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Noise-induced suppression of nonlinear distortions in a bistable system
with biharmonic excitation in vibrational resonance
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This paper is a report of the experimental evidence of suppression of vibrational higher-order harmonics in
a bistable vertical-cavity surface-emitting laser driven by two harmonic signals with very different frequencies
in the phenomenon of vibrational resonance when an optimal amount of white, Gaussian noise is applied. A
quantitative characterization of the suppression is given on the basis of the coefficient of nonlinear distortions.
The behavior of the coefficient of nonlinear distortions is studied in wide ranges of the added noise intensity, the
dc current, and the amplitude of the harmonic signals. The experimental results are compared with a numerical
simulation of a Langevin model showing good agreement.
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Noise is known to play an important role in the behavior
of nonlinear dynamical systems in different fields of physics,
chemistry, biology, etc. This topic is a subject of much current
interest. One example of an important role of noise is the
phenomenon of stochastic resonance (SR), where the response
of a bistable system to the effect of a low-frequency (LF)
periodic signal can be amplified by the presence of a certain
amount of noise [1–3]. When a harmonic signal of large
enough amplitude is used, one can observe in the phenomenon
of SR the generation of ultraharmonics of the LF signal. This
was a subject of a number of theoretical and experimental
studies [4–12]. The generation of higher-order harmonics
results in nonlinear distortions in the transmission of the LF
signal through bistable systems in the regime of SR. Such
distortions appear due to the fact that the temporal shape
of the output signal is changed significantly in the regime
of switching between two states. However, in the context of
SR, it was found that suppression of higher harmonics of the
LF signal can be observed for a certain value of the noise
intensity [4–6]. In addition, it was shown that a sufficiently
strong noise may induce linearization in overdamped bistable
systems, which manifests itself in the fact that the ensemble-
averaged output signal may reproduce the input signal [13,14].
The effect of strong additive noise on the response of driven
bistable systems was also studied theoretically in the context of
checking the linear-response theory, where the suppression of
higher-order harmonics for the input signal of a large amplitude
was shown as well [15].

The generation of higher harmonics is a characteristic
feature of driven dynamical systems with a nonlinear transfer
function, and it can be observed in different fields. When the
transfer function has sharp nonlinearities, as, for instance, in a
bistable system in the switching regime induced by the periodic
modulation, the shape of the output signal will be different
from that of the input signal. This becomes especially apparent
in the case when the input signal is a sinusoid. This leads to
a generation of the ultraharmonics of the input signal (see,
for instance, [15]). Recently, it was shown that vibrational
resonance (VR) in a bistable vertical-cavity surface-emitting
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laser (VCSEL) with biharmonic excitation is accompanied by
the appearance of higher-order harmonics of the LF signal [16].
In the noiseless case, it shows up in the parameter space
(the level of asymmetry, the amplitude of a high-frequency
signal) as clear-cut structures with multiple local maxima on
the higher harmonics of the LF signal. This leads to strong
harmonic distortions in the transmission of the harmonic LF
signal through a bistable system in the regime of VR [16].
The phenomenon of VR is a deterministic analog of the
phenomenon of SR where noise is replaced by the high-
frequency (HF) signal [17]. This results in the resonancelike
behavior of the LF response of bistable systems depending
on the amplitude or the frequency of the HF signal. In fact,
the phenomenon of VR can be considered as a parametric
amplification near the bifurcation point corresponding to
the transition from bistability to monostability controlled by
the HF signal [18,19]. The phenomenon of VR has been
evidenced experimentally in bistable analog circuits [20] and
in a bistable VCSEL [21]. Further investigations have revealed
the phenomenon of VR in various nonlinear systems from
different fields. Specifically, the phenomenon of VR was
found and studied theoretically in neural systems of varying
complexity [22–25], coupled oscillators [26–29], a multistable
system with a periodic potential [30], delayed multistable
systems [31], fractional-order systems [32], and nonlinear
maps [33–35]. The generation of the second harmonic in VR in
a symmetrical bistable system was studied theoretically [36].

The effect of noise on VR was also studied in differ-
ent systems both theoretically [20,37–45] and experimen-
tally [39,40,46,47]. All of these studies concentrated on the
effect of noise on the first harmonic of the LF response of
nonlinear systems. The main finding in these investigations
is that the addition of noise results in a decrease in the LF
response amplitude, a broadening of the LF response curve,
and a shift of the optimal value of the HF amplitude as
the noise strength increases. In particular, scaling laws for
a noise-induced decrease of the gain factor, the signal-to-noise
ratio, and the shift of the optimal HF amplitude were found
theoretically for an overdamped bistable system and verified
experimentally in a VCSEL [39,40]. It is significant that the
regime of vibrational resonance leads to higher signal-to-noise
ratios than the regime of stochastic resonance [40,41].

1539-3755/2015/92(3)/032902(7) 032902-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.032902


V. N. CHIZHEVSKY PHYSICAL REVIEW E 92, 032902 (2015)

VCSEL PD A

PC

TC

+SG SG

S

HWP G

SG

FIG. 1. (Color online) Experimental setup. VCSEL, vertical cav-
ity surface emitting laser; HWP, half-wave plate; G, Glan’s prism; PD,
photodiode; A, amplifier; S, USB oscilloscope; PC, computer; SG,
signal generator; TC, thermocontroller.

Here, in contrast with previous studies, the effect of
noise on the higher-order harmonics in VR is investigated.
It is shown experimentally that an addition of some optimal
amount of noise in a bistable system suppresses nonlinear
distortions, or, in other words, harmonic distortions in VR
when the LF signal is the sinusoidal one. An experimental
study was performed in a bistable VCSEL driven by two
harmonic signals with frequencies differing by two orders
of magnitude. Throughout the paper, the nonlinear distortion
factor (NDF) is used for quantitative characterization of the
effect of noise. Two cases were studied. In the first one, the
amplitude of the HF signal was set nearly to the optimal value,
corresponding to the maximal response in VR, and harmonic
distortions were studied depending on the noise intensity and
the level of asymmetry of a bistable potential. In the second
set of experiments, the distortions were evaluated for the
symmetrical configuration of a bistable potential depending
on the amplitude of the HF signal and the noise intensity. The
experimental results obtained in a VCSEL are in agreement
with the results of the numerical simulation performed in the
model of the overdamped bistable oscillator with a biharmonic
excitation.

Investigations were performed on an experimental setup
similar to that recently used to study the resonant behavior
on higher-order harmonics in VR (Fig. 1) [16]. A 850-nm
VCSEL (Honeywell HFE4080-321) with a threshold current
Jth ≈ 5.6 mA was used. The temperature of the laser diode
was controlled to an accuracy of 0.01 ◦C. The measurements
were performed with the temperature of the laser diode set
to 17.5 ◦C. A half-wave plate and a Glan’s prism were used
to split the collimated laser emission into two polarization
components. The temporal laser responses on one selected
polarization were recorded by a fast photodiode and a USB
oscilloscope. Two harmonic signals from function generators
with frequencies fL = 0.5 kHz and fH = 50 kHz and different
amplitudes AL and AH were added to the dc current jdc.
Both driving frequencies are less than the cutoff frequency
of the amplitude-frequency characteristic of the polarization-
resolved laser response. The amplitude of the LF signal AL

was set to 7.5 mV. The Gaussian white noise from an arbitrary
waveform generator with a bandwidth of 2 MHz with different
amplitude σN (rms) was also added to the dc current. In
what follows, the noise strength is defined as Dexp = σ 2

N . The
parameters controlled from a computer during the experiments
were the dc current, the noise intensity, and the amplitude of
the HF periodic signal.

A theoretical description of the dynamics of the polarization
switchings induced by a deterministic modulation and noise in
the VCSEL can be performed in the framework of a Langevin
equation with a double-well potential [48,49]. This model is
widely used in studying noise-induced phenomena in different
fields. Therefore, the effect of noise on higher-order harmonics
in the phenomenon of VR was studied using the model of an
overdamped bistable oscillator. In this case, the equation reads

∂x

∂t
= −V ′(x) + AL sin 2πfLt + AH sin 2πfH t + ζ (t), (1)

where V ′(x) is the derivative with respect to x of a bistable
potential function V (x), fL and fH are low and high fre-
quencies, respectively, and ζ (t) is a white, Gaussian noise
with 〈ζ (t)ζ (t

′
)〉 = 2Dδ(t − t

′
) and mean 〈ζ (t)〉 = 0. We have

used a bistable potential function V (x) in the following form:
V (x) = x4 − 2x2 + �x, where � is a level of asymmetry. In
the simulation, we have used fL = 0.001 and fH = 0.1, which
are less than the intrawell relaxation frequency fr = 4/π in the
symmetrical configuration (� = 0) of a bistable potential. This
consideration corresponds to the adiabatic regime when both
periodic forces were very slow with respect to the intrawell
relaxation times.

The effect of noise on the higher harmonics of the LF signal
was investigated experimentally from the spectra of the Fourier
transformed time series of the laser intensity on the selected
polarization at the frequencies kfL (k = 1,2, . . . ,9) depending
on the noise intensity σ 2

N in a wide range of the dc current jdc

and the amplitude of the HF signal. Some typical amplitude
spectra for different values of σN are shown in Fig. 2 for the
case of the symmetrical configuration of the bistable potential.
In this case, only odd harmonics of the LF signal are observed.
One can see that some higher harmonics disappear as the
noise intensity increases [Fig. 2(b)]. For a certain value of the
noise intensity σ 2

N , all ultraharmonics of the LF signal vanish,
leading to the suppression of nonlinear distortions [Fig. 2(c)].

The response amplitude R
(k)
L at the frequencies kfL was

studied here versus the injection current jdc and the noise
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FIG. 2. (Color online) Experiment. Amplitude spectrum S(f ) of
the laser response on the selected polarization shown for three
different values of the noise intensity σ 2

N [jdc = 17.78 mA; σN =
0.005 (a), 0.075 (b), and 0.23 (c) V].
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FIG. 3. (Color online) Experiment. The laser response amplitude
Rk on the frequency fk = kfL (k = 1,2,3,5) vs the level of asymmetry
�jdc and the noise intensity σ 2

N .

intensity σ 2
N . The response amplitude R

(k)
L in the experimental

and numerical studies was estimated as the height of the peaks
in the spectra of the laser responses. Since the measurements
were performed with different noise intensities added to the LF
signal, the noise intensity at the frequency of ultraharmonics
as the interpolated level of the background was also measured.
Throughout the paper, the response amplitude was defined
as Rk = R

(k)
L − N

(k)
L , where k is the harmonic number of the

LF signal, R
(k)
L is the overall response, and N

(k)
L is the noise

background. Such an extraction of the noise component allows
one to evaluate the true values of the amplitudes of the LF
harmonics in the spectra of the output signal.

Harmonic distortions in VR were quantitatively character-
ized by the nonlinear distortions factor (NDF), which was
recently introduced in the noiseless case [16]. The NDF is
defined here as follows:

χ =
[

m∑
k=2

R2
k

]1/2/
R1, (2)

where Rk is a response amplitude of the kth harmonics. Both
in the experiment and in the simulation, the amplitudes of the
first nine harmonics (m = 9) were measured.

First, the effect of noise was studied for the case when
the amplitude of the HF signal was fixed and set close
to the optimal value (AH = 80 mV) respective to the
maximal response amplitude of the laser for the given
amplitude of the LF signal (AL = 7.5 mV). Figures 3 and 4
demonstrate experimental and numerical response amplitudes
Rk as a function of the added noise intensity and the level of
asymmetry (�jdc and �, respectively). The level of asymmetry
�jdc in the experimental studies is defined as �jdc = jdc −
jsym, where jdc is a current value and jsym is the value of jdc that
corresponds to the symmetrical configuration of the bistable
potential. The value of jsym is determined as a minimal value of
the switching amplitude of the HF periodic signals depending
on jdc. There is a close similarity between the experimental
and numerical results presented in Figs. 3 and 4, respectively.
Therefore, in what follows, both experimental and numerical
results are discussed together. Both Figs. 3 and 4 show the
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FIG. 4. (Color online) Simulation. The response amplitude Rk on
the frequency fk = kfL (k = 1,2,3,5) vs the level of asymmetry �

and the noise intensity D.

strong diminution and broadening of the response amplitudes
Rk upon increasing the noise intensity. However, the structure
of the response Rk on ultraharmonics is not changed due to
the fact that in the experiment and the simulation, we have
used noise with a zero mean, which does not change the
symmetry of the potential. The suppression of the response
amplitudes Rk occurs for the different optimal values of
the noise intensity. Figure 5 illustrates this fact for the case
of the symmetrical configuration of the bistable potential,
where the experimental and numerical results are directly
compared for the fixed optimal values of the HF amplitude,
showing a rather good agreement between them. In this figure,
the normalized noise intensity is used for both experimental
and numerical data. The normalized amplitude of the LF
signal is about 0.1 in units of the switching threshold for
this case. One can see from Fig. 5 that the optimal value
of the noise intensity for each ultraharmonics is different,
but more importantly the amplitude of the fundamental
harmonic (k = 1) still remains large enough, whereas all
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FIG. 5. (Color online) The normalized response amplitude
Rk,norm on the frequency fk = kfL (k = 1,3, . . . ,9) vs the normalized
noise intensity Dnorm for � = 0. Symbols, experiment; solid lines,
numerical simulation.
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FIG. 6. (Color online) Contour plot for the nonlinear distortion
factor χ versus the noise intensity σ 2

N (D) and the level of asymmetry
�jdc (�): (a) experiment and (b) simulation. Brightest colors
represent the highest NDFs.

other harmonics are suppressed. This means that the harmonic
LF signal can be transmitted in the regime of VR without
distortions with a rather high amplification of about 0.6 from
the maximal value of R1 in the noiseless case.

A quantitative characterization of the suppression is shown
in Figs. 6–8, where the coefficient of nonlinear distortion is
presented. The contour plot in Fig. 6 gives a general idea of
how the NDF depends on the noise intensity and the level of the
asymmetry of the bistable potential. In the absence of noise,
minimal distortions in VR are observed for the symmetrical
configuration of the bistable potential. The same can be said
when noise is added to the system. Figure 7 shows the NDF
depending on the level of asymmetry �exp(�) for different
values of the noise intensity σ 2

N (D). One can note good
qualitative agreement between experimental and numerical
results. Some asymmetry in the experimental results appears
due to the fact that the shapes of the wells of the bistable
potential in the experiment do not agree with the result showing
that the response amplitudes in the wells are different.

Figure 8 presents a quantitative characterization of the
noise-induced suppression of harmonic distortions where the
experimental and the numerical dependencies of χ (NDF)
as a function of the normalized noise intensity Dnorm are
shown together for different levels of asymmetry. One can
note good agreement between them. For a weak level of noise,
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FIG. 7. (Color online) The nonlinear distortion factor NDF (χ )
vs the level of asymmetry �jdc (�) shown for different values of the
level of noise σN (D): (a) experiment [σN = 0 (1), 0.046 (2), 0.15 (3),
and 0.32 (4) V] and (b) simulation [D = 0 (1), 0.006 (2), 0.037 (3),
and 0.122 (4)].
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FIG. 8. (Color online) The nonlinear distortion factor NDF (χ )
vs the normalized noise intensity Dnorm shown for three values of the
level of asymmetry �jdc (�): Symbols correspond to the experiment
[�jdc = −0.058 (1), −0.034 (2), and 0 (3) mA]; the solid lines are
the numerical results [� = −0.12 (1), −0.07 (2), and 0 (3)].

the NDF weakly decreases as the noise intensity increases.
For a moderate level of noise, the NDF linearly diminishes in
a semilog scale depending on the noise intensity until it reaches
the minimal value. In this region of noise intensity, the fitting
of experimental and numerical data yields χ ∼ D−γ , where
γ ≈ 0.49 (1), 0.36 (2), and 0.25 (3) for both experimental and
numerical data.

The numerical simulation revealed also that the optimal
value of the noise intensity Dopt corresponding to suppression
of harmonic distortions depends on the amplitude of the LF
signal ε defined as ε = AL/AL,th, where AL,th is the switching
threshold. Figure 9 demonstrates the dependencies of NDF for
different LF amplitudes as a function of the added level of
noise. The fitting of the numerical results shows that Dopt is
scaled as Dopt ∼ A

β

L, where β is a function of the LF amplitude.
In the range of AL ∈ [0.05,0.4], the value of β is ≈ 0.8, and
it decreases to β ≈ 0.57 in the range of AL ∈ [0.04,0.8]. The
value of β was evaluated on the level of χ ≈ 0.05.

The results presented above correspond to the case when
the HF amplitude was fixed close to the optimal value from the
standpoint of reaching the maximal response in the noiseless
case. In this case, minimal distortions are obtained for the
symmetrical configuration of the bistable potential. Previ-
ously [16] it was shown experimentally in the noiseless case
that for certain values of the HF amplitude, the suppression
of the higher harmonics occurs similar to the phenomenon of

−4 −3 −2 −1
0

0.1

0.2

0.3

0.4

log
10

 D

N
D

F

 

 

43210.1
0.2
0.4
0.8

FIG. 9. (Color online) Simulation. The NDF vs the noise inten-
sity D shown for different values of the normalized LF amplitude ε

[ε = 0.1 (1), 0.2 (2), 0.4 (3), and 0.8 (4)].
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FIG. 10. (Color online) The response amplitude Rk on the fre-
quency fk = kfL (k = 1,3,5) vs the amplitude AH of the HF signal
shown for different levels of noise σN (D) in the symmetrical
configuration of a bistable potential. Left column: experiment [σN =
0 (1), 0.0316 (2), 0.1 (3), and 0.215 (4) V]); right column: numerical
simulation [D = 0.001 (1), 0.05 (2), 0.09 (3), and 0.136 (4)].

noise-induced resonance [5]. Further, the influence of the HF
amplitude and the noise intensity on distortions is investigated
for this case. Figure 10 shows the response amplitude Rk

(k = 1,3,5) when the different amounts of noise are added. In
the noiseless case, the suppression of the third (R3) and fifth
(R5) harmonics is clearly seen in Figs. 10(b)–10(f) (curves 1)
for both experimental and numerical data having two-humped
and three-humped resonance curves, respectively, depending
on the HF amplitude. The number of humps increases upon
increasing the ultraharmonic numbers k [16]. The addition of
noise results in the broadening of the response curve on the
ultraharmonics, and it diminishes their amplitudes, but more
importantly, the amplitudes of the higher harmonics decrease
much faster than the response on the fundamental frequency
(k = 1) upon increasing the noise intensity. For large enough
noise intensity, the response on the ultraharmonics becomes
practically negligible. This fact results in a strong diminution
of harmonic distortions. A contour plot in Fig. 11 gives a
general view of the dependence of the NDF as a function
of the HF amplitude and the noise intensity. For all values
of AH in the VR region, one can see that noise suppresses
harmonic distortions. However, the minimal noise intensity
needed for the suppression is observed for the amplitude of
the HF signal beyond the maximal response of R1 in the
vicinity of the exceptional point for the third harmonic, where
its strong suppression occurs. In Fig. 12, several examples of
the dependence of NDF for certain fixed values of the noise
intensity are presented as a function of the amplitude of the
HF signal. Curve 3 in Figs. 12(a) and 12(b) corresponds to the
optimal value of the noise intensity for which the suppression
of harmonic distortions is observed close to the exceptional
point for the third harmonic of the LF signal. It should be
noted for this optimal value of the noise intensity that the
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FIG. 11. (Color online) The nonlinear distortion factor χ vs the
HF amplitude AH and the noise intensity σ 2

N (D): (a) experiment and
(b) simulation.

amplitude of the fundamental harmonic (k = 1) still remains
significant (approximately 0.6 from the maximal response of
R1 in the noiseless case). Comparing with the first case when
the amplitude of the HF signal was set close to the optimal
value, one can note that in both cases the amplification of the
LF signal is practically the same. The only difference is in the
optimal value of the noise intensity, which is slightly less for
the second case.

The results presented above clearly demonstrate a dis-
appearance of the higher-order harmonics induced by noise
when the amplitude of the HF signal is fixed to some value.
Presumably, the following inherent processes may clarify
the origin of such a suppression. First, the increase in the
intensity of additive noise results in a broadening of the
response curve at a fundamental frequency (k = 1) and a
shift of the critical HF amplitude, which corresponds to the
maximal response. This critical value can be associated with
a shifted bifurcation point for which the phenomenon of VR
occurs in the presence of noise. For a large enough level of
additive noise for which a complete suppression of higher
harmonics is observed, the system can be moved into the range
of parameters where bistability disappears and the response
of the system can correspond to the monostable one-well
system. It should be noted that a noise-induced shift of the
bifurcations to different values of the control parameter with
respect to their deterministic values is well known for nonlinear
dynamical systems, and it was demonstrated for different
types of bifurcations [50–53]. On the other hand, a strong
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FIG. 12. (Color online) The nonlinear distortion factor χ vs the
HF amplitude AH (�jdc = 0 and � = 0): (a) experiment [σn = 0.005
(1), 0.089 (2), 0.192 (3), and 0.34 (4) V] and (b) simulation [D =
0.01 (1), 0.055 (2), 0.11 (3), and 0.20 (4)].
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level of noise may result in the linearization of a nonlinear
transfer characteristic of the system. Linearization by noise is
a general effect, and it was studied in excitable systems [54,55]
and threshold systems with a static nonlinearity [56,57]. In
this case, additive noise reshapes the transfer function in
threshold systems, leading to linearization of the output. In
our case, this follows from an analysis of the experimental
and numerical dependencies of the response of the bistable
system to the effect of a single periodic modulation depending
on its amplitude in the absence and presence of additive noise
with different amplitudes. In this case, a sharp dependence in
the vicinity of the bifurcation point is replaced by a smoother
dependence of the response on the amplitude of the periodic
modulation. This leads to a decrease in the amplitudes of
higher-order harmonics. Therefore, the interplay between the

noise-induced shift of the bifurcation point and the effect of the
linearization may result in the suppression of the higher-order
harmonics.

To conclude, we have presented experimental and numeri-
cal results that demonstrate that the addition of the optimal
amount of noise results in the suppression of vibrational
higher-order harmonics in a bistable system with biharmonic
excitation. The same approach can be extended to the arbitrary
LF signal when the highest frequency in the spectrum of the
LF signal will be less than the cutoff frequency of the bistable
system. The results presented here can also be useful from
the point of view of the optimization of the transmission of
the harmonic signal through bistable systems or the network
of bistable systems without distortions in the regime of
vibrational resonance with a rather high amplification.
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Hänggi, Fluct. Noise Lett. 2, L127 (2002).
[16] V. N. Chizhevsky, Phys. Rev. E 90, 042924 (2014).
[17] P. S. Landa and P. V. E. McClintock, J. Phys. A 33, L433 (2000).
[18] I. I. Blekhman and P. S. Landa, Int. J. Non-Linear Mech. 39,

421 (2004).
[19] V. N. Chizhevsky, Int. J. Bifurcation Chaos 18, 1767 (2008).
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