
4 ψ4x =0,

(9)

where x is a normalized coordinate (n → x) [17], φmx =
∂ (m)φ

∂x(m) , ψmx = ∂ (m)ψ

∂x(m) (m = 1, . . . ,4), and the coefficients d
(1)
1 =

2C2 cos q0, d
(2)
1 = 2C1 cos(q0/2),

v(1)
g = 2C2 sin q0, v(2)

g = C1 sin(q0/2), (10)

d
(1)
2 = C2 cos q0, d

(2)
2 = C1

4
cos(q0/2), (11)

d
(1)
3 = C2

3
sin q0, d

(2)
3 = C1

24
sin(q0/2), (12)

d
(1)
4 = C2

12
cos q0, d

(2)
4 = C1

192
cos(q0/2). (13)

In the case of a stationary field distribution in the nonlinear
array Eq. (9) can be written as

iφz + ωφ + d
(2)
1 ψ + iv(2)

g ψx + d
(2)
2 ψ2x + id

(2)
3 ψ3x

+ d
(2)
4 ψ4x + d

(1)
1 φ + iv(1)

g φx + d
(1)
2 φ2x + id

(1)
3 φ3x

+ d
(1)
4 φ4x + χ1|φ|2φ = 0,

− iψz+ωψ+d
(2)
1 φ+iv(2)

g φx +d
(2)
2 φ2x +id

(2)
3 φ3x +d

(2)
4 φ4x

+ d
(1)
1 ψ + iv(1)

g ψx + d
(1)
2 ψ2x + id

(1)
3 ψ3x + d

(1)
4 ψ4x

+ χ2|ψ |2ψ = 0. (14)

The latter equations [Eq. (14)] are the so-called continuous
approximation of the discrete differential equations [Eq. (1)]
when the field amplitudes are slowly varying functions with
respect to the number of the coupler. The coefficients v(1)

g

and v(2)
g can be attributed to the wave’s spatial group velocity,

and d
(i)
j (i = 1,2; j = 2,3,4) represent the second-, third-, and

fourth-order diffraction effects in the array, respectively.
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III. DIFFRACTION RELATION AND
MODULATION INSTABILITY

In Eq. (6) k and q are the longitudinal and transverse
wave number components of the wave vector, respectively,
and they are independent variables of the frequency function
ω(k,q), that describes the dispersion in the array. To study the
stationary field problem the frequency should be fixed; hence
in this case Eq. (6) defines an implicit function k(q), that can
be expressed as

k2(q) = (ω + 2C2 cos q)2 − 4C1
2cos2(q/2). (15)

The latter expression (15) is the so-called diffraction rela-
tion and it can be used to carry out diffraction management in
the array under consideration. Figure 2 depicts the diffraction
curve in the domain of the first Brillouin zone. The second-
order coupling coefficient significantly affects diffraction and,
as a consequence, formation of bright solitons. As mentioned
above, the second-order interactions in the array can be
controlled by the angle between the perpendiculars connecting
neighboring waveguides, and the system can be reduced to
a first-order interacting array. In this case the second-order
coupling coefficient is equal to zero and the diffraction relation
takes the form considered in the ordinary PIM-NIM array [46].
It should be noted that we will only discuss the upper branch of
the diffraction curve, since all results for the lower branch can
be obtained from their upper branch counterparts by swapping
negative index waveguides and positive index waveguides
with each other. If q lies in the range −π/2 < q < π/2 the
curvature of the diffraction relation is positive [k′′(q) > 0]
[Fig. 2(a)] and it has the form of a discrete Schrödinger-type
(DS-type) diffraction [1,2,4,17], but reversed. In this region
of q the effective diffraction of the array is “anomalous” and
bright solitons are expected to arise in defocusing waveguides
at the base of the Brillouin zone with eigenvalues lying in

FIG. 2. (Color online) Diffraction curves (solid lines) for C2 =
0, 0.1, 0.2, 0.5 shown in (a–d), respectively, with C1 = 1, ω = 2.5.
Dots correspond to bright soliton solutions’ eigenvalues lying in the
band gaps.

the internal finite band gap. No bright solitons were observed
in the focusing array in this case. However, when PIM and
NIM waveguides have nonlinearities of different signs, it was
observed that families of solitons bifurcate only from one of the
edges of the band gap, e.g., for a focusing PIM and defocusing
NIM only from the bottom, despite the fact that the finite gap
edges are symmetric [46]. The nonlinearity breaks inversion
symmetry in the reciprocal space. Contrariwise, in the regions
π/2 < |q| < π the curvature is negative [k′′(q) < 0] and the
effective diffraction of the array is “normal.” Therefore, self-
localization can become possible in focusing waveguides and
bright soliton solutions may occur at the edge of the Brillouin
zone with eigenvalues lying in the external semi-infinite band
gap. In Ref. [46] it was found that there exists more than one
family of symmetric and antisymmetric solitons bifurcating
from the gap edges of the spectrum.

The increase of the second-order coupling coefficient leads
to the finite band gap expansion and the curvature of the
diffraction curve becomes lower for both the base and the
edge of the Brillouin zone [Fig. 2(b)]. As a result, the bright
soliton solutions become more localized (occupying a lower
number of lattice sites) in comparison to those with smaller
values of C2 for the same power P . As can be seen in
Fig. 2(d) the curvature of the diffraction curve changes its sign;
i.e., it becomes negative (“normal” diffraction) in the region
−π/2 < q < π/2 and positive (“anomalous” diffraction) in
the regions π/2 < |q| < π in comparison with Figs. 2(a) and
2(b). Thus, the effective diffraction of the array becomes like
in the DS model when C2 becomes commensurate with C1.
Bright solitons were observed only at the base of the Brillouin
zone with eigenvalues lying in the external semi-infinite
band gaps when the waveguides of the array in question
were focusing. It is important to note that the so-called zero
diffraction (zd) points [k′′(q) = 0] exist there both at the
base and at the edge of the Brillouin zone. To determine
these zero diffraction points and appropriate values of C2,
we can use the Taylor series expansion of the diffraction
relation (15) both at the base and at the edge of the Bril-
louin zone: k2 = (k(0)

q=0,π )2 + 2
∑

m=1 (−1)mδ
(m)
q=0,πq2m/(2m)!,

where δ
(m)
q=0 = 22mC2

2 + 2ωC2 − C1
2 and δ(m)

q=π = 22mC2
2 −

2ωC2 + C1
2 are (m + 1)th-order diffraction coefficients;

k
(0)
q=0 = ±[(ω + 2C2)2 − 4C1

2]1/2 and k(0)
q=π = ±(ω − 2C2)

are band edges at the base and at the edge of the Bril-
louin zone, respectively. Here, one can easily obtain the
values of C2 corresponding to the zero diffraction points
of (m + 1)th-order from the condition δ

(m)
q=0,π = 0: C2

(m)zd
q=0 =

[
√

(ω/2m)2 + C1
2 − ω/2m]/2m for the base and C2

(m)zd
q=π =

[ω/2m ±
√

(ω/2m)2 − C1
2]/2m for the edge of the Brillouin

zone. For the values of parameters used in Fig. 2 (C1 = 1, ω =
2.5) we can estimate the values of C2 under which the second-
order effective diffraction in the array disappears: C2

(1)zd
q=0 ≈

0.175 and C2
(1)zd
q=π = 0.25, 1. Hence, discrete solitons near

zero diffraction points can be observed both at the base and
at the edge of the Brillouin zone in contrast to the ordinary
zigzag array studied in [17] where such nonlinear states were
observed only at the edge of the Brillouin zone. This class
of solutions with eigenvalues positioned deep inside the band
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gap represents highly localized states occupying, in essence,
one to three lattice sites. As the value of C2 increases above
0.25 the diffraction curve becomes steeper and, as a result,
the bright soliton solutions become less localized. Thus, the
array under consideration provides further degrees of freedom
for diffraction management and more ways to generate spatial
discrete optical solitons at low power levels in comparison
with the arrays considered in [17,46].

We investigate the modulation instability (MI) of the plane
wave solution of Eq. (1), an = a exp i(kz + qn) and bn =
b exp i(kz + qn + q/2), with respect to small perturbations.
The plane wave solution’s amplitudes are coupled by the fol-
lowing equation, 2C1 cos(q/2)b = [k(q) − ω − 2C2 cos q]a,
where k(q) is determined by Eq. (15). The instability of
perturbed continuous waves is closely related to the presence
of spatial bright solitons and occurs in the system due to
the interplay between nonlinear interaction and diffraction
effects. Therefore, the presence of MI can be considered as
a precursor to bright soliton formation. We investigate the
linear stability by perturbing the amplitude and the phase of
the solution as an = (a + An) exp i(kz + qn + �n) and bn =
(b + Bn) exp i(kz + qn + q/2 + n), where An(z), Bn(z) and
the differences �n(z) − n(z) are assumed to be small in com-
parison with the parameters of the plane wave solution. After
the linearization of Eq. (1) in these small perturbations and
applying the transformations (An,�n) ≡ (A,�) exp i(Kz +
Qn) and (Bn,n) ≡ (B,) exp i(Kz + Qn + Q/2) for these
quantities we obtain the following relation between the
longitudinal K and the transverse Q wave number components
of the perturbations’ wave vector: ŜQ �g = KÊ �g, where �g =
(A,�,B,)T , Ê is a 4 × 4 unit matrix, and ŜQ = {sij } (i,j =
1, . . . ,4) is referred to as the stability matrix which is used to
investigate MI in the system in question. The coefficients of
this 4 × 4 stability matrix are given by

s11 = −s22 = s33 = s44 = 2C2 sin q sin Q,

s12 = −2i[C1b cos(q/2) + 2C2a cos qsin2(Q/2)],

−s13 = s31 = (−a/b)s24 = (b/a)s42 =2C1 sin(q/2) sin(Q/2),

(1/b)s14 = bs41 = (−a)s23 = (−1/a)s32

= 2iC1 cos(q/2) cos(Q/2),

s21 = −i[3χ1a
2 + ω − k(q) + 2C2 cos q cos Q]/a,

s34 = 2i[C1a cos(q/2) + 2C2b cos qsin2(Q/2)],

s43 = i[3χ2b
2 + ω + k(q) + 2C2 cos q cos Q]/b.

MI occurs when at least one of the stability matrix’s eigen-
values possesses a nonzero imaginary part which results in an
exponential growth of the phase and the amplitude of the plane
wave solution with the perturbations. To find the eigenvalues
of ŜQ one should solve the equation det ‖ŜQ − KÊ‖ = 0. We
performed numerical diagonalization of the stability matrix
and determined the regions where the plane wave solution is
stable or unstable as a function of q and C2 in the focusing array
under consideration. Herein, MI is totally absent at the base

of the Brillouin zone (q = 0) when 0 � C2 � C
(1)zd
2q=0 ≈ 0.175.

At C2 > C
(1)zd
2q=0, the plane wave solution appears to be unstable

[Fig. 3(a)]. At the vicinity of the edge of the Brillouin zone
(q ∼= π ) MI occurs when 0 � C2 < C

(1)zd
2q=π = 0.25 and is

totally absent when C2
(1)zd
q=π � C2 [Fig. 3(b)]. These results

are in full agreement with the conclusions previously drawn
from the linear diffraction diagram.

IV. DISCRETE SOLITONS

In this section we will investigate the existence and
stability of bright soliton solutions that are the self-localized
states along the transverse discrete direction of the array
in question. In the continuous approximation these solitons
can be described by a nonlinear Schrödinger-type equation
[Eq. (14) when d

(1,2)
3 and d

(1,2)
4 are negligible], but only for

broad enough beams with narrow spectral widths. If we want
to examine the existence and properties of highly localized
states with good precision, it will be necessary to perform
numerical analysis of the discrete Eq. (1). As discussed above,
the discrete solitons can bifurcate in the band gaps from the
gap edges if the necessary balance between the diffraction
and nonlinear interaction takes place. In order to carry out an
analytical investigation we will perform the standard multiple-
scale expansion procedure as in [46]. We are interested in
discrete soliton solutions of Eq. (1) having the form an(z) =
un exp i(κz + qn), bn(z) = υn exp i(κz + qn), where un and
υn are real and vanish as n → ±∞, κ is the solution’s
eigenvalue, and two cases of particular interest—unstaggered
and staggered solutions, i.e., q = 0 and π , respectively, will
be treated separately in the rest of this section.

A. At the base of the Brillouin zone: q = 0

In this case Eq. (1) is reduced to the following system of
nonlinear algebraic equations:

(ω − κ)un + C1(υn−1 + υn) + C2(un−1 + un+1)

+χ1|un|2un = 0,

(ω + κ)υn + C1(un + un+1) + C2(υn−1 + υn+1)

+χ2|υn|2υn = 0. (16)

We are interested in the solutions with exponential decay
at n → −∞ (n → +∞); hence, we can require the relation
un+1/un = υn/υn−1 = α (un/un+1 = υn−1/υn = α) to hold,
where α is real and |α| > 1. For exponentially decaying
solutions the nonlinear terms of Eq. (16) can be neglected at
large n, and by substituting the latter expression to Eq. (16)
one can easily obtain the relation which establishes the
domains of the solution’s eigenvalue κ , where solitons
exist: [(ω − κ)α + C2(1 + α2)][(ω + κ)α + C2(1 + α2)] =
C2

1α(1 + α)2. The results of the numerical analysis of this
fourth-order algebraic equation are depicted in Fig. 2 with
dots. In order to satisfy the condition |α| > 1, the soliton
solution’s eigenvalues should be located in the band gaps
where the light propagation is forbidden [Figs. 2(a) and 2(b)].
At some values of the second-order coupling coefficient C2

the internal finite band gap domain of the soliton solutions’
eigenvalues may be degenerate [Figs. 2(c) and 2(d)].
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FIG. 3. Modulation instability growth rate (maximum imaginary part of the stability matrix’s eigenvalues) vs Q and C2, with a = 1,
χ1 = χ2 = 1, C1 = 1, ω = 2.5. Panel (a) corresponds to q = 0; (b) coresponds to q ∼= π .

To consider the bifurcation of solitons from the gap
edges, we will shift the soliton solution’s eigenvalue towards
the gap: κ = k

(0)
q=0 + κ2ε

2, where k
(0)
q=0 indicates gap edges

as were determined in the previous section, ε � 1 is a
small parameter characterizing the shift of the eigenvalue
towards the gap, and the sign of κ2 determines the direction
of the shift. Performing standard multiple-scale series ex-
pansion un = ε

∑
m=0 εmUm(x) and υn = ε

∑
m=0 εmVm(x),

where x = εn, we obtain the relation V0 = βU0, where β =
[k(0)

q=0 − (ω + 2C2)]/2C1 < 0. Proceeding up to the third-order
term in the multiple-scale series we obtain the following
stationary nonlinear Schrödinger (NLS) equation:

γ
d2U0

dx2
− κ2(1 − β2)U0 + (χ1 + β4χ2)U 3

0 = 0, (17)

where γ = βC1/2 + C2(1 + β2) can be interpreted as the
second-order diffraction coefficient. Note that γ is equal to
zero when C2 = C2

(1)zd
q=0 . Equation (17) has a well-known

bright soliton solution,

U0 = A
/

cosh (bx), (18)

where A = [2κ2(1 − β2)/(χ1 + β4χ2)]1/2 and b =
[κ2(1 − β2)/γ ]1/2. When C2 < C2

(1)zd
q=0 the second-order

diffraction coefficient γ is negative and (1 − β2) is positive
(negative) for the upper (lower) branch of the spectrum.
Thus, from the expression for b, the shift of the soliton’s
eigenvalue should be towards the internal finite band gap
[i.e., κ2 < 0 (κ2 > 0) for the upper (lower) branch of the
spectrum], and at the same time, from the expression for A the
quantity (χ1 + β4χ2) must be negative. But for the PIM and
NIM waveguides with focusing nonlinearities, this condition
cannot be satisfied; hence, no bright solitons can bifurcate
from the gap edges when all the waveguides are focusing. In
fact, this conclusion can be drawn directly from Eq. (17) and
is in good agreement with the results depicted in Figs. 2(a)
and 2(b) and the fact that the effective diffraction of the array

is anomalous in this case. The numerical solution associated
with this case is depicted in Fig. 6(a). Meanwhile, bright
solitons are expected to exist in the finite gap when the PIM
and NIM waveguides have nonlinearities of different signs;
e.g., when χ1 = −1 and χ2 = 1 the quantity (χ1 + β4χ2)
is negative for the top of the finite gap and positive (no
solitons) for the bottom of the finite gap and the other way
round when χ1 = 1 and χ2 = −1, despite the fact that the
gap edges are symmetric (this feature is reminiscent of
the inversion symmetry breaking in the reciprocal space,
reported in [46]). If C2 > C2

(1)zd
q=0 the second-order diffraction

coefficient γ is positive. Thus, from the expression for b,
the shift of the soliton’s eigenvalue should be towards the
external semi-infinite band gaps [i.e., κ2 > 0 (κ2 < 0) for the
upper (lower) branch of the spectrum], and at the same time,
from the expression for A the quantity (χ1 + β4χ2) must be
positive. Hence, bright solitons exist in the focusing array in
this case and it is consistent with the fact that the effective
diffraction of the array is normal [Figs. 2(c) and 2(d)].

The numerical results have shown that more than one soliton
family bifurcates from the gap edges of the linear spectrum
[Figs. 5(a) and 5(c)]. The deeper the soliton’s eigenvalue lies
in the band gap, the more localized the solitons are [Fig. 5(e)]
and the higher the corresponding power level is [Fig. 4]. But
near the zero diffraction points these soliton solutions can
be highly localized states even with the eigenvalues closely
located to the gap edges, hence, at low power levels [Fig. 5(a)].

In Fig. 4 the power P associated with bright soliton
numerical solutions is depicted as a function of the eigenvalue
κ for the base and for the edge of the Brillouin zone.
In both cases the behavior of the P (κ) is like the one
in the standard discrete NLS model [17]. For relatively
small values of power and weakly localized solutions, the
behavior of P (κ) can be approximately described within
the NLS limit. Using Eq. (2) and the expression (18) for
the bright soliton solution with q = 0 in the continuous
approximation, the P (κ) curve can be approximately described
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FIG. 4. Power P vs κ curve of stable bright solitons in defocusing
array at q = 0 (solid line) and in focusing array at q = π (dashed line)
with ω = 2.5, C1 = 1, C2 = 0.1.

by P ≈ 4(1 + β2)[γ (1 − β2)(κ − k
(0)
q=0)]

1/2
/|χ1 + β4χ2| at the

base of the Brillouin zone. On the other hand, for high

power levels and strongly localized solutions, most of the
power is confined in one waveguide, and, therefore, P ≈
2(1 − β4)(κ − k

(0)
q=0)/(χ1 + β4χ2) for the solutions with q =

0. These two approximated dependences can be easily seen
in Fig. 4. No peculiarities occur with the change of C2 in the
behavior of P (κ) and these two approximations remain valid.
Thus, the deeper the soliton’s eigenvalue lies in the band gap,
the larger the relative difference (κ − k

(0)
q=0) is and the higher

the power P is.
Now we will examine the stability of these bright

soliton solutions with the linear stability analysis. We
introduce perturbations in the exact solution, an = un exp
(iκz) and bn = υn exp(iκz), in a fashion an = [un +
(Un + Qn) exp(i�z) + (Un − Qn) exp(−i�z)] exp(iκz)
and bn=[υn+(Vn + Wn) exp(i�z)+(Vn − Wn) exp(−i�z)]
exp(iκz), where Un, Qn, Vn, and Wn are assumed to be small
in comparison with un and υn. Substituting these perturbed so-
lutions to Eq. (1) and linearizing Eq. (1) in small perturbations
we arrive at the following coupled eigenvalue problem:

−kQn + ωQn + K1(Wn−1 + Wn) + K2(Qn−1 + Qn+1) + χ1un
2Qn = �Un,

−kUn + ωUn + K1(Vn−1 + Vn) + K2(Un−1 + Un+1) + 3χ1un
2Un = �Qn,

−kWn − ωWn − K1(Qn+1 + Qn) − K2(Wn−1 + Wn+1) − χ2υn
2Wn = �Vn,

−kVn − ωVn − K1(Un+1 + Un) − K2(Vn−1 + Vn+1) − 3χ2υn
2Vn = �Wn.

When all eigenvalues � are real the solution is stable,
whereas, if an eigenvalue possesses a nonzero imaginary part
the solution becomes unstable. We have analyzed this problem
numerically. As can be seen from Figs. 5(a) and 5(c), solitons
with different values of power P exist in the array at the
same parameters of the system. The explanation comes from
Eq. (17). Indeed, the amplitudes U0 and V0 can be centered
either at a PIM [Fig. 5(a)] or at a NIM [Fig. 5(c)] waveguide,
thus giving two different families of soliton solutions which
differ in the power level. The stability analysis has shown that
the soliton solution with higher power level (excited state)
is unstable [Fig. 5(d)]. The eigenvalue problem has complex
roots � with nonzero imaginary parts leading to an exponential
growth of the amplitudes of the small perturbations on the
soliton’s background. The bright soliton solutions with lower
power levels (ground state) are stable over the wide range of
parameters of the system in question [Figs. 5(b), 5(f), and
6(b)]. All the eigenvalues � are real, the instability does not
occur, and the perturbations are the small oscillations on the
top of the soliton’s background.

B. At the edge of the Brillouin zone: q = π

Here we will study the properties of staggered soliton solu-
tions, i.e., q = π . One can easily obtain the equations for these
solutions from Eq. (16) by making the change of variables
un → (−1)nun, υn → (−1)nυn, and consequently, α → −α.
It is obvious that the relation which establishes domains of the
solution’s eigenvalue for which solitons exist does not change.
Hence, suitable eigenvalues of staggered solitons lie in the
band gaps, too. To perform the multiple-scale analysis for

this case we should also shift the soliton solution’s eigenvalue
towards the gaps. The only difference is that the gap edges
should be taken at q = π . Thus, we consider κ = k(0)

q=π + κ2ε
2,

where k(0)
q=π indicate gap edges as were determined in Sec.

III at the edge of the Brillouin zone. The first-order term of
the multiple-scale series gives that at the positive (negative)
gap edge V0 = 0, U0 �= 0, and V1 = [C1/2(ω − 2C2)]dU0/dx

(U0 = 0, V0 �= 0, and U1 = −[C1/2(ω − 2C2)]dV0/dx), i.e.,
field amplitudes in PIM and NIM waveguides have different
orders of magnitude [see Figs. 6(c), 7(a), and 7(c)]. Proceeding
up to ε3 we arrive at the stationary NLS equation for the
positive (negative) gap edge:

σ
d2U0

dx2
− κ2U0 + χ1U

3
0 =0

(
σ

d2V0

dx2
+ κ2V0 + χ2V

3
0 =0

)
,

(19)

where σ = (4C2
2 − 2ωC2 + C2

1 )/2(ω − 2C2) can be inter-
preted as the second-order diffraction coefficient by analogy
with γ and it is equal to zero when C2 = C2

(1)zd
q=π . Note that in

Eq. (19) only the nonlinearity of PIM (NIM) waveguides has
influence due to the different field magnitudes’ orders. The
bright soliton solution of Eq. (19) is U0 = B/cosh(ax) [V0 =
B/cosh(ax)], where B = [2κ2/χ1]1/2 and a = [κ2/σ ]1/2 (B =
[−2κ2/χ2]1/2 and a = [−κ2/σ ]1/2) for the positive (negative)
gap edge. When C2 < C2

(1)zd
q=π the bright solitons bifurcate from

the gap edges towards the external semi-infinite gaps in the
focusing array [Figs. 7(a) and 7(c)] because σ is positive and
the effective diffraction of the array is normal at the edge of the
Brillouin zone [Figs. 2(a) and 2(b)]. On the contrary, no bright
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FIG. 5. Unstaggered discrete solitons with different eigenvalues within the positive infinite gap: (a) κ = 2.3, (c) κ = 2.3 (unstable excited
state) and (e) κ = 2.7; and the corresponding power evolution depicted in (b), (d), (f), respectively, in the focusing array (χ1,2 = 1) with
ω = 2.5, C1 = 1, C2 = 0.2. The infinite gaps are |κ| > 2.1. Empty (filled) circles indicate PIM (NIM) waveguides.

solitons can bifurcate from the gap edges in the focusing array
when C2 > C2

(1)zd
q=π .

In this case the effective diffraction of the array is
anomalous [Fig. 2(d)], σ is negative, and the staggered
bright solitons exist in the defocusing array [Fig. 6(c)]
with eigenvalues lying near the finite gap edges [Fig. 2(d)].
Using the analytical expressions for the solutions of
Eq. (19) bifurcating from the positive (negative) gap edge at
q = π and Eq. (2), we can approximately describe the P (κ)
curve by P = 4[(κ − k(0)

q=π )σ ]
1/2

/|χ1| + C1
2(κ − k(0)

q=π )
3/2

/

3(ω − 2C2)2|χ1|σ 1/2(P=4[(k(0)
q=π−κ)σ ]

1/2
/|χ2|+C1

2(k(0)
q=π−

κ)3/2/3(ω − 2C2)2|χ2|σ 1/2) at low power levels. For strongly
localized solutions at large values of power the P (κ) curve
can be approximately described by P = 2(κ − k(0)

q=π )/χ1

[P = 2(k(0)
q=π − κ)/χ2] [Fig. 4]. As the eigenvalue goes deeper

into the band gap the power increases and the staggered
solitons become more localized.

The stability of these staggered soliton solutions is investi-
gated similarly to the stability of unstaggered soliton solutions
as was performed in the previous subsection. As can be seen
from Figs. 7(a) and 7(c), symmetric and antisymmetric stag-
gered soliton families exist in the array at the same parameters

FIG. 6. Unstaggered (a) and staggered (c) discrete solitons in the finite gap with κ = 1.9 when C2 = 0.15 and with κ = 1.43 when C2 = 0.5,
respectively, and the corresponding power evolution depicted in (b), (d), respectively, in the defocusing array (χ1,2 = −1) with ω = 2.5, C1 = 1.
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FIG. 7. Staggered discrete solitons in the positive infinite gap: (a) stable symmetric state and (c) unstable antisymmetric state; the
corresponding power evolution is depicted in (b,d), respectively, in the focusing array (χ1,2 = 1) with ω = 2.5, C1 = 1, C2 = 0.19, κ = 2.14.
The infinite gaps are |κ| > 2.12.

of the system. Numerical stability analysis has shown that
the antisymmetric state is unstable [Fig. 7(d)]. The symmetric
staggered solitons are stable both in focusing and in defocusing
arrays [Figs. 7(b) and 6(d)]. The physical reason for this be-
havior is that the antisymmetric soliton is an excited state with
higher power levels in comparison with symmetric soliton.

V. CONCLUSIONS

In this paper, we report on the existence and properties of
discrete gap solitons in a binary nonlinear waveguide array
of alternating positive and negative index waveguides with
extended interactions. The zigzag geometrical configuration
of the array in question allows introducing extended strong
second-order (next-to-nearest neighbor) couplings in addition
to the first-order (nearest neighbor) coupling. The control-
lability of this second-order coupling allows managing the
diffraction properties of this array. The effective diffraction
can be controlled both in size and in sign; it can be both normal
and anomalous in the same system and even zero diffraction
points exist at certain values of the second-order coupling
coefficient. We have investigated modulation instability in
the focusing array and determined the regions where the
continuous wave solution is stable or unstable as a function
of the spatial Bloch momentum vector and the second-order
coupling coefficient. Modulation instability does not occur
in regions of anomalous diffraction, whereas in regions of
normal diffraction the continuous waves are unstable both at
the base and at the edge of the Brillouin zone. Due to the
alternating positive and negative index waveguides the linear

spectrum has band gaps giving origin to more than one bright
soliton family bifurcating from the gap edges. The discrete
solitons with the lowest power level are stable over a wide
range of parameters. Discrete self-focusing is observed both
in the focusing and in the defocusing array, and even in the
alternating focusing-defocusing array; moreover, near the zero
diffraction points the highly localized states are possible at
low power levels both at the base and at the edge of the
Brillouin zone. Thus, the array considered is a more general
model combining the properties of the arrays considered in
Refs. [17,46], and provides more ways to manipulate energy
localization effects, spatial discrete solitons formation, and
exert diffraction management.
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APPENDIX

In this Appendix we detail, in order to justify the order of
development and for sake of completeness, our calculations
between Eqs. (8) and (9). Proceeding up to the fourth-order
term in Eq. (8) and combining all terms of the equation into a
single 2 × 2 matrix we have the following equation:

L̂χ̃k̃,q̃ = 0, (A1)

where

L11 = ωk̃,q̃ + ν − k̃ + 2C2 cos q0 − 2C2 sin q0q̃ − 2C2 cos q0
q̃2

2
+ 2C2 sin q0

q̃3

6
+ 2C2 cos q0

q̃4

24
,

L12 = L21 = 2C1 cos

(
q0

2

)
− C1 sin

(
q0

2

)
q̃ − C1

2
cos

(
q0

2

)
q̃2

2
+ C1

4
sin

(
q0

2

)
q̃3

6
+ C1

8
sin

(
q0

2

)
q̃4

24
,
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L22 = ωk̃,q̃ + ν + k̃ + 2C2 cos q0 − 2C2 sin q0q̃ − 2C2 cos q0
q̃2

2
+ 2C2 sin q0

q̃3

6
+ 2C2 cos q0

q̃4

24

Applying the inverse Fourier transform to Eq. (A1) and
taking into account that if φk̃,q̃ is a Fourier image of the function
φ(z,n,t), then k̃φk̃,q̃ is the Fourier image of the quantity −i

∂φ

∂z
,

q̃mφk̃,q̃ ↔ (−i)m ∂ (m)φ

∂n(m) (m = 1, . . . ,4), and ωk̃,q̃φk̃,q̃ ↔ i
∂φ

∂t
,

respectively, it is easy to obtain Eq. (9). Note that for the slowly
varying amplitudes φ(z,n,t) and ψ(z,n,t) we can introduce
the generalized transverse continuous coordinate x instead of
discrete n. The terms with ν can be vanished by an ordinary
phase transformation.
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