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We consider four nontrivial ensembles involving Gaussian Wigner and Wishart matrices. These are relevant to
problems ranging from multiantenna communication to random supergravity. We derive the matrix probability
density, as well as the eigenvalue densities for these ensembles. In all cases the joint eigenvalue density exhibits
a biorthogonal structure. A determinantal representation, based on a generalization of Andréief’s integration
formula, is used to compactly express the r-point correlation function of eigenvalues. This representation
circumvents the complications encountered in the usual approaches, and the answer is obtained immediately
by examining the joint density of eigenvalues. We validate our analytical results using Monte Carlo simulations.
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I. INTRODUCTION

Wigner and Wishart matrices have been the cornerstones
of random matrix theory. They find numerous applications in
varied fields of knowledge [1–3]. The inception of Wigner
matrices was due to Wigner who investigated some special
large dimensional random matrices to predict properties of
the eigenfunctions and eigenvalues of complicated quantum
mechanical systems, in particular heavy nuclei [4,5]. It turns
out that certain spectral characteristics of these matrices,
such as semicircular distribution of eigenvalues, are universal
and in fact shared by a wider class of matrices which are
now collectively referred to as Wigner matrices. See, for
example, Refs. [6,7] for recent surveys. An important family
of Wigner matrices is realized when the matrix elements
are taken as Gaussian random variables. The resulting en-
sembles are referred to as Gaussian ensembles [1,2,8]. In
the present work we use the terms Wigner and Gaussian
Wigner interchangeably to mean complex Wigner matrices
with Gaussian entries, more specifically matrices from the
Gaussian unitary ensemble [1,2,8]. Wishart matrices predate
even Wigner matrices and have their origin in the field of
multivariate statistics. These were introduced by Wishart who
derived the generalized product-moment distribution in normal
multivariate population samples [9]. This distribution is now
referred to as the Wishart distribution. In what follows, we will
be concerned with ensembles comprising complex Wishart
matrices.

While Wigner and Wishart matrices themselves offer plenty
of aspects to explore, interestingly, various combinations of
these also turn out to be of crucial importance. Many such
matrix ensembles have their origin in the area of multivariate
statistics [10–12]. A classic example is the Jacobi (MANOVA)
ensemble which incorporates two Wishart matrices in a
nontrivial manner, and arises in the problems of quantum
conductance [13–18] and multiple channel fiber optics com-
munication [19,20]. Remarkably, it also pops up in something
as remote as a microscopic model of bus transport system [21].
In recent years several other important matrix models have
been explored. Some notable examples include product of
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complex Ginibre matrices [22–28], Cauchy-Lorentz [28–33],
sum involving Wigner and Wishart matrices [34–39], and
product of truncated unitary matrices [40]. In addition to
their natural connection with multivariate statistics, these are
of interest to the fields of telecommunication [22,26,38],
finance [41,42], and random supergravity theory [34–36].

In the present work we proceed further in exploring
such exotic ensembles and consider four important matrix
models involving Wigner and Wishart matrices. The first
one comprises a ratio involving two Wishart matrices, the
second one consists of the weighted sum of a Wigner matrix
and a Wishart matrix, the third is the product of a Wigner
matrix and a Wishart matrix, and the fourth one embodies
the weighted sum of two Wishart matrices. We derive the
probability density function for these matrices, and then work
out the eigenvalue statistics. The joint density of eigenvalues
for these matrix models exhibit biorthogonal structure. A
determinantal representation, based on a generalization of
Andréief’s integration formula [43–45], is used to compactly
express the r-point correlation function for all these ensembles.

The rest of the paper is organized as follows. We start
with a brief discussion of biorthogonal ensembles in Sec. II,
and present the result for r-level correlation function for
eigenvalues. Sections III–VI are devoted to the exact results
for the above mentioned matrix ensembles which involve
nontrivial combinations of Wigner and Wishart matrices. We
conclude in Sec. VII with a brief summary and outlook. Some
relevant derivations are presented in the Appendices.

II. BIORTHOGONAL ENSEMBLES

Biorthogonal ensembles arise naturally in the study of
eigenvalue statistics of two matrix models [46,47]. Moreover,
matrix ensembles with a unitary invariance breaking external
source also give rise to biorthogonal structure [48–50]. These
ensembles exhibit rich mathematical structure and, at the same
time, find applications in several important problems which
range from quantum transport to multiple antenna telecom-
munication, to two-dimensional gravity [22–25,51–57].

We are interested here in biorthogonal ensembles of the
Borodin type [54], which possess the following structure for
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joint density of its eigenvalues {λ} (≡{λ1, . . . ,λn}):

P ({λ}) = C�n({λ})
n∏

l=1

w(λl) · |fj (λk)|j,k=1,...,n. (1)

Here w(λ) is a well-behaved weight function in the desired
domain, and | | represents determinant. Also, �n({λ}) is the
Vandermonde determinant,

�n({λ}) = ∣∣λj−1
k

∣∣
j,k=1,...,n

=
∏
j>k

(λj − λk). (2)

The normalization factor C follows by expanding the determi-
nants and performing the integrals. The ensuing expression can
again be represented as a determinant, as asserted by Andréief
identity [43]. We have

C−1 = n! |hj,k|j,k=1,...,n, (3)

where

hj,k =
∫

dλ w(λ)fj (λ) λk−1. (4)

For the special case of fj (λk) = λ
j−1
k , we obtain the joint

probability density of eigenvalues for a unitarily invariant
random matrix ensemble. We note that if we replace �n({λ}) by
some other determinant |gj (λk)|, then we have the most general
form of biorthogonal ensemble, as defined by Borodin [54].
The approach for calculating correlation function, as discussed
below, extends to these as well.

We would like to remark that the biorthogonal ensemble
of Borodin type emerges after integrating out one set of
eigenvalues (corresponding to one of the matrices) from the
joint probability density of eigenvalues for two-matrix model;
see, for example, Appendix B.

The r-point correlation function (1 � r � n) correspond-
ing to Eq. (1) is defined as [1]

Rr (λ1, . . . ,λr ) = n!

(n − r)!

∫
dλr+1 · · ·

∫
dλn P ({λ}). (5)

The evaluation of this correlation function usually relies on
the explicit construction of biorthogonal polynomials. In [54]
a recipe has been provided to write down the correlation
function in terms of a determinant of an r-dimensional matrix
with entries containing certain two-point kernel. However, it
requires inversion of a matrix.

In the following we use a generalization of Andréief’s
integration formula to express the r-point correlation func-
tion in terms of the determinant of an (n + r)-dimensional
matrix [44,45]:

Rr (λ1, . . . ,λr ) = (−1)rn! C

r∏
l=1

w(λl)

×
∣∣∣∣∣∣

0 [λk−1
j ]j=1,...,r

k=1,...,n

[fj (λk)]j=1,...,n
k=1,...,r

[hj,k]j=1,...,n
k=1,...,n

∣∣∣∣∣∣. (6)

In the above expression 0 represents r × r block with all
entries 0, and fj (λk),hj,k are as appearing in Eqs. (1)
and (4), respectively. In Appendix A we provide a proof
of Eq. (6) based on mathematical induction. The above
representation for correlation function altogether circumvents

the complications encountered in the approaches described
above, and an explicit answer is obtained at once. For small
n,r Eq. (6) is advantageous in the sense that it can be readily
implemented and evaluated in computational packages such as
Mathematica [58]. In particular the first-order marginal density
of eigenvalues, which is related to the one-point correlation
function as p(λ) = R1(λ)/n, is given by

p(λ) = −(n − 1)! Cw(λ)

∣∣∣∣∣
0 [λk−1]k=1,...,n

[fj (λ)]j=1,...,n [hj,k]j = 1, . . . ,n

k = 1, . . . ,n

∣∣∣∣∣.
(7)

A similar form has been used in [37,59] to express the marginal
density of eigenvalues. On the other extreme, if we consider
r = n, then the determinant in Eq. (6) collapses to the product
of determinants |λk−1

j | and |fj (λk)|, along with the factor
(−1)n, and thereby yields n! P ({λ}), as expected.

As discussed in the Introduction, in the following sections
we consider four matrix ensembles where such biorthogonal
structure emerges. The joint density of eigenvalues for these
ensembles appear in the form of Eq. (1), and hence the r-point
correlation function can be written down immediately with the
aid of Eq. (6).

III. RATIO INVOLVING TWO WISHARTS

A. Matrix model and probability density

We consider an ensemble of n × n dimensional complex
matrices

H = (aA)(1n + bB)−1, (8)

where a and b are some non-negative scalars (for definite-
ness), and A and B are positive-definite Hermitian matrices,
respectively, from the complex Wishart distributions

PA(A) ∝ e− tr A|A|nA−n, PB(B) ∝ e− tr B |B|nB−n. (9)

Here nA,nB � n are the respective degrees of freedom for the
two distributions. We may refer to the ensemble described
by Eq. (8) as a quotient ensemble. For b → 0 we have the
usual complex Wishart, while the limit a = b → ∞ leads to
the ensemble AB−1, which is a multivariate generalization of
the beta distribution of the second kind [60]. We also note
that (1n + bB)−1/2(aA)(1n + bB)−1/2, aA(1n + bB)−1, and
(1n + bB)−1(aA) share the identical non-negative eigenvalues
as they correspond to the same generalized eigenvalue problem
and lead to the secular equation |aA − λ(1n + bB)| = 0.
We will see below that the above construction leads to
a very interesting matrix model whose probability density
involves confluent hypergeometric function of the second kind
(Tricomi’s function) with matrix argument [61]. Moreover, this
matrix model is of direct relevance to the problem of multiple
antenna relay systems [62].

The probability density of H can be calculated as

PH (H ) =
∫

d[A]PA(A)
∫

d[B]PB(B)

× δ(H − (aA)(1n + bB)−1). (10)

Here the delta function with matrix argument represents the
product of delta functions with scalar arguments, one for each
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independent real and imaginary component of H − (aA)(1n +
bB)−1. Also, d[A], etc. represent the flat measure involving
the product of the differentials of all independent variables
occurring within the matrix. Implementation of the Fourier
representation for delta function and the cyclic invariance
property of trace gives

PH (H ) ∝
∫

d[K]
∫

d[A]PA(A)
∫

d[B]PB(B)

× ei tr KHe−i tr (aA(1n+bB)−1K). (11)

The matrix K in the above equation possesses symmetry
properties identical to those of H − (aA)(1n + bB)−1. Using
Eq. (9), reordering the integrals, and considering the transfor-
mation K → (1n + bB)K , we obtain

PH (H ) ∝
∫

d[B]e− tr B |B|nB−n|1n + bB|n

×
∫

d[K]ei tr KH (1n+bB)

×
∫

d[A]e− tr A(1n+iaK)|A|nA−n. (12)

Integration over A yields

PH (H ) ∝
∫

d[B]e− tr B |B|nB−n|1n + bB|n

×
∫

d[K]ei tr KH (1n+bB)|1n + iaK|−nA . (13)

The K integral can be identified as a variant of Ingham-Siegel-
Fyodorov integral [63] and leads to

PH (H ) ∝
∫

d[B]e− tr B |B|nB−n|1n + bB|n

× e− tr a−1H (1n+bB)|H |nA−n|1n + bB|nA−n. (14)

We may write

PH (H ) ∝ e−a−1 tr H |H |nA−n �(H ), (15)

where

�(H ) =
∫

d[B]e− tr (1n+a−1bH )B |B|nB−n|1n + bB|nA . (16)

�(H ) can be expressed in terms of the confluent hypergeo-
metric function of the second kind (Tricomi’s function) with
matrix argument [61],

�(α,γ ; X) = 1

	n(α)

∫
d[Y ]e− tr XY |Y |α−n|1n + Y |γ−α−n,

(17)
as

�(H ) = 	n(nB)

bnnB
�(nB,nA + nB + n; (b−11n + a−1H )).

(18)
Here 	n(nB) is the multivariate Gamma function:

	n(α) = πn(n−1)/2
n∏

j=1

	(α − j + 1). (19)

Thus we finally have the result

PH (H ) ∝ e−a−1 tr H |H |nA−n

× �(nB,nA + nB + n; (b−11n + a−1H )). (20)

B. Eigenvalue statistics

We now derive the joint density of eigenvalues for the matrix
model of Eq. (8). As implied by the result in Appendix B,
�(α,γ ; X) of Eq. (17) admits the following determinantal
representation in terms of elements involving hypergeometric
function of the second kind (Tricomi’s function) with scalar
argument [64,65]:

�(α,γ ; X)

∝ 1

�({x}) |U (α − j + 1,γ − j − n + 2; xk)|j,k=1,...,n.

(21)

Here xj ’s are the eigenvalues of X. The joint density of
eigenvalues (0 < λ1, . . . ,λn < ∞) of H , therefore, follows
immediately from Eq. (20), and possesses the biorthogonal
structure as in Eq. (1) with

w(λ) = e−λ/aλnA−n, (22)

fj (λk) = U

(
nB − j + 1,nA + nB − j + 2;

1

b
+ λk

a

)
. (23)

The hj,k of Eq. (4) is obtained as

hj,k = anA−n+k	(nA − n + k)

× U

(
nB − j + 1,nB + n − j − k + 2;

1

b

)
. (24)

We used here the integral result∫ ∞

0
dz zce−zU (a,b; z + m) = 	(c + 1)U (a,b − c − 1; m),

(25)

which holds whenever the integral is convergent. Therefore,
r-point correlation function and the marginal density follow
immediately from Eqs. (6) and (7).

In Fig. 1(a) we show the two-point correlation function
for parameter values indicated in the caption. Although not
shown here for the sake of clarity, a two-dimensional histogram
obtained using Monte Carlo simulation agrees well with the
analytical plot. In Fig. 1(b) marginal density of eigenvalues
is shown for parameter values mentioned in the caption.
In this case simulation results are also depicted with the
aid of symbols, and are in excellent agreement with the
analytical curves. As already indicated, the parameters a and
b give freedom to realize a variety of densities using two
Wishart matrices, the exact outcome being dependent on the
dimensions of the constituent matrices. As an example, in
Fig. 2 we show the density corresponding to the quotient
ensemble defined by Eq. (8) along with the densities of the
constituent Wishart matrices, which can be calculated using
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(a) (b)

FIG. 1. (Color online) Eigenvalue densities for the ratio of Wishart matrices, Eq. (8). (a) Two point correlation function for n = 3,nA =
20,nB = 21,a = 2,b = 1/5; (b) marginal density for n = 4,nA = 14,nB = 9,a = 1 and different b values, as indicated. The symbols (circles,
squares, triangles) shown in (b) are using numerical simulation.

the result

pW(λ) = 	(n)

	(s + n)
λse−λ

× [
L

(s)
n−1(λ)L(s+1)

n (λ) − L(s)
n (λ)L(s+1)

n−1 (λ)
]
. (26)

Here L(s)
μ (λ) represents associated Laguerre polynomial of

degree μ, and the parameter s is given by nA − n or nB − n,
i.e., it is the difference of degree of freedom and dimension of
the Wishart matrix. We should underline that the resulting
spectra, tunable by a and b, can have a crucial role in
deciding the behavior of metric which follow from the
eigenvalue statistics, such as channel capacity and outage
probability in the case of multiple access channel (MAC) and
interference channel (IC) in multiple-input multiple-output
(MIMO) communication [62].

FIG. 2. (Color online) Marginal densities for two Wishart matri-
ces (Wishart A, Wishart B) and the ratio, as defined in Eq. (8). The
parameters are n = 6, nA = 9, nB = 18, and a = 2,b = 1/2.

IV. WEIGHTED SUM OF A WIGNER AND A WISHART

A. Matrix model and probability density

We now consider an ensemble comprising weighted sum of
Wigner and Wishart matrices:

H = aA + bB. (27)

Here A and B are respectively n-dimensional Hermitian and
positive-definite-Hermitian matrices from the distributions

PA(A) ∝ e− tr A2
, PB(B) ∝ e− tr B |B|nB−n, (28)

and a,b, as before, are non-negative scalars. Also, nB � n. For
b → 0, with a > 0, we have the Wigner (Gaussian unitary)
ensemble. On the other hand, for a → 0, with b > 0, we
obtain the Wishart (Laguerre unitary) ensemble. Therefore,
by considering b = 1 − a, and by varying a between 0 and 1,
we have an ensemble which interpolates between the Wishart
and Wigner ensembles. To the best of our knowledge, for
this matrix model only the first order marginal density of
eigenvalues is known in the large n asymptotic regime using
the tools of free probability [66]. A matrix ensemble similar
to that in Eq. (27) has been used to model the Hessian matrix
in the context of supergravity [34–36].

To obtain the probability density function for H we
introduce the Fourier representation of delta function as in
Eq. (11). Reordering of the integrals, and use of the cyclic
invariance property of trace then gives

PH (H ) ∝
∫

d[B]e− tr B |B|nB−n

∫
d[K]ei tr (H−bB)K

×
∫

d[A]e− tr A2−ia tr KA. (29)

Evaluation of the Gaussian integral involving A leads to

PH (H ) ∝
∫

d[B]e− tr B |B|nB−n

×
∫

d[K]e− a2

4 tr K2
ei tr (H−bB)K. (30)
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(a) (b)

FIG. 3. (Color online) Eigenvalue densities for weighted sum of Wigner and Wishart matrices, Eq. (27). (a) Two point correlation function
for n = 3,nB = 4,a = 4,b = 1; (b) marginal density for n = 5,nB = 7,b = 1 − a and a = 9/10,6/10,3/10 as indicated in the figure.

The Gaussian integral over K can also be performed and yields

PH (H ) ∝ e
− 1

a2 tr H 2

�(H ), (31)

where

�(H ) =
∫

d[B]e− tr B2
e tr ( 2

a
H− a

b
1n)B |B|nB−n. (32)

B. Eigenvalue statistics

We now calculate the eigenvalue statistics correspond-
ing to Eq. (31). Using the result in Appendix B we
know that �(H ) is determined solely by the eigenvalues

(−∞ < λ1, . . . ,λn < ∞) of H as

�(H ) ∝ 1

�({λ}) |fj (λk)|j,k=1,...,n, (33)

where

fj (λk) =
∫ ∞

0
dμμnB−j e−μ2+( 2λk

a
− a

b
)μ. (34)

This integral can be evaluated in terms of confluent hypergeo-
metric function of the first kind (Kummer’s function) [64,65],
and leads to the joint density, Eq. (1), with [67]

fj (λk) = 1

2
	

(
nB − j + 1

2

)
1F1

(
nB − j + 1

2
,
1

2
;

(
λk

a
− a

2b

)2)

+
(

λk

a
− a

2b

)
	

(
nB − j + 2

2

)
1F1

(
nB − j + 2

2
,
3

2
;

(
λk

a
− a

2b

)2)
. (35)

The weight function is read from Eq. (31) as

w(λ) = e−λ2/a2
. (36)

In this case obtaining a closed form for hj,k requires some effort. A possible representation is in terms of hypergeometric 2F2

[64,65]:

hj,k =
√

π bnB−j+k

anB−j
	(nB − j + k) 2F2

(
1 − k

2
,
2 − k

2
;

1 − nB + j − k

2
,
2 − nB + j − k

2
;

a2

4b2

)
. (37)

With the above explicit results, the r-point correlation function
of Eq. (6) is readily obtained.

We show the two-point correlation function surface in
Fig. 3(a). The marginal density is shown along with the
Monte Carlo simulation outcome in Fig. 3(b). In particular,
for Fig. 3(b) we have considered b = 1 − a. Therefore, a
crossover is seen from Wigner density (semicircle type) to
Wishart density (Marčenko-Pastur type). In Fig. 4 we compare
the eigenvalue density of the composite ensemble with the

eigenvalue density for the constituent Wishart ensemble given
by Eq. (26) and that of the Gaussian Wigner ensemble
evaluated using

pGW(λ) = e−λ2

2n
√

π n!
[Hn(λ)Hn(λ) − Hn−1(λ)Hn+1(λ)]. (38)

Here Hμ(λ) represents the Hermite polynomial of degree μ.
We can see that the Wishart constituent of the composite matrix
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FIG. 4. (Color online) Marginal densities for Wigner matrix,
Wishart matrix, and their weighted sum, as given in Eq. (27). The
parameter values are n = 6,nB = 9,a = 1,b = 1/2.

tends to keep the eigenvalues in the positive half of the real
line, while the Wigner part pulls them toward the negative half
and tries to make the density symmetric about zero, thereby
giving rise to an interesting hybrid density.

V. PRODUCT OF A WIGNER AND A WISHART

A. Matrix model and probability density

We now consider an ensemble defined by

H = AB, (39)

where A and B, respectively, are Wigner and Wishart matrices
from the distributions given in (28). We note here that A is
Hermitian but B is Hermitian and positive-definite as well;
therefore, the signs of eigenvalues of H are decided by the
respective signs of eigenvalues of A [68]. As a consequence
we expect the resultant first order marginal density to be
symmetric about the origin, similar to that in the Wigner
case.

We introduce the matrix delta function, as in Eq. (11), to
obtain

PH (H ) ∝
∫

d[K]
∫

d[A]
∫

d[B]ei tr K(H−AB)e− tr A2
e− tr B |B|nB−n. (40)

We reorder the integrals and use the cyclic invariance of trace to get

PH (H ) ∝
∫

d[A]e− tr A2
∫

d[K]ei tr KH

∫
d[B]e− tr B(1n+iKA)|B|nB−n. (41)

Integral over B can be done to give

PH (H ) ∝
∫

d[A]e− tr A2
∫

d[K]ei tr KH |1n + iKA|−nB . (42)

We now employ the transformation K → KA−1, which leads to

PH (H ) ∝
∫

d[A]e− tr A2 |A|−n

∫
d[K]ei tr KA−1H |1n + iK|−nB . (43)

The K integral can now be performed [63] and yields

PH (H ) ∝ |H |nB−n �(H ) (44)

with

�(H ) =
∫

d[A]e− tr (A2+A−1H )|A|−nB �(A−1H ). (45)

Here �( ) represents the Heaviside theta function and requires
A−1H to be positive-definite for a nonvanishing result.

B. Eigenvalue statistics

With a little modification the result in Appendix B im-
plies that �(H ) is determined by the eigenvalues (−∞ <

λ1, . . . ,λn < ∞) of H as

�(H ) ∝ 1

�({λ}) |fj (λk)|j,k=1,...,n, (46)

where

fj (λk) =
∫ u

0
dμμ−nB+n+j−2e−μ2−λk/μ, (47)

with u = −∞ for λ < 0 and u = ∞ for λ > 0. This integral
can be evaluated compactly in terms of Meijer G-function
[64] as

fj (λk)

= λ
−nB+n+j−1
k

2−nB+n+j
√

π

×G
3,0
0,3

(
—

nB − n − j + 1

2
,
nB − n − j + 2

2
, 0

∣∣∣∣ λ2
k

4

)
.

(48)
Meijer G-functions have also appeared in the correlation
kernels for product of complex Ginibre matrices [22–28],
and product of truncated unitary matrices [40]. The weight
function w(λ), in view of Eq. (44), is

w(λ) = λnB−n, (49)

which leads to the following expression of hj,k:

hj,k = 1 + (−1)j+k

2
	(nB − n + k) 	

(
j + k − 1

2

)
. (50)
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(a) (b)

FIG. 5. (Color online) Eigenvalue densities for product of Wigner and Wishart matrices, Eq. (39). (a) Two point correlation function for
n = 3,nB = 5; (b) marginal density of eigenvalues for n = nB = 2 and n = 7,nB = 8.

Equation (6) now determines correlation functions of all
orders for the matrix model (39).

Figure 5(a) shows the two-point correlation function of
eigenvalues, while Fig. 5(b) depicts the marginal density. For
n = nB the density exhibits a logarithmic singularity at λ = 0.
This can be seen in n = nB = 2 plot in Fig. 5(b). In Fig. 6 we
display the eigenvalue density for the product of Wigner and
Wishart matrices, along with the densities for the constituent
matrices calculated using Eqs. (26) and (38). Figure 6 should
be compared with Fig. 4 where we have used matrices with
dimensions same as in the present case. The distinct nature of
the resultant densities in these two cases is expected because
of very different characteristics of the underlying composition.
The shapes of the marginal density curves here are reminiscent
of the density of eigenvalues of adjacency matrices in scale free

FIG. 6. (Color online) Marginal densities for Wigner matrix,
Wishart matrix, and their product as in Eq. (39). The dimensions
of the matrices are given by n = 6,nB = 9.

networks [69–71] and matrices defined on Poissonian random
graphs [72].

VI. WEIGHTED SUM OF TWO WISHARTS

A. Matrix model and probability density

We finally consider the matrix model

H = aA + bB, (51)

where A and B are n-dimensional positive-definite-Hermitian
matrices, respectively, from the distributions

P(A) ∝ e− tr A|A|nA−n, P(B) ∝ e− tr �−1B |B|nB−n, (52)

with nA,nB � n. The parameters a,b are again non-negative
scalars. We have taken the covariance matrix equal to identity
matrix for A, while for B we have assumed an arbitrary
(positive definite) covariance matrix. The latter constitutes
the correlated variant of the Wishart ensemble. The above
matrix model has been considered in [37] and exact results
have been obtained for the matrix probability density, the joint
probability density of eigenvalues, as well as the first order
marginal density.

We would like to remark that if one considers covariance
matrices proportional to identity matrix only, then the problem
can be solved for the weighted sum of arbitrary number of
Wishart matrices. Such a scenario has been considered in [38]
and the results used for the analysis of multiuser communica-
tion employing multiantenna elements such as multiple-input
multiple-output (MIMO) multiple access channel (MAC).

For the matrix model of Eq. (51), with parameter m = nA +
nB − n, the probability density function satisfied by matrix H

reads [37]

PH (H ) ∝ |H |m e− tr (a−1H )

× 1 F1(nB ; nA + nB ; (a−11n − b−1�−1)H ), (53)
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(a) (b)

FIG. 7. (Color online) Eigenvalue densities for weighted sum of Wishart and correlated-Wishart matrices, Eq. (51). (a) Two point correlation
function for b = 1; (b) marginal density for b = 1/3 and 1. Common parameters for both the figures are a = 1/4,n = 4,nA = 10, nB = 11,
and (σ1,σ2,σ3,σ4) = (5/2,1/3,2,7/4).

where 1 F1 is confluent hypergeometric function of the first
kind (Kummer’s function) with matrix argument:

1 F1(α,γ ; X) = 1

Bn(α,γ − α)

×
∫ 1n

0
d[Y ]e tr XY |1n − Y |α−n|Y |γ−α−n.

(54)

Here Bn(α,γ ) is the multivariate beta function:

Bn(α,γ ) =
∫ 1n

0
d[Y ]|1n − Y |α−n|Y |γ−n. (55)

Similar to the beta function with scalar arguments, it is related
to multivariate gamma function in Eq. (19) as

Bn(α,γ ) = 	n(α) 	n(γ )

	n(α + γ )
. (56)

B. Eigenvalue statistics

The joint probability density of eigenvalues (0 <

λ1, . . . ,λn < ∞) for Eq. (51) is given by Eq. (1) with

w(λ) = λme−λ/a, (57)

fj (λk) = 1F1

(
nB − n + 1; m + 1;

(
1

a
− 1

bσj

)
λk

)
, (58)

where σj are the eigenvalues of � [37]. Also, hj,k can be
obtained using the result∫ ∞

0
dλ λme−sλ

1F1(a; b; cλ)

= 	(m + 1)

sm+1 2F1

(
a; m + 1; b;

c

s

)
, (59)

valid for convergent scenarios, as

hj,k = am+k 	(m + k)

× 2F1

(
nB − n + 1; m − n + k; m + 1; 1 − a

bσj

)
.

(60)

Consequently, we obtain an explicit result for the r-point
correlation function.

Figure 7(a) shows the two-point correlation function of
eigenvalues for matrix model given in Eq. (51), while Fig. 7(b)
depicts the marginal density. In Fig. 8 we compare the densities
of Wishart, correlated-Wishart, and their weighted sum. For
density of the correlated-Wishart we have used the following

FIG. 8. (Color online) Marginal densities for Wishart matrix,
correlated-Wishart matrix, and their weighted sum as given in
Eq. (51). The parameter values are n = 6,nA = nB = 9, a = b = 1,
and (σ1, . . . ,σ6) = (4,20/3,5/2,11/9,4/3,7/8).
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result, which also follows with the aid of Eq. (7):

pCW(λ) = − λs

n�({σ }) ∏n
j=1 σ s+1

j 	(j + s)

×

∣∣∣∣∣∣∣
0 [λk−1]k=1,...,n

[e−σ−1
j λ]j=1,...,n [	(k + s)σ k+s

j ]j = 1, . . . ,n

k = 1, . . . ,n

∣∣∣∣∣∣∣,
(61)

where s = nB − n. We note that while matrix models (8)
and (51) can lead to similar densities in particular scenarios
(e.g., when b → 0), in general they exhibit different behavior.
For instance, the present model cannot lead to the multivariate-
beta-distribution kind of density which can be achieved using
Eq. (8) for a = b → ∞.

VII. CONCLUSION AND OUTLOOK

We considered four important matrix models which lead
to biorthogonal structure in their joint eigenvalue densities.
These matrix ensembles play important roles in several areas,
which range from multiple antenna communication theory
to supergravity theory. We evaluated the matrix distribution,
as well as the joint eigenvalue density for these ensembles.
With the information of joint density, we also presented
determinantal expression for eigenvalue correlation function of
arbitrary order. This representation follows from a generaliza-
tion of Andréief’s integration formula. Since knowledge of the

correlation function gives access to the prediction of statistical
behavior of observables of interest in a given problem, we
believe that the exact results derived here will find interesting
applications in several fields.

As continuation of the present work, an immediate direction
to pursue could be the investigation of the behavior of
extreme eigenvalues of the composite matrix models, and
its comparison with that of the extreme eigenvalues of the
constituent matrices. This will give a better insight into
the mechanism by which the redistribution of eigenvalues
takes place. Since all the matrix models considered here
possess biorthogonal structure in their joint eigenvalue density
expressions, exact results are possible for the gap probabilities
and densities of extreme eigenvalues [60].

While we considered here ensembles comprising complex
matrices, the cases of real and quaternion matrices are
also important and can be explored. However, solving these
ensembles poses serious challenges because of unavailability
of group integral results similar to those in the case of unitary
group. Another interesting direction can be the analysis of the
spectra of the composite matrices in large dimension limit, and
to look for universalities.

APPENDIX A: CORRELATION FUNCTION

We will use mathematical induction to prove Eq. (6).
Equations (5) and (6) are defined for r = 1,2, . . . ,n [73]. From
the definition of correlation function, Eq. (5), it is clear that

Rr−1(λ1, . . . ,λr−1) = 1

n − r + 1

∫
dλr Rr (λ1, . . . ,λr ). (A1)

For r = n Eq. (6) clearly holds, since in this case the determinant in Eq. (6) factorizes into the product of two determinants and
produces n! P ({λ}). Let us assume it is correct for r = s. We will prove that, given this, Eq. (6) holds for r = s − 1 as well.
Using Eq. (A1) we obtain

Rs−1(λ1, . . . ,λs−1) = (−1)sn! C

n − s + 1

s−1∏
l=1

w(λl)
∫

dλsw(λs)

∣∣∣∣∣∣∣
[0]j = 1, . . . ,s

k = 1, . . . ,s

[λk−1
j ]j = 1, . . . ,s

k = 1, . . . ,n

[fj (λk)]j = 1, . . . ,n

k = 1, . . . ,s

[hj,k]j = 1, . . . ,n

k = 1, . . . ,n

∣∣∣∣∣∣∣. (A2)

We expand the determinant using the sth row:

∣∣∣∣∣∣∣
[0]j = 1, . . . ,s

k = 1, . . . ,s

[λk−1
j ]j = 1, . . . ,s

k = 1, . . . ,n

[fj (λk)]j = 1, . . . ,n

k = 1, . . . ,s

[hj,k]j = 1, . . . ,n

k = 1, . . . ,n

∣∣∣∣∣∣∣ =
n∑

μ=1

(−1)2s+μλμ−1
s

∣∣∣∣∣∣∣∣∣

[0]j = 1, . . . ,s − 1
k = 1, . . . ,s

[λk−1
j ]j = 1, . . . ,s − 1

k = 1, . . . ,n

(k �= μ)

[fj (λk)]j = 1, . . . ,n

k = 1, . . . ,s

[hj,k]j = 1, . . . ,n

k = 1, . . . ,n

(k �= μ)

∣∣∣∣∣∣∣∣∣
. (A3)

We now insert the w(λs)λ
μ−1
s in the sth column, and perform the λs integral. Using the definition of hj,k given in Eq. (4), we

obtain

n∑
μ=1

(−1)μ

∣∣∣∣∣∣∣∣∣

[0]j = 1, . . . ,s − 1
k = 1, . . . ,s − 1

[0]j=1,...,s−1 [λk−1
j ]j = 1, . . . ,s − 1

k = 1, . . . ,n

(k �= μ)

[fj (λk)]j = 1, . . . ,n

k = 1, . . . ,s − 1

[hj,μ]j=1,...,n [hj,k]j = 1, . . . ,n

k = 1, . . . ,n

(k �= μ)

∣∣∣∣∣∣∣∣∣
. (A4)
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Performing separate row interchanges in the determinants appearing in the sum, we arrive at

n∑
μ=1

(−1)2μ−1

∣∣∣∣∣∣∣
[0]j = 1, . . . ,s − 1

k = 1, . . . ,s − 1

[(1 − δμ,k)λk−1
j ]j = 1, . . . ,s − 1

k = 1, . . . ,n

[fj (λk)]j = 1, . . . ,n

k = 1, . . . ,s − 1

[hj,k]j = 1, . . . ,n

k = 1, . . . ,n

∣∣∣∣∣∣∣, (A5)

where δμ,ν is the Kronecker-delta function.
Using multilinearity property in first s − 1 rows in determinant appearing in each of the terms in the above summation, we

find that it gives rise to

(−1)−1(n − s + 1)

∣∣∣∣∣∣∣
[0]j = 1, . . . ,s − 1

k = 1, . . . ,s − 1

[λk−1
j ]j = 1, . . . ,s − 1

k = 1, . . . ,n

[fj (λk)]j = 1, . . . ,n

k = 1, . . . ,s − 1

[hj,k]j = 1, . . . ,n

k = 1, . . . ,n

∣∣∣∣∣∣∣ (A6)

Plugging this back in Eq. (A2), we obtain an expression for
Rs−1(λ1, . . . ,λs−1) which is consistent with Eq. (6), and hence
the desired result follows.

APPENDIX B: MATRIX INTEGRAL

Consider n-dimensional Hermitian matrices X and Y . We
are interested in evaluating integral of the form

�(X) =
∫

d[Y ]e−s tr XY F (Y ), (B1)

where s is a scalar and F (Y ) is a unitarily invariant expression
involving Y , such that the above integral is convergent. We note
that Eq. (B1) is a matrix generalization of Laplace transform.
If x and y are the diagonal matrices consisting of eigenvalues
of X and Y , then

�(X) =
∫ ∞

0
dy1 · · ·

∫ ∞

0
dyn�

2
n({y})F ( y)

×
∫
Un

dμ(U)e−s tr (xU† yU), (B2)

where dμ(U) represents the Haar measure over the groupUn of
n-dimensional unitary matrices. The unitary group integral can
be performed using the celebrated Harish-Chandra–Itzykson-
Zuber formula [74,75] and leads to

�(X) ∝ 1

�n({x})
∫ ∞

0
dy1 · · ·

∫ ∞

0
dyn�n({y})

× F ( y)|e−sxj yk |j,k=1,...,n. (B3)

Now if F ( y) is expressible in terms of certain weight functions
u(yj ) as F ( y) = ∏n

j=1 u(yj ), then integral over y can be
performed and results in

�(X) ∝ 1

�n({x}) |fj (xk)|j,k=1,...,n, (B4)

where

fj (xk) =
∫ ∞

0
dy u(y)yj−1e−sxky . (B5)

Note that we may consider j → n − j + 1 (or/and k →
n − k + 1) for fj (xk) within the determinant in (1) and then
accordingly modify the rest of the results in Sec. II which
depend on fj (xk).
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