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Thermodynamic characterization of networks using graph polynomials
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In this paper, we present a method for characterizing the evolution of time-varying complex networks by
adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic)
characterization of graph structure. Commencing from a representation of graph structure based on a characteristic
polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the
Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for
the network, including the average energy and entropy. Assuming that the system does not change volume,
we can also compute the temperature, defined as the rate of change of entropy with energy. All three
thermodynamic variables can be approximated using low-order Taylor series that can be computed using the
traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum.
These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed
in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic
variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and
node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to
real-world time-varying networks representing complex systems in the financial and biological domains. The
study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing
different stages in network evolution.
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I. INTRODUCTION

There has been a vast amount of effort expended on
the problems of how to represent networks, and from this
representation derive succinct characterizations of network
structure and, in particular, how this structure evolves with
time [1–3]. Broadly speaking, the representations and the
resulting characterizations are goal directed, and have centered
around ways of capturing network substructure using clusters,
or notions such as hubs and communities [4–7]. Here, the
underlying representations are based on the connectivity struc-
ture of the network or statistics that capture the connectivity
structure such as degree distributions [8,9].

A more principled approach is to try to characterize the
properties of networks using ideas from statistical physics
[10,11]. Here, the network can be succinctly described using a
partition function, and thermodynamic characterizations of the
network such as entropy, total energy, and temperature can be
derived from the partition function [12–14]. For example, by
interpreting the subgraph centrality as a partition function of
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a network, the entropy, internal energy, and the Helmholtz
free energy are defined using spectral graph theory and
various relations between these thermodynamic variables can
be obtained [15]. However, to embark on this type of analysis,
the microstates of the network system must be specified and a
clear interpretation of the network thermodynamics provided.
This approach has provided some deep insights into network
behavior. For instance, in the work [16], the Bose-Einstein
partition function is used to model a Bose gas on a network, and
the process of Bose condensation and its quantum mechanical
implications have been studied. This model has also been
extended to understand processes such as supersymmetry in
networks [17].

However, in this context the representation of the network
stems from a physical analogy, in which the network provides
a Hamiltonian whose eigenstates are occupied according to
Bose-Einstein statistics subject to Boltzmann thermalization.
Although this type of physical analogy is useful, it does not
link directly to the types of representation studied in the graph-
theory literature.

A. Related literature

Two of the most effective approaches adopted by graph
theorists include spectral graph theory and algebraic graph
theory [18,19]. These two approaches are intimately related.
Both commence from a matrix representation of a graph.
In the case of spectral graph theory, it is the eigenvalues
and eigenvectors of the matrix that are of interest [20,21].
In algebraic graph theory, a characteristic polynomial is
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computed from the determinant of the identity matrix minus a
multiple of the matrix. The coefficients of this polynomial
are determined by symmetric polynomials of the matrix
eigenvalues and they provide many useful graph invariants.
For example, the coefficients of the Laplacian characteristic
polynomial are related to the number of spanning trees and
spanning forests in a graph, and particularly, for certain graphs
in (a,b)-linear classes, the coefficients can be simply expressed
in terms of number of nodes in the graph [22]. Spectral methods
have been exploited directly and with great effect in complex
networks and machine learning. Much of this is due to the close
links between graph spectra and random walks on networks.
For instance, the heat equation, which governs the behavior of
a continuous time random walk on a network, has been used
to model information flow on networks [23]. However, there
has been less interest in the algebraic approach. This may be
something of an oversight since there are strong links between
algebraic graph theory and number theory, and results from
algebraic graph theory can be used to construct important
invariants that can be used to probe network structure. For
instance, the Laplacian matrix can be used to construct a zeta
function, which can be viewed as an analog of the Riemann
zeta function from number theory [24]. This zeta function is
in fact the moment generating function for the heat kernel, and
its derivative at origin is linked to the number of spanning trees
contained in a network [25]. The Ihara zeta function, which is
derived from a characteristic polynomial for the oriented line
graph of a network, can be used to determine the distribution
of prime cycles of various length in a network and is also
closely linked to the evolution of a discrete time quantum
walk on a network [26–28]. This latter type of representation
has been shown to lift some of the problems in cospectrality
of networks encountered if conventional spectral methods are
used.

B. Overview

The aim in this paper is therefore to establish a link between
characteristic polynomials from algebraic graph theory and the
thermodynamical analysis of networks. Our characterization
commences from the Boltzmann partition function Z(β) =
tr(exp{−βĤ }) where Ĥ is the Hamiltonian associated with
the graph and β = 1/kT with k the Boltzmann constant and T

the temperature. The Hamiltonian is the total energy operator,
which can be defined in a number of ways. For instance, in
quantum mechanics the choice dictated by the Schrödinger
equation is Ĥ = −∇2 + U (r,t), where ∇2 is the Laplacian
and U (r,t) the potential energy operator. For a graph, if we
specify the node potential energy as the degree matrix, i.e.,
U (r,t) = D and replace the Laplacian by its combinatorial
counterpart L = D − A, where A is the adjacency matrix,
then Ĥ = A. This choice of Hamiltonian is often used in the
Hückel molecular orbital (HMO) method [29]. An alternative
is to assume a graph is immersed in a heat bath with the
eigenvalues of its normalized Laplacian matrix as the energy
eigenstates. In this case, we set the potential energy operator
U (r,t) to zero, and can identify ∇2 with the graph normalized
Laplacian, i.e., Ĥ = −L̃ = −D−1/2(D − A)D−1/2.

With this choice of Hamiltonian and hence partition
function, the energy associated with the graph is E =

−∂ ln Z(β)/∂β = −∑
i pi λ̃i , where λ̃i denote the eigenval-

ues of L̃ and pi = exp{βλ̃i}/
∑

i exp{βλ̃i}, i.e., a weighted
average of the normalized Laplacian eigenvalues, where
the weights associated with the individual eigenvalues are
determined by the Boltzmann occupation probabilities. The
entropy is given by S = k{ln Z(β) + βE}.

We characterize the graph using the Ihara zeta function
R(β) = det(I − βL̃). We show in our analysis that Z(β) �
− ln R(β) + N , where N is the graph size and as a result both
the energy and entropy can be expanded as power series in
β. The leading coefficients of the two series are determined
by the sum of the reciprocal of the degree products for nodes
forming edges and triangles in the graph. The coefficients
of the increasing powers of β depend on the frequencies
increasingly large substructures. The higher the degrees of
the nodes forming these structures, the smaller the associated
weight. Hence, high degree structures are energetically more
favorable than low degree ones (because they have lower
reciprocal of the degree product). Also, larger structures are
also energetically more favorable.

The expressions derived for energy and entropy of the
network depend only on the assumed model for Hamiltonian
of the system, and the approximations needed to express the
partition function in terms of the characteristic polynomial
associated with the normalized Laplacian of the graph. Hence,
the energy and entropy can be used as a characterization of
structure for any set of networks. However, in our experiments
we study the time evolution of networks with fixed numbers of
nodes. This is not an entirely uncommon situation, and arises
where networks are used to abstract systems with a known
set of states or components. In the financial network example,
the nodes are stock traded over a 6000-day period, and in the
second example the nodes represent genes expressed by fruit
flies at different stages in their development. In this setup we
require a natural way of measuring fluctuations in network
structure with time.

For a thermodynamic system with freedom to vary its
volume, temperature, and pressure, the change in internal
energy is given by dE = T dS − PdV + mdN where T is
the temperature, P the pressure, dV the change in volume,
m the particle mass, and dN the change in the number of
particles. When the number of particles and volume are fixed,
we have an isochoric process, and the temperature is the
rate of change of energy with entropy. With the expressions
for these two quantities derived from the partition function,
the isochoric temperature is also determined by a simple
expression involving the frequencies of edges and triangles
of different degree configuration. One way to picture this
system is a thermal distribution across the energy states
corresponding to the normalized Laplacian eigenvalues. Large
changes in temperature are hence associated with (a) large
changes in the number of triangles compared to the number
of edges, and (b) when the average degree of the nodes
changes significantly. Hence, the temperature fluctuation
between graphs in a sequence is sensitive to changes in
internal structure of the network. We show that our method
in fact smooths the time dependence of the thermody-
namic characterization, so we present the global thermody-
namic analysis in a computationally efficient and tractable
way.
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So, to summarize, we present a method motivated by ther-
modynamics for characterizing time sequences of networks.
Although it is not a model of network evolution, it may provide
the building blocks for such a model. The approach has some
similarities to that reported by Javarone and Armano [11] who
use the classical limits of quantum models of gases as analogs
to analyze complex networks. However, rather than using the
classical Boltzmann distribution and the normalized Laplacian
characteristic polynomial as the basis of their model, they base
their model on a fermionic system. Finally, we note that the
notion of temperature used in our work is not the physical
temperature of the system, but a means of gauging fluctuations
in network structure with time.

The remainder of the paper is structured as follows. In
Sec. II, we first show how the Boltzmann partition function
is linked to the characteristic polynomial of the normalized
Laplacian matrix of graphs. With this to hand, we then
provide a detailed account of the development of a number of
thermodynamic variables of networks, i.e., the average energy,
thermodynamic entropy, and temperature. In Sec. III, we apply
the resulting thermodynamic characterization to a number of
real-world time-varying networks, including the New York
Stock Exchange (NYSE) data and the fruit fly life cycle gene
expression data. Finally, in Sec. IV, we conclude the paper and
make suggestions for future work.

II. THERMODYNAMIC VARIABLES
OF COMPLEX NETWORKS

In this section, we provide a detailed development of
how we compute thermodynamic quantities for a network,
including the thermodynamic entropy, average energy, and
temperature, commencing from a characteristic polynomial
representation of network structure. First, we provide some
preliminaries on how graphs can be represented using the nor-
malized Laplacian matrix. We then explain how the Boltzmann
partition function can be used to describe the thermalization
of the population of the energy microstates of network as
represented by its Hamiltonian. The key step in establishing
our thermodynamic characterization of network evolution is
to show a relationship between the partition function and
the characteristic polynomial for the network. Normally, the
thermalization process arises via the analogy of immersing the
network in heat bath, with the adjacency matrix eigenvalues
playing the role of energy eigenstates and the thermal popu-
lation of the energy levels being controlled by the Boltzmann
distribution. Here, we aim to make a connection between the
heat bath analogy and an alternative graph representation based
on a characteristic polynomial. This is a powerful approach
since there are several alternative matrix representations of
graphs, and their characteristic polynomials together with
the closely related zeta-function representations have been
extensively studied in graph theory [26–28]. Our approach
therefore allows these potentially rich representations to be in-
vestigated from the thermodynamic perspective. Specifically,
we show how the partition function can be approximated by
the characteristic polynomial associated with the normalized
Laplacian matrix for the network. This picture of the heat bath
emerges when the Hamiltonian is the negative normalized
Laplacian. From this starting point and using the network

partition function approximation, we derive the expressions
for the network average energy and entropy, and under
the assumption of constant volume determine the network
temperature by measuring fluctuations in entropy and average
energy. We show for networks of approximately constant size,
each of these thermodynamic quantities can be computed using
simple network statistics, including the number of nodes and
node degree statistics.

A. Initial considerations

Let G(V,W ) be an undirected graph with node set V and
edge set W ⊆ V × V , and N = |V | is the total number of
nodes. The adjacency matrix A of graph G is defined as

Auv =
{

1 if (u,v) ∈ W,

0 otherwise. (1)

The degree of node u is du = ∑
v∈V Avu.

Then, the normalized Laplacian matrix L̃ is defined as L̃ =
D−1/2LD−1/2 where L = D − A is the Laplacian matrix and
D denotes the degree diagonal matrix whose elements are
given by D(u,u) = du and zeros elsewhere. The elementwise
expression of L̃ is

L̃uv =

⎧⎪⎨
⎪⎩

1 if u = v and dv �= 0,

− 1√
dudv

if u �= v and (u,v) ∈ W,

0 otherwise.

(2)

The normalized Laplacian matrix L̃ and its spectrum yield a
number of very useful graph invariants for a finite graph. For
example, the eigenvalues for the graph normalized Laplacian
are real numbers, bounded between 0 and 2. Moreover, the
multiplicity of zero eigenvalue of L̃ is the number of connected
components in a graph G while the multiplicity of eigenvalue
equal to 2 is the bipartite connected component number in G

(G has at least two nodes) [18].

B. Boltzmann partition function

In statistical mechanics, the canonical partition function
associated with the Boltzmann factor of a system is

Z =
∑

i

e−βEi , (3)

where β = 1/kT is proportional to the reciprocal of the
temperature T with k the Boltzmann constant, and Ei denotes
the total energy of the system when it is in microstate i.
Moreover, the partition function can be formalized as a trace
over the state space:

Z(β) = tr(exp{−βĤ }), (4)

where Ĥ is the Hamiltonian operator and exp{. . .} represents
the matrix exponential.

The Hamiltonian operator of a graph may be defined in a
number of ways. In quantum mechanics, one choice dictated
by the Schrödinger equation is

Ĥ = −∇2 + U (r,t).

If we set the potential energy operator U (r,t) to zero, we can
identify ∇2 with the graph Laplacian in either its combinatorial
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or normalized form. With this choice we obtain

Ĥ = −L

or

Ĥ = −L̃. (5)

Alternatively, we can specify the node potential energy
operator as the degree matrix, i.e., U (r,t) = D, with the result
that

Ĥ = A.

This choice of Hamiltonian is often used in Hückel molecular
orbital (HMO) method [29]. Generally, in this case Ĥ = c1I +
c2A where A is the adjacency matrix of a graph representing
the carbon skeleton of the molecule and c1,c2 are constants.

In our analysis, we let the Hamiltonian operator Ĥ = −L̃

as in Eq. (5), as a result, the Boltzmann partition function takes
the form

Z(β) = tr(exp{βL̃}). (6)

Although most of the aggregate thermodynamic variables of
the system, such as the average energy and entropy, can be
expressed in terms of the partition function or its derivatives,
deriving expressions for these variables directly from Eq. (6)
can be computationally difficult. A more convenient route
is to adopt an alternative graph representation based on a
characteristic polynomial. In this way, we approximate the
Boltzmann partition function so that the computation for
thermodynamic variables can be simplified.

It is important to stress that making use of the statistical
mechanical analysis usually requires a specification of the
microscopic configurations of a thermodynamic system to-
gether with a clear physical interpretation of their meaning.
In this paper, we do not dwell on the microstates of the
thermodynamic system arise or how they are populated.
Briefly, our Hamiltonian is the negative of the normalized
Laplacian, and one physical interpretation of our model would
be of a graph immersed in a heat bath with the normalized
Laplacian eigenvalues as energy eigenstates. The graph is
subject to thermalization via the Boltzmann distribution. Our
main concern is though to understand how to approximate
the partition function of the resulting system so as to render
thermodynamic analysis tractable. Although we do define
a Hamiltonian for the system, our basic representation of
the graph is in terms of the characteristic polynomial. We
show how the characteristic polynomial can be used to
approximate the Boltzmann partition function when the graph
is immersed in a heat bath. Here, the polynomial coefficients
are themselves symmetric polynomials of the normalized
Laplacian eigenvalues, and the polynomial variable is linked
to the temperature of the heat bath. As we will show in
our experiments, this approximation effectively smooths the
time dependence of the network evolution, by allowing the
thermodynamic variables to be approximated by low-order
polynomials.

C. Characteristic polynomial of normalized Laplacian matrix

The characteristic polynomial of the normalized Laplacian
matrix L̃ of a graph, denoted by Pch(x), is the polynomial

defined by

Pch(x) = det(xI − L̃), (7)

where I indicates the identity matrix and x is the polynomial
variable.

At this point, it is worth noting that polynomial characteri-
zations are also central to the definition of various types of zeta
function of a graph. For instance, the determinant expression
for the reciprocal of the Ihara zeta functions of a graph G [27]
is

ζ−1(x) = det(I − xB), (8)

where B is the Hashimoto’s edge adjacency operator on
the oriented line graph of G. By replacing the Hashimoto
operator with the normalized Laplacian operator B = L̃, we
immediately obtain

ζ−1(x) = det(I − xL̃). (9)

Therefore, the characteristic polynomial of the normalized
Laplacian matrix and the above zeta function of graph G are
related by

Pch(x) = xN det

(
I − 1

x
L̃

)
= xNζ−1

(
1

x

)
,

where N is the number of nodes in graph G.
Here, we use R(x) to denote the Ihara-zeta-function deter-

minant det(I − 1
x
L̃) and refer to it as the quasicharacteristic

polynomial of the normalized Laplacian matrix. To show that
R(x) can be employed as an efficient tool for approximating
the Boltzmann partition function in Eq. (6), we first note that
for a square matrix M , the determinant can be calculated by

det(M) = exp{tr(ln M)}.
Thus, we have

R(x) = exp

{
tr

[
ln

(
I − 1

x
L̃

)]}
. (10)

Recalling the classical Mercator series for the matrix logarithm
of I + M

ln(I + M) = M − M2

2
+ M3

3
− · · · , ρ(M) < 1

where ρ(M) indicates the spectral radius of M , which is equal
to the largest absolute value of the eigenvalues of M . Since
the normalized Laplacian matrix has eigenvalues between 0
and 2 [18], the matrix Mercator series holds if and only if
ρ( 1

x
L̃) < 1, i.e., | 1

x
| < 1

2 .
To develop these ideas one step further, if we let 1

x
= β, the

quasicharacteristic polynomial of the normalized Laplacian
matrix can then be expressed as

R(β) = exp
{
tr
(−βL̃ − 1

2β2L̃2 − 1
3β3L̃3 − · · · )}. (11)

Moreover, using the first-order MacLaurin formula to expand
the matrix exponential, i.e.,

exp M = I + M + M2

2!
+ M3

3!
+ · · · ,

where M is an arbitrary square matrix, we can immediately
rewrite the Boltzmann partition function (6) in the following
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way:

Z(β) = tr

(
I + βL̃ + 1

2!
β2L̃2 + 1

3!
β3L̃3 + · · ·

)
. (12)

By comparing the expressions in Eqs. (11) and (12), the
Boltzmann partition function can then be calculated from the
quasicharacteristic polynomial of the normalized Laplacian
matrix as follows:

Z(β) = tr(I ) + tr

(
βL̃ + 1

2!
β2L̃2 + · · ·

)
= N − ln R(β) + r(β), (13)

where r(β) denotes the residual. More explicitly, the residual
is computed by

r(β) =
∞∑

n=3

(
1

n!
− 1

n

)
βntr(L̃n)

= −
∞∑

n=3

βn

n

[
1 − 1

(n − 1)!

]
tr(L̃n)

= −β3

6
tr(L̃) − 5β4

24
tr(L̃2) − · · · .

As a result, when |β| takes on a small value, we have

lim
β→0

r(β)

ln R(β)
= 0,

i.e., r(β) = o[ln R(β)]. This implies that the partition function
is approximately equal to the negative of natural logarithm of
the quasicharacteristic polynomial plus a constant:

Z(β) � − ln R(β) + N. (14)

To conclude this section, it is worth discussing the validity
of the above approximation. We have shown that the require-
ments (a) |β| < 1

2 and (b) r(β) = o[ln R(β)] are essential to
making this approximation valid, which implies that the value
of β must be small. In Sec. III, we will provide an empirical
analysis showing that this condition is well satisfied for a
number of real-world complex networks.

D. Thermodynamic variables of complex networks

For thermodynamics, a thermodynamic state of a system
can be fully described by an appropriate set of principal
parameters known as thermodynamic variables. These include
the average energy, entropy, and temperature. In this section,
we give a detailed development showing how these thermo-
dynamic state variables are derived from the approximate
partition function and how they can be computed via simple
network statistics.

To commence, we recall that given a partition function
Z(β), the average energy E of a system G is obtained by
taking the partial derivative of the logarithm of the partition
function with respect to β, i.e.,

E(G) = −∂ ln Z(β)

∂β
. (15)

Moreover, the thermodynamic entropy S is obtained by

S(G) = k{ln Z(β) + βE(G)}, (16)

where k denotes the Boltzmann constant.

1. Temperature

The thermodynamic temperature T measures fluctuations
in network structure with time. More specifically, suppose
that G1 and G2 represent the structure of a time-varying
system at two consecutive epochs t1 and t2, respectively. For
a thermodynamic system of constant number of particles,
we recall the fundamental thermodynamic relation dE =
T dS − PdV , where P and V denote the pressure and volume,
respectively. The volume is a concept generally considered in
the context of ideal gases and many thermodynamic processes
could result in a change in volume. Here, we consider the
network under study G as a closed system and from G1 to G2

it undergoes a constant-volume process (isochoric process)
during which the system volume remains constant.

It is important to stress that this equation holds and is
valid for both reversible and irreversible processes for a closed
system since E, T , S, P , and V are all state functions and are
independent of thermodynamic path. As a result, for the path
from G1 to G2 we have dV = 0 and dE = T dS. For example,
when an ideal gas undergoes an isochoric process, and the
quantity of gas remains constant, then the energy increment is
proportional to the increase in temperature and pressure. As a
result, the reciprocal of the temperature T is the rate of change
of entropy with average energy, subject to the condition that
the volume and number of particles are held constant, i.e.,

1

T (G1,G2)
= dS

dE
= S1 − S2

E1 − E2
. (17)

This definition can be applied to evolving complex networks
which do not change significantly in size during their evolu-
tion.

To further develop the temperature expression, we first
compute the change in entropy

S1 − S2 = k{ln Z1(β) + βE1(G)} − k{ln Z2(β) + βE2(G)}

= k

{
ln

Z1

Z2
+ β(E1 − E2)

}
. (18)

Note that, in our development, the partition function is
approximated by Z(β) � − ln R(β) + N . Therefore, we have

ln
Z1

Z2
� ln

N − ln R1

N − ln R2

= ln N + ln

(
1 − 1

N
ln R1

)

− ln N − ln

(
1 − 1

N
ln R2

)

= ln

(
1 − 1

N
ln R1

)
− ln

(
1 − 1

N
ln R2

)
.

The term 1
N

ln R is close to zero since we assume that |β|
is small. As a result, using the Mercator series, we obtain
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ln(1 − 1
N

ln R) � − 1
N

ln R, leading to the result that

ln
Z1

Z2
� − 1

N
ln R1 + 1

N
ln R2

= 1

N
ln

R2

R1
= 1

N
ln

(
1 + R2 − R1

R1

)

� 1

N

R2 − R1

R1
, (19)

where R2 − R1 is the difference between the values for the
quasicharacteristic polynomial R(β) at times t1 and t2.

Next, we calculate the energy

E(G) � −∂ ln(N − ln R)

∂β

= − 1

N − ln R

∂(N − ln R)

∂β

= 1

N − ln R

∂ ln R

∂β

= − 1

N − ln R

∞∑
n=1

βn−1tr(L̃n). (20)

Since the value for β is always small, then ln R(β) � N , and
as a result the average energy expression is

E(G) = − 1

N

∞∑
n=1

βn−1tr(L̃n). (21)

As a result, the difference between network energy E at times
t1 and t2 is

E(G1) − E(G2) = E1 − E2 = − 1

N
[P1(β) − P2(β)], (22)

where P (β) = ∑∞
n=1 βn−1tr(L̃n).

Then, we compute the temperature using Eq. (17), with the
result that

1

T (G1,G2)
= k{ln Z1

Z2
+ β(E1 − E2)}
E1 − E2

� kβ − k

R2
R1

− 1

P1 − P2
. (23)

Both the quasicharacteristic polynomial R(β) and the polyno-
mial P (β) can be expanded as power series, expressed as sums
of traces of the powers of the normalized Laplacian matrix of
the network. Expanding the two polynomials to third order
requires the following traces:

tr(L̃) = N,

tr(L̃2) = N + J, (24)

tr(L̃3) = N + 3J − Q,

where

J =
∑
u,v

Auv

dudv

and

Q =
∑
u,v,w

AuvAvwAwu

dudvdw

,

respectively [30,31]. Expanding R(β) to third order, we find

R2

R1
= exp

{
tr
(−βL̃2 − β2

2 L̃2
2 − β3

3 L̃3
2

)}
exp

{
tr
(−βL̃1 − β2

2 L̃2
1 − β3

3 L̃3
1

)}
= exp

{
β[tr(L̃1) − tr(L̃2)] + β2

2

[
tr
(
L̃2

1

) − tr
(
L̃2

2

)] + β3

3
[tr(L̃3

1) − tr(L̃3
2)]

}

= exp

{
β2

2
(J1 − J2) + β3

3
[3(J1 − J2) − (Q1 − Q2)]

}
. (25)

Similarly, for P (β) we obtain

P1 − P2 = β(J1 − J2) + β2[3(J1 − J2) − (Q1 − Q2)]. (26)

As a result, the reciprocal of the temperature is given by

1

T (G1,G2)
= kβ + k

1 − exp
{

β2

2 (J1 − J2) + β3

3 [3(J1 − J2) − (Q1 − Q2)]
}

β(J1 − J2) + β2[3(J1 − J2) − (Q1 − Q2)]
. (27)

Since T = 1/kβ, the second term on the right-hand side must vanish. As a consequence, we have that

β2

2
(J1 − J2) + β3

3
[3(J1 − J2) − (Q1 − Q2)] = 0. (28)

First, when J1 − J2 = Q1 − Q2 = 0, i.e., graphs G1 and G2 are identical, T = 1/kβ holds. In other words, there are no structural
differences between graphs G1 and G2. A second trivial solution is obtained by β = 0, implying that the temperature T = 1/kβ

goes to infinity. Finally, the nontrivial solution is

β = − 3(J1 − J2)

6(J1 − J2) − 2(Q1 − Q2)
, (29)
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which leads to the following expression for the temperature:

T (G1,G2) = 1

kβ
= −2

k
+ 2

3k

Q1 − Q2

J1 − J2
. (30)

Here, J1 − J2 and Q1 − Q2 represent the change in quantities
J and Q when graph G1 evolves to G2, respectively:

J1 − J2 =
∑

u1,v1∈V1

Au1v1

du1dv1

−
∑

u2,v2∈V2

Au2v2

du2dv2

, (31)

Q1 − Q2 =
∑

u1,v1,w1∈V1

Au1v1Av1w1Aw1u1

du1dv1dw1

−
∑

u2,v2,w2∈V2

Au2v2Av2w2Aw2u2

du2dv2dw2

. (32)

The temperature measures fluctuations in the internal
structure of the time-evolving network, and depends on the
ratio of total change of degree statistics for nodes that form
triangles and for nodes connected by edges in the network.
This is a direct consequence of the fact that we have truncated
our series expansion of the partition function with third
order. If we had continued the expansion to higher order,
then the temperature would reflect this and contain terms
in the numerator and denominator corresponding to changes
in the number of cliques of size larger than 3. By adjusting
temperature in this way, we take account of fluctuations from
the expected value of temperature T = 1/kβ. When combined
with the polynomial approach, this has the effect of smoothing
the time dependence of the thermodynamic representation.

2. Energy and entropy

Finally, in order to calculate the network average energy,
we substitute the obtained β into Eq. (21) and again remove
the terms that have powers larger than 3, with the result that

E(G) = − 1

N
[N + β(N + J ) + β2(N + 3J − Q)]. (33)

Similarly, for the thermodynamic entropy, we have

S(G) = k{ln Z(β) + βE(G)}
� k{ln(N − ln R) + βE}

� k

{
ln N − 1

N
ln R + βE

}

= k

{
ln N − 1

N

∞∑
n=1

(
1 − 1

n

)
βntr(L̃n)

}
,

and expanding to third order,

S(G) = k ln N − k

N

[
β2

2
(N + J ) + 2β3

3
(N + 3J − Q)

]
.

(34)

In order to obtain a better understanding of these network
thermodynamic measures, it is interesting to explore how
the average energy and entropy are bounded for graphs of
a particular size, and in particular which topologies give the
maximum and minimum values of the energy and entropy (we
consider connected graphs only).

From Eqs. (33) and (34), when the quantity J is minimal
and quantity Q reaches its maximal value, both the energy and
the entropy reach their maximum values. This occurs when
each pair of graph nodes is connected by an edge, and this
means that the graph is complete. On the other hand, when
J and Q, respectively, take on their maximal and minimal
values, the energy and entropy reach their minimum values.
This occurs when the structure is a string.

The maximum and minimum average energies and en-
tropies corresponding to these cases are as follows. For a
complete graph Kn, in which each node has degree n − 1,
we have that

E(Kn) = −
[

1 + n

n − 1
β + n2

(n − 1)2
β2

]

and

S(Kn) = k ln n − k

[
n

2(n − 1)
β2 + 2n2

3(n − 1)2
β3

]
.

Turning our attention to the case of a string Pn (n � 2), in
which two terminal nodes have degree 1 while the remainder
have degree 2, we have that

E(Pn) = −
[

1 + 3n + 1

2n
β + 5n + 3

2n
β2

]

and

S(Pn) = k ln n − k

[
(3n + 1)

4n
β2 + (5n + 3)

3n
β3

]
.

As a result, the average energy and entropy of graphs with N

nodes are bounded as follows:

−
[

1 + 3N + 1

2N
β + 5N + 3

2N
β2

]

� E(G) � −
[

1 + N

N − 1
β + N2

(N − 1)2
β2

]
, (35)

k ln N − k

[
(3N + 1)

4N
β2 + (5N + 3)

3N
β3

]

� S(G) � k ln N − k

[
N

2(N − 1)
β2 + 2N2

3(N − 1)2
β3

]
,

(36)

where the lower bounds are achieved by strings, while the
upper bounds are obtained for complete graphs.

There are a number of points to note concerning the
development above. One of the most fundamental aspects of
the presented thermodynamic measurements is the interplay
between quantities J and Q. The first represents the direct
connections of nodes (also known as generalized Randić
indices [32]), while the second is related to the number of
triangles. Both measurements are weighted by their joint
degrees.

To provide a deeper intuition concerning the physical
meaning of our thermodynamic analysis in terms of changes in
graph structure, we provide some examples. We commence by
considering a regular graph with N nodes in which each node
has the same degree m (N · m must be an even number). In
this case, the quantity J is the sum of existing edges weighted
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by the network average degree m:

Jreg = N

m
.

This result holds for both trees and cyclic n-dimensional
lattices. On the other hand, the calculation of Q depends on the
nature of the connections for the regular networks. For lattices
connecting nodes at distance d = 1 (first neighborhood) and
for all trees, Qreg = 0 (since there are no triangles). For other
regular networks the value of Q depends on the number of
triangles in the network Ntri, i.e.,

Qreg = 6Ntri

m3
.

The multiplicative factor 6 is needed as the summation in
the equation of Q considers each edge (u,v) two times, also
because the summation is taken over all edges, and each
triangle is counted three times. Moreover, when the regular
network is a lattice of neighborhood distance d � 2,

Qreg(d) = 2NNtri(d)

m3
,

where Ntri(d) is the number of triangles of each repeated
element. Finally, for the cyclic 1D lattice with connection
distance d, the number of triangles each node participates is
given by Ntri(d) = 3(d − 1)[(d − 1) + 1]/2 = 3d(d − 1)/2,
the average degree is m = 2d, thus, the quantity Q is evaluated
as follows:

Qlat-1D(d) = 3(d − 1)

8d3
.

As noted earlier, this analysis is based on a power series
expansion of the partition function up to order 3. Clearly,
to develop a realistic thermodynamic model for structures in
which triangles are absent by reason of construction, then
the expansion should be taken to higher order. Unfortunately,
this renders analysis of the traces appearing in the partition
function in terms of degree statistics intractable [30,31]. An
alternative would be to use the Ihara zeta function [26] as a
network characterization. Here, the underlying characteristic
is computed from the adjacency matrix of the oriented line
graph for a network. The polynomial coefficients are related
to the numbers of prime cycles of varying length in a network
[27].

To summarize, in this section we have proposed a method
for characterizing the evolution of complex networks by em-
ploying thermodynamic variables. Specifically, we commence
from a quasicharacteristic polynomial of the normalized
Laplacian matrix of a network and show this polynomial can
be used as a tool for approximating the Boltzmann partition
function on the network, when we identify Hamiltonian
operator with the normalized Laplacian operator. Then, using
the approximate network partition function, we develop the
expressions for the network average energy and entropy.
The thermodynamic temperature measures fluctuations via
the changes in the connectivity pattern of the network, and
is determined by the distribution of node degree. We show
that these thermodynamic variables are expressed in terms of
simple network features, including the number of nodes and
the degree statistics for connected nodes.

III. EXPERIMENTS AND EVALUATIONS

We have derived expressions for the thermodynamic
entropy, average energy, and temperature of time-evolving
complex networks. In this section, we explore whether the
resulting characterization can be employed to provide a
useful tool for better understanding the evolution of dynamic
networks. Specifically, we aim at applying the thermodynamic
method to a number of real-world time-evolving networks
in order to analyze whether abrupt changes in structure
or different stages in network evolution can be efficiently
characterized. In this section, to simplify the calculation, we
let the Boltzmann constant k = 1.

A. Data sets

We commence by giving a brief overview of the data sets
used for experiments here. We use two different data sets: both
are extracted from real-world complex systems.

Data set 1. Is extracted from a database consisting of
the daily prices of 3799 stocks traded on the New York
Stock Exchange (NYSE). These data have been well analyzed
in Ref. [33], which has provided an empirical investigation
studying the role of communities in the structure of the
inferred NYSE stock market. The authors have also defined
a community-based model to represent the topological varia-
tions of the market during financial crises.

Here, we make use of a similar representation of the
financial database. Specifically, we employ the correlation-
based network to represent the structure of the stock market
since many meaningful economic insights can be extracted
from the stock correlation matrices [34–36]. Particularly, to
construct the dynamic network, 347 stocks that have historical
data from January 1986 to February 2011 are selected [33,37].
Then, we use a time window of 28 days and move this
window along time to obtain a sequence (from day 29 to
day 6004) in which each temporal window contains a time
series of the daily return stock values over a 28-day period.
We represent trades between different stocks as a network.
For each time window, we compute the cross correlation
coefficients between the time series for each pair of stocks,
and create connections between them if the maximum absolute
value of the correlation coefficient is among the highest
5% of the total cross correlation coefficients. This yields a
time-varying stock market network with a fixed number of
347 nodes and varying edge structure for each of 5976 trading
days.

Data set 2. Is extracted from DNA microarrays that contain
the transcriptional profiles for nearly one-third of all predicted
fruit fly (Drosophila melanogaster) genes through the complete
life cycle, from fertilization to adult. The data are sampled at 66
sequential developmental time points. The fruit fly life cycle
is divided into four stages, namely, the embryonic (samples
1–30), larval (samples 31–40), and pupal (samples 41–58)
periods together with the first 30 days of adulthood (samples
59–66). Early embryos are sampled hourly and adults are
sampled at multiday intervals according to the speed of the
morphological changes. At each time point, by comparing each
experimental sample to a reference pooled mRNA sample,
the relative abundance of each transcript can be measured,
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which can further be used as a gene’s expression level [38].
To represent this gene expression measurements data using a
time-evolving network, the following steps are followed [39].
At each developmental point, the 588 genes that are known to
play an important role in the development of the Drosophila are
selected. These genes are the nodes of the network. The edges
are established based on the distribution of the gene expression
values, which can be modeled as a binary pairwise Markov
random field (MRF) whose parameter indicates the strength
of undirected interactions between two genes. In other words,
two genes are connected when their model parameter exceeds a
threshold. This data set thus yields a time-evolving Drosophila
gene-regulatory network with a fixed number of 588 nodes,
sampled at 66 developmental time points.

B. Partition function and characteristic
polynomial approximation

We commence by examining whether the network Boltz-
mann partition function given in Eq. (6) is well approximated
by the normalized Laplacian quasicharacteristic polynomial
Eq. (11), as expected from Eq. (14). To this end, we first create
a large number of random graphs distributed according to two
different models, namely, (a) the classical Erdős-Rényi model
[40] and (b) the Barabási-Albert model [41]. We randomly
generate 500 graphs for each of the two models using a variety
of model parameters. For instance, for the Erdős-Rényi model,
the graph size is between 30 and 1000 and the connection
probability is p ∈ [0.1,0.9]; for the Barabási-Albert model,
the graph size has the same range and the average node
degree is bounded between 1 and 20. Then, for each random
graph, we compute both the partition function Z(β) and
the quasicharacteristic polynomial − ln R(β) + N for three
different values of β. The result is shown as the scatter plot in
Fig. 1.

The most striking feature in this figure is that although β

takes on different values, the vast majority of the corresponding
data points are close to the diagonal line y = x. This result
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Z
(β

)

− lnR(β) + N
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beta = 0.01
beta = 0.1
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FIG. 1. (Color online) The scatter plot of Boltzmann partition
function associated with normalized Laplacian operator in Eq. (6) and
the normalized Laplacian quasicharacteristic polynomial given by
Eq. (11) for different β for Erdős-Rényi and Barabási-Albert random
graphs. Black triangles: β = 0.01; blue circles: β = 0.1; red stars:
β = 0.5.

empirically proves that the partition function Z(β) is always
very accurately approximated by the characteristic polynomial
− ln R(β) + N for different types of random graphs, as shown
in Eq. (14).

C. Temperature and network structure

In this section, we investigate the relationship between
the thermodynamic variables developed and the structural
change of networks. Specifically, we aim at exploring how
the temperature fluctuates when a graph experiences various
degrees of evolutionary change. To this end, we commence by
constructing a complete graph with 80 nodes, and randomly
deleting its edges with a probability p ∈ [0,0.2]. Then, we start
from the same complete graph, and with probability p + �p,
we again delete edges in the graph randomly. Using these
two random graphs, we compute the temperature according
to Eq. (30). We repeat the process for different values of
�p ∈ [0.1,0.6] (100 realizations each), which indicate the
different degrees of structural change during graph evolution.
We then repeat the analysis for graphs with 150 nodes and
300 nodes, respectively, and produce a plot showing the mean
and standard deviation (shown as error bar) of the temperature
against �p for a large number of random graphs with different
sizes.

The most important feature in Fig. 2(a) is that as �p

increases, the mean values of the temperature for all three
graph sizes grow. Moreover, the variance of temperature also
increases gradually with the increase of �p. This is because
the variance of the ratio (Q1 − Q2)/(J1 − J2) becomes large
when there is a dramatic structural change in the time-
evolving network, resulting in a significant change of the
value of temperature. Moreover, when �p remains small, the
temperature remains relatively stable. This result agrees with
expression for temperature in Eq. (30). Slight evolutionary
changes lead to a small value of (Q1 − Q2)/(J1 − J2), the
value of temperature then stabilizes at −2.

In order to demonstrate that fluctuations in temperature are
caused by structural changes in the arrangement of edges in
a network, rather than by difference in edge number between
two networks, we provide the following empirical analysis.
We first create a regular graph of 80 nodes with degree
m = 10, and create a second regular graph that has the same
graph size, but with a greater degree m + �m. Thus, the
temperature due to fluctuations between these two networks
can be computed. For each �m = 12,14, . . . ,50, we again
produce 100 realizations of the graphs. We then plot the mean
and standard deviation of temperature against �m for different
graph sizes in Fig. 2(b). For random graphs with various node
number, although there are some fluctuations, the temperature
is almost constant despite the fact that the degree difference
varies significantly. This is because there is no significant
change in the internal structure of the network during such
an evolution. This result confirms that the thermodynamic
characterizations are effective in capturing the changes in
internal structure of time-evolving networks.

The value of the temperature deserves further comment.
In this experiment, T is always negative; this is because the
first term in the temperature expression (30) has a minus sign.
It is worth stressing that this sign appears naturally from the

032810-9



CHENG YE et al. PHYSICAL REVIEW E 92, 032810 (2015)

10 20 30 40 50
−2.02

−2.01

−2

−1.99

−1.98

−1.97

−1.96

−1.95

Δ m

T
em

pe
ra

tu
re

 (
m

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n)

 

 

N=80
N=150
N=300

0.1 0.2 0.3 0.4 0.5 0.6

−2.14

−2.12

−2.1

−2.08

−2.06

−2.04

−2.02

−2

Δp

T
em

pe
ra

tu
re

 (
m

ea
n 

an
d 

st
an

da
rd

 d
ev

ai
tio

n)

 

 

N=80
N=150
N=300

(a)

(b)

FIG. 2. (Color online) Mean and standard deviation of the tem-
perature versus �p and �m for random graphs with different graph
sizes. Red squares: 80 nodes; magenta triangles: 150 nodes; blue
stars: 300 nodes.

temperature development and it does not mean the temperature
is negative physically.

D. Thermodynamic measures for analyzing network evolution

We explore whether the thermodynamic measures can
be used as an effective tool for better understanding the
evolution of realistic complex networks. To commence, we
explore the evolutionary behavior of the NYSE stock market
by applying our thermodynamic characterization method to
the dynamic networks in Data set 1. At each time step,
we compute the average energy, entropy, and temperature
according to Eqs. (33), (34), and (30), respectively. This allows
us to investigate how these network thermodynamic variables
evolve with time and whether critical events can be detected
in the network evolution.

Figure 3 is a three-dimensional (3D) scatter plot showing
the thermodynamic variables for the time-evolving stock
correlation network. It represents a thermodynamic space
spanned by average energy, entropy, and temperature. The
thermodynamic distribution of networks clearly shows a strong
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FIG. 3. (Color online) The three-dimensional (3D) scatter plot
of the dynamic stock correlation network in the thermodynamic
space spanned by temperature, average energy, and entropy. Cyan
dots: background; black downward-pointing triangles: Black Mon-
day; green circles: Persian Gulf War; blue diamonds: Iraq War;
red upward-pointing triangles: subprime mortgage crisis; magenta
squares: bankruptcy of Lehman Brothers.

manifold structure. The outliers, on the other hand, indicate
singular global events. Examples include Black Monday (black
downward-pointing triangles) [42], the Persian Gulf War, and
Iraq War (green circles and blue diamonds, respectively), and
the subprime mortgage crisis (red upward-pointing triangles)
together with the bankruptcy of Lehman Brothers (magenta
squares).

The individual time series for different thermodynamic
variables, i.e., temperature, energy, and entropy are shown
in Fig. 4. There are a number of important observations. First,
most of the significant fluctuations in the individual time series
of thermodynamic variables successfully correspond to some
realistic serious financial crises, e.g., Black Monday [42],
Friday the 13th minicrash [43], September 11 attacks, and the
bankruptcy of Lehman Brothers [44]. The reason for this is
that the stock market network experiences dramatic structural
changes when a financial crisis occurs. For instance, during the
dot-com bubble period [45], a significant number of Internet-
based companies were founded, leading to a rapid increase of
both stock prices and market confidence. This considerably
modified both the inter-relationships between stocks and the
resulting structure of the entire market, which can be captured
by the thermodynamic characterization. Another interesting
feature in the figure is that the stock correlation network
structure becomes considerably unstable after entering the 21st
century, compared to that before year 2000. Particularly, there
are a great number of significant fluctuations in all three time
series in recent years, which is due to the outbreak of the global
recession and financial crisis that began in 2007.

To see more clearly the detail of how the thermodynamic
variables change over time during the different financial crises,
in Fig. 5 we show all three thermodynamic variable time
series for the nine global events identified in Fig. 4. From
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FIG. 4. (Color online) The temperature, average energy, and thermodynamic entropy versus time for the dynamic stock correlation network.
The known financial crisis periods are identified by ellipses.

Fig. 5(a), the most striking observation is that almost all of
the largest peaks and troughs can find their realistic financial
crisis correspondences, which show the thermodynamic char-
acterization is sensitive to network structural changes. Also,
different global events exhibit different detailed behaviors.
For example, both wars (Persian Gulf and Iraq) dramatically
change the network structure in a short time, which are shown
as a sharp trough and peak in the corresponding time series.
Moreover, the September 11 attacks clearly have a persistent
influence on the stock market since the network temperature
fluctuates significantly after the attack. The reason for this is
that different financial crises affect the stock network structure
in different ways. Specifically, some crises lead the degree
products for both triangles Q and edges J increase or de-
crease simultaneously (Black Monday, Iraq War, the subprime
mortgage crisis, etc.), and, as a result, (Q1 − Q2)/(J1 − J2)
is positive and the temperature increases. In contrast, some
events lead to the result that J and Q change in a different
direction, which means that (Q1 − Q2)/(J1 − J2) is negative
and the temperature decreases accordingly, such as Persian

Gulf War, the minicrash on October 27, 1997, and the dot-com
bubble climax.

We now compare our thermodynamic representation with
a number of methods from the spectral analysis of graphs,
namely, the heat kernel signature [46] and the wave kernel
signature [47]. Figure 6 shows three-dimensional scatter plots
obtained from the principal component analysis (PCA) of
network characterizations delivered by these two methods,
respectively. Both plots show a compact manifold structure.
However, only the Black Monday (black triangles) can be
identified. The critical points representing other financial
events such as the subprime mortgage crisis and the bankruptcy
of Lehman Brothers do not deviate from the manifold structure,
which means that these events cannot be detected. This
illustrates that the thermodynamic characterization provides
an effective method for analyzing financial network evolution,
which smooths the manifold structure while preserving infor-
mation concerning significant changes in network structure.

We now focus on two different financial crises in more
detail, and explore how the stock market network structure
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FIG. 5. (Color online) The individual time series of stock correlation network temperature, energy, and entropy for nine different global
events that have been identified in Fig. 4.
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FIG. 6. (Color online) The PCA plots of the dynamic stock
correlation network characterization delivered by different signature
methods. Top panel: heat kernel signature; bottom panel: wave kernel
signature.

changes with time according to the thermodynamic variables.
In Fig. 7, we show a set of points indicating the path of the
stock network in the entropy-energy space with time during
(a) Black Monday and (b) the Lehman Brothers bankruptcy.
The color bar beside each plot represents the date in the
time series. The top panel shows that before Black Monday
(blue and green triangles), the network structure remains
stable. Neither the network entropy nor the average energy
change significantly. However, during Black Monday (from
day 116), the network undergoes a considerable change in
structure since the entropy decreases dramatically and energy
increases significantly. After the crisis, the stock correlation
network gradually returns to its normal state. A different
behavior can be observed concerning the Lehman Brothers
bankruptcy which is shown in the bottom panel. The stock
network undergoes a significant crash in which the network
structure undergoes a significant change, as signaled by a
large increase in both network energy and entropy. More
importantly, the crash is followed by a quick recovery.
Hence, our thermodynamic representation can be used to both
characterize and distinguish between different financial crises.

In Fig. 8, we provide a normalized histogram of β

for this time-evolving stock correlation network. The most
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FIG. 7. (Color online) Path of the time-evolving stock correlation
network in the entropy-energy-time space during different financial
crises. Top panel: Black Monday; bottom panel: bankruptcy of
Lehman Brothers. The color bar beside each plot represents the date
in the time series.
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FIG. 8. (Color online) The normalized histogram of β, defined
as β = 1/kT , for the dynamic stock correlation network.
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FIG. 9. (Color online) The 3D scatter plot of the dynamic
Drosophila gene regulatory network in the thermodynamic space
spanned by temperature, average energy, and entropy. Cyan dots:
steady development; black downward-pointing triangle: hatching
from egg; magenta circles: first molt; blue diamonds: pupation; red
upward-pointing triangles: adult emerging.

striking feature is that the vast majority of this parameter is
between −0.6 and −0.4. This result shows empirically that
for real-world complex networks, the approximation between
the Boltzmann partition function and the quasicharacteristic
polynomial of normalized Laplacian matrix (14) is valid.

We now turn our attention to the fruit fly network, i.e.,
the Drosophila gene regulatory network contained in Data set
2. In Fig. 9, we again show a three-dimensional scatter plot
of the time-varying thermodynamic variable space. Unlike
the NYSE data for the stock, here the data points do not
display a clear manifold in the thermodynamic space. This
is because there are only 66 time epochs in the time series

of the gene regulatory network. Nevertheless, some critical
morphological changes can still be identified, such as the egg
hatching (black triangle), molt (magenta circle), and pupation
(blue diamond). More importantly, the red triangle, represent-
ing the most significant morphological change, namely, the
emergence of the adult is separated by the greatest distance
from the remainder of the developmental samples. This
indicates that the thermodynamic characterization successfully
captures the evolutionary changes in the underlying dynamic
network.

Figure 10 shows the separate time series of temperature,
energy, and entropy for the fruit fly network. Also shown in
this figure are a number of critical evolutionary events, which
are indicated by arrows and four developmental stages, which
are shown in different colors. In the plot, the early development
of embryo, which is represented using the red line (embryonic
period) shows some significant fluctuations. This is attributable
to strong and rapidly changing gene interactions because of
the need for rapid organism development. Moreover, in the
pupal stage, there are also considerable fluctuations. This
is attributable to the fact that during this period, the pupa
undergoes a number of significant pupal-adult transformations.
As the organism evolves into an adult, the gene interactions
which control its growth begin to slow down. Hence, the green
line (adulthood) remains stable (after the adult emerges).

We again provide a comparison between our thermody-
namic representation and the heat kernel signature together
with the wave kernel signature analyses on these biological
data. To this end, we apply the principal component analysis
(PCA) to the network characterizations delivered by these
two methods and obtain the three-dimensional scatter plots
in Fig. 11. Comparing to Fig. 9, it is difficult to distinguish the
time points when significant morphological changes take place
between those representing steady evolutionary development.
This observation confirms that the thermodynamic character-
ization is not only effective in the financial domain, but also
provides some useful insights to analyze the biological data.
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FIG. 10. (Color online) The temperature, average energy, and the thermodynamic entropy versus time for the dynamic Drosophila gene
regulatory network. The important morphological changes are identified by arrows. Red line: embryonic; cyan line: larval; blue line: pupal:
green line: adulthood.
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Finally, in Fig. 12 we show a normalized histogram of β for
the Drosophila gene regulatory network. The main conclusion
from the plot is that result β is most densely distributed over the
interval (−0.6,−0.45), empirically showing that |β| takes on a
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FIG. 12. (Color online) The normalized histogram of β, defined
as β = 1/kT , for the dynamic Drosophila gene regulatory network.

small value such that r(β) = o[ln R(β)], which again confirms
the validity of the approximation obtained in Eq. (14).

IV. CONCLUSIONS

In this paper, we show how a characteristic polynomial can
be used to approximate the Boltzmann partition function of a
network. We commence from a quasicharacteristic polynomial
computed from the normalized Laplacian matrix of a graph
and show how this polynomial is linked to the Boltzmann
partition function of the graph, when the graph Hamiltonian is
defined by the normalized Laplacian operator. This allows us
to derive a thermodynamic representation of network structure
which can be used to visualize and understand the evolution of
time-varying networks. Under the assumption that the network
is of constant volume, we provide approximate expressions for
a number of thermodynamic network variables, including the
entropy, average energy, and temperature.

We evaluate the method experimentally using data repre-
senting a variety of real-world complex systems, taken from
the financial and biological domains. The experimental results
demonstrate that the thermodynamic variables are efficient
in analyzing the evolutionary properties of dynamic networks,
including the detection of abrupt changes and phase transitions
in structure or other distinctive periods in the evolution of
time-varying complex networks.

The method does, though, appear to have some limitations.
For instance, it does appear sensitive to random fluctuations
in network structure, not associated with identifiable events in
the time series studied. Also, critical events do not necessarily
give rise to unique patterns.

In the future, it would be interesting to see what features
the thermodynamic network variables reveal in additional
domains, such as human functional magnetic resonance
imaging data. Another interesting line of investigation would
be to explore if the thermodynamic framework can be extended
to the domains of dynamic directed networks, edge-weighted
networks, labeled networks, and hypergraphs. Finally, it would
be intriguing to investigate whether partition functions from
different quantum statistics, such as Bose-Einstein partition
function and Fermi-Dirac partition function, together with
Ihara zeta function can be applied to network science to provide
a way to probe larger structures.
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[28] P. Ren, T. Aleksić, D. Emms, R. C. Wilson, and E. R. Hancock,
Quant. Inf. Proc. 10, 405 (2011).

[29] C. A. Coulson, B. O’Leary, and R. B. Mallion, Hückel
Theory for Organic Chemists (Academic, New York,
1978).

[30] L. Han, F. Escolano, E. R. Hancock, and R. C. Wilson,
Pattern Recog. Lett. 33, 1958 (2012).

[31] C. Ye, R. C. Wilson, C. H. Comin, L. d. F. Costa, and E. R.
Hancock, Phys. Rev. E 89, 052804 (2014).

[32] M. Cavers, S. Fallat, and S. Kirkland, Lin. Algebra Applicat.
433, 172 (2010).

[33] F. N. Silva, C. H. Comin, T. K. D. Peron, F. A. Rodrigues,
C. Ye, R. C. Wilson, E. R. Hancock, and L. d. F. Costa,
arXiv:1501.05040.

[34] S. Battiston and G. Caldarelli, J. Finan. Manage. Markets Instit.
1, 129 (2013).

[35] G. Bonanno, G. Caldarelli, F. Lillo, S. Miccichè, N. Vandewalle,
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