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We study the propagation of cascading failures in complex supply networks with a focus on nonlocal effects
occurring far away from the initial failure. It is shown that a high clustering and a small average path length of a
network generally suppress nonlocal overloads. These properties are typical for many real-world networks, often
called small-world networks, such that cascades propagate mostly locally in these networks. Furthermore, we
analyze the spatial aspects of countermeasures based on the intentional removal of additional edges. Nonlocal
actions are generally required in networks that have a low redundancy and are thus especially vulnerable to
cascades.
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I. INTRODUCTION

A reliable supply of electric power fundamentally underlies
the function of most of our technical infrastructure and affects
all aspects of daily life. Large-scale power outages can thus
have potentially catastrophic consequences and cause huge
economic losses [1,2]. Therefore it is an important goal
to understand the vulnerability of a grid on all scales in
order to secure our energy supply. A promising direction
is to combine methods and models of power engineer-
ing with the recent progress in the theory of complex
networks [3–6].

Notably, most large-scale outages can be traced back to
the failure of a single transmission element of our power
supply system [7]. The initial failure then causes secondary
failures in other elements of the grid and eventually a global
cascade. Cascading failures have been analyzed in a variety
of studies from the viewpoint of mathematics and theoretical
physics in the past decade [8–19]. It has been analyzed
which structural properties of networks promote or prevent
global cascades [8–13] and how fluctuations and transient
dynamics affect the vulnerability of the grid [14,15]. Different
countermeasures were discussed in order to make a grid more
robust beforehand [16] or to stop a cascade before it affects
major parts of the grid [17–19].

Most of these studies adopt a global perspective on
cascading failures and focus on the statistical properties of the
cascade and potential countermeasures. In this article we study
cascades from a more microscopic perspective and analyze
the location and propagation of failures. In particular, we
characterize the nonlocality of secondary failures and show
which structural features determine the nonlocality during the
propagation of a cascade. It is shown that overloads occur
mostly locally, i.e., in the immediate neighborhood of the
failing element, when the network is strongly clustered and
“small.” Remarkably, these two features are found for many
real-world networks in technology as well as in biology and
sociology [20]. We then extend these ideas to analyze the
mechanism and the spatial aspects of countermeasures based
on the intentional shutdown of transmission elements [17,19].

II. MODELS FOR CASCADING FAILURES

To analyze the spatial aspects of cascading failures in
complex networks we use a model introduced by Motter
and Lai in Refs. [9,17]. Related models were introduced and
discussed in Refs. [21–23]. The Motter-Lai model assumes
that at each time step, one unit of energy or information is
sent from each vertex to each other vertex in the connected
component along the shortest path. The load of each edge Fij

is then given by the number of shortest paths running over this
edge i ↔ j , which is the edge betweenness centrality [24].
Furthermore, it is assumed that the capacity of each edge is
proportional to the load of the edge in the initial intact network,

Kij = (1 + α)F (0)
ij , (1)

where the superscript (0) denotes the initial intact network. The
tolerance parameter α � 0 quantifies the global redundancy of
the network: Each edge can transmit (1 + α) of its initial load
before it becomes overloaded.

Then it is analyzed what happens if one edge is damaged,
such that it is effectively removed from the network. Obvi-
ously, the other edges have to take over the load such that Fij

will generally increase. If the load exceeds the capacity of an
edge (i,j ), Fij > Kij , then this edge becomes overloaded and
also drops out of service, which causes a further redistribution
of the flows and further overloads. This can trigger a large
cascade of failures disconnecting the entire grid. We note
that the original articles [9,17] analyze potential overloads
of vertices instead of edges. However, in cascading failures
of power grids, usually the transmission lines (i.e., the edges)
become overloaded and drop out of service. Therefore, we
concentrate on edges instead of vertices in the present paper.

An example of a cascading failure in the Motter-Lai model
is shown in Fig. 1 for the topology of the British high-voltage
transmission grid [15,25]. The cascade is triggered by the
breakdown of one edge marked by an arrow in the upper
left panel of the figure. The cascade then propagates through
the network and finally leads to a state where the network is
decomposed into several components.
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FIG. 1. (Color online) Propagation of a cascade of failures in the British high-voltage power transmission grid. (a) The cascade is triggered
by a single edge that drops out of operation (marked by an arrow). (b–e) As a consequence, the network flow is rerouted, which causes
overloads of further edges that also break down (thick black lines). Most interestingly, the overloads generally do not occur in the immediate
neighborhood of the removed edge. (f) After the cascade the network is fragmented into several mutually unconnected components. Plotted
is the load of each edge Fij (a, f) and the change �Fij of the load relative to the previous step of the cascade (b–e). Thick red lines indicate
an increase of the load, �Fij > 0, thin blue lines a decrease of the load, �Fij < 0, and overloaded edges are shown as thick black lines. The
network structure was taken from Refs. [15,25] and the tolerance parameter is α = 0.5.

A remarkable aspect of this example is that the cascade is
strongly nonlocal. The distance of the defective edge causing
the flow redistribution and the overloaded edges is rather large.
Therefore, a local perspective is not sufficient to evaluate
the effects of the breakdown of single edges in a complex
network. In the following we will analyze the spatial aspects
of cascading failures in detail and show which topologies are
especially prone to nonlocal failures.

On a global scale, the damage caused by a cascading failure
is generally quantified by the number of vertices that are still
connected when the cascade comes to a halt. To be precise,
we measure the number of vertices in the largest connected

component in the final state (called G) as well as in the initial
network (called G0). A high value of the ratio G/G0 indicates
that the network is still mostly intact, while a low value of
G/G0 indicates a fatal global cascade. Numerical results for
the average effect of cascading failures are shown in Figs. 2(a)
and 2(b) as a function of the tolerance parameter α. Obviously
the size of the final cluster G/G0 increases with α—in general,
catastrophic global cascades are more likely in networks that
lack redundancy, i.e., for low values of α. This plot also shows
which amount of redundancy is needed in order to contain
the possible effects to a maximum acceptable value. How the
network topology determines these curves and thus the global
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FIG. 2. (Color online) Resilience and nonlocality in cascading
failures as a function of the tolerance parameter α. (a, b) Relative size
of the largest connected cluster after the cascade G/G0, averaging
over all possible trigger edges. (c, d) Average of the distance to the
trigger edge for all overloaded edges (dav(1), ◦) and for the edge which
is nearest to the trigger (dmin(1), �) for the first step of the cascade.
The vertical bars show typical values for the respective standard
deviation. Results are collected for all possible trigger edges in the
respective network: (a, c) the British power grid [15,25] and (b, d) a
WS network with N = 500 vertices, k = 4, and q = 0.2 [20].

robustness of a network has been discussed intensively in the
literature (see, e.g., [8–13]). However, such an analysis does
not reveal which parts of the network are prone to outage and
how a cascade propagates on a microscopic level.

III. NONLOCALITY OF CASCADING FAILURES

To analyze the nonlocality of failures in complex networks
we must first specify the meaning of “distance” in a network.
The distance da,b of two vertices a and b is defined as as
the number of edges in a shortest path connecting them [26].
Furthermore, we need the distance of two edges (a,b) and
(c,d), which is defined as the number of vertices on a shortest
path between the edges such that

d(a,b),(c,d) = min
x∈{a,b},y∈{c,d}

dx,y + 1. (2)

In the following we denote by t the edge whose initial
breakdown triggers the cascade and by ov(n) the set of all
edges overloaded at the nth step of the cascade. We then
analyze the distribution of the distances dt,e for all overloaded
edges e ∈ ov(n) as well as its average

dav(n) = 〈〈dt,e〉e∈ov(n)〉t . (3)

Furthermore, we analyze where the nearest overload occurs
during the nth step, i.e., the minimum of the distance between
the trigger t and all edges e ∈ ov(n). This quantity is calculated
separately for each cascade and we take the average over all
potential trigger edges:

dmin(n) = 〈
min

e∈ov(n)
dt,e

〉
t
. (4)
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FIG. 3. (Color online) Propagation of a cascade of failures in the
British high-voltage power transmission grid. The color and the area
of the symbols indicates the number of edges that are overloaded
at step n and located at a distance dt,e from the trigger edge. (a)
Data for a single cascade as shown in Fig. 1. (b) Data collected for
all possible trigger edges in the same network. The solid line is the
average distance to the trigger dav(n) and the dashed line is distance
of the nearest overloaded edge dmin(n).

The distance between overloaded edges and the initial
trigger edge is shown in Fig. 3(a) for the example shown
in Fig. 1. Already in the first step n = 1 we observe three
overloaded edges at distances d = 3, 5, 7, i.e., at rather remote
locations. In the following we will concentrate on this first step
of the cascade, which facilitates the understanding of nonlocal
effects. In later steps, n > 1 of the cascade there are generally
multiple failures occurring at once. Further outages then occur
due to the collective redistribution of network flows and cannot
be attributed to a single cause alone. Quantifying the direct
nonlocality of flow rerouting, i.e., the nonlocality from one
step of a cascade to the next step, thus faces conceptual
difficulties except for step n = 1. The distance of overloaded
edges to the initial trigger edge shown in Fig. 3 accounts for
the indirect nonlocality of a cascade for n > 1, as it includes
the propagation over several intermediate steps.

The influence of the global redundancy of a network on the
nonlocality of flow rerouting is analyzed in Figs. 2(c) and 2(d).
We plot the distance between the overloaded edges and the trig-
ger edge dav(n) and dmin(n) for n = 1 (the direct nonlocality)
as a function of the tolerance parameter α. The first quantity
shows where typical overloads occur, while the latter quantity
shows where the nearest overload occurs. It is observed that the
average distance between overload and trigger dav(1) decreases
strongly as a function of the tolerance parameter α. In highly
redundant networks, i.e., for large values of α, a large change
of the flow Fi,j is needed to induce an overload. Such changes
are rare and occur almost exclusively in the neighborhood of
the trigger. The average distance between trigger and overload
dav(1) is small and the rare cascades propagate “locally.” In
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FIG. 4. (Color online) The position of overloaded edges after the
failure of a single trigger edge strongly depends on whether the trigger
belongs to a triangle (upper panels) or not (lower panels). We plot a
histogram of the distances to the trigger edge for all overloaded edges
(dt,e for all e ∈ ov(1), light blue) and for the edge that is nearest
to the trigger (mine∈ov(1) dt,e, dark red). Results are collected for all
possible trigger edges in the respective network: (a) the British power
grid with α = 0.1 [15,25], (c) a WS network with N = 500 vertices,
k = 4, q = 0.2, and α = 0.1 [20].

weakly redundant networks, i.e., for small value of α, already
medium-scale changes of the flow Fi,j induce overloads. Such
changes occur frequently also in remote areas of the network.
The average distance to the trigger dav(1) is large and cascades

can be strongly nonlocal. Such events are hard to predict and
to contain.

IV. THE ROLE OF NETWORK TOPOLOGY

The network topology has a decisive influence on the
collective dynamics of complex networks, in particular the
spread of information or perturbations (see Refs. [24,27,28]
and references therein). The nonlocality of cascades of failures
is essentially determined by two topological features of the
grid: (1) the size of the network, which is measured by the
average shortest path length,

L := 〈dx,y〉x,y, (5)

where the average is taken over all pairs of nodes x,y and (2)
the availability of short redundant pathways in the network.
Such short paths are especially available if the trigger edge
belongs to a triangle [35]. On a global scale the presence
of triangles in the network is quantified by the clustering
coefficient [20],

C := 3 × number of triangles

number of connected triplets of vertices
. (6)

These conclusions hold for individual cascades in a given
network (cf. Fig. 4) and for average cascades in networks
with variable topology (cf. Fig. 5).

We first consider individual cascades for a given network
topology in more detail. When a single trigger edge (a,b)
breaks down, the flow Fa,b has to be rerouted via an alternative
path in the network. This may cause an overload and thus a
secondary failure at another edge (i,j ). Such an overload can
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FIG. 5. (Color online) Nonlocality as a function of the network topology. (a, b) The average distance of the nearest overloaded edge to the
trigger dmin(1) decreases with the clustering coefficient C of the network. (c, d) The average distance of all overloaded edges dav(1) increases
with the average path length L. In panels (a) and (c), results are shown for WS networks with fixed average degree k = 4 and different values
of the topological randomness q. The insets show how C and L scale with q. In panels (b) and (d), results are shown for WS networks with
different degrees k = 4, 6, . . . , 20. The topological randomness q has been chosen such that either the path length is fixed as L ≈ 6 in panel
(b) or the clustering coefficient is fixed as C ≈ 0.4 in panel (d); cf. the insets. The network has N = 500 nodes and α = 0.2.
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FIG. 6. (Color online) Preventing a cascading failure by the intentional removal of a second edge within the Motter-Lai model. (a) We
consider a scenario where one edge breaks down. As a counter measure a second carefully selected edge is shut down. The two edges are
marked by arrows. (b) Without any counter measure the initial breakdown triggers a cascade of failures fragmenting the network. (c) The
cascade can be completely prevented if a second, carefully chosen edge is also shut down (intentional removal, IR). When the two marked
edges are removed simultaneously, no cascade takes place and the network remains fully connected. The network structure was taken from
Refs. [15,25] and the tolerance parameter is α = 0.5.

happen locally, i.e., in the direct neighborhood of the trigger
edge defined by d(a,b),(i,j ) = 1 but also at a remote location in
the network. The location of potential overloads is determined
by the location of the alternative paths that take over the load.
In particular, a short alternative path is available when the
vertices a and b belong to a closed triangle (a,b,c) [35]. Then
there is an alternative path of length 2 given by a-c-b, which
will take over most of the flow Fa,b when the edge (a,b) fails.
In this case it is very likely that an overload occurs locally at
the two edges (a,c) and (c,b).

A statistical analysis of individual cascades confirms this
claim. Figure 4 shows histograms of the distance between the
overloaded edges and the trigger edge, where we distinguish if
the trigger belongs to a triangle or not. Results are shown for
all overloads as well as for the nearest overload. If the trigger
edge belongs to a triangle (upper panels), the nearest overload
occurs almost always within the triangle, i.e., at a distance
of one. Further overloads can occur at different positions,
but the probability decreases strongly with the distance. On
the contrary, nonlocal overloads are much more frequent
if the trigger edge does not belong to a triangle (lower panels).
The highest number of overloads is found not in the immediate
neighborhood of the trigger edge but at distance of d = 2 or
d = 3. In this case the redistribution of the flow Fab cannot be
predicted within a simple local picture.

To analyze how global structural properties of a network
determine the nonlocality of cascading failures we simulate
cascades for an ensemble of networks that interpolate between
regular and random structures introduced by Watts and
Strogatz [20], which are referred to as WS networks in the
following. To generate such a network one starts with a ring,
where each of the N vertices is connected to its k neighbors, k
being the average degree of the network. The total number of

edges in the network is thus given by Nk/2. Then a fraction
q of all edges is randomly selected, deleted, and reinserted
at a random position in the network. To reveal the influence
of the size L and the clustering coefficient C, we study two
cases in detail: (1) WS networks with a fixed value of k and
different topological randomness q, which affects both C and
L simultaneously [Figs. 5(a) and 5(c)] and (2) WS networks
where where either C or L is kept constant by varying k and
q simultaneously [Figs. 5(b) and 5(d)].

The position of the nearest overload is essentially deter-
mined by the clustering coefficient C, which measures the
probability that the trigger edge belongs to a triangle. Indeed,
we observe a strong decrease of the distance dmin(1) with
increasing clustering coefficient C [cf. Figs. 5(a) and 5(b)].
This holds regardless of the fact whether we keep the degree
k or the average path length L fixed.

The size of a network L obviously limits the distances of
vertices and edges. The numerical results plotted in Figs. 5(c)
and 5(d) reveal a much stronger influence. The average
distance of the overloaded edges to the trigger dav(1) increases
almost linearly with the average path length L. Only for very
small values of L does the distance saturate slightly above the
lower limit 1. This result holds regardless of the fact whether
we keep the degree k or the clustering coefficient C fixed.

We conclude that nonlocal overloads are particularly likely
if the network is weakly clustered and has a large average
path length. Remarkably, many real-world networks from
power grids to biological and social network are so-called
small worlds in the sense that both the clustering is high and
the average path length is low. This small-world regime is
recovered in the WS network ensemble for intermediate values
of the topological randomness q [20]. Our results suggest the
conclusion that such small-world networks are particularly
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FIG. 7. (Color online) Effectivity of intentional removal (IR) for
preventing cascading failures as a function of the tolerance parameter
α. (a) Relative size of the largest connected cluster after the cascade
G/G0 averaging over all possible trigger edges. We compare cascades
triggered by N − 1 errors (◦) and uncorrelated N − 2 errors (�) to the
effect of an optimized intentional removal (�). (b) Probability that
IR leads to an increase of the final cluster size without disconnecting
the network (�) in comparison to the probability that IR has no effect
(�) and that IR disconnects the grid (◦). Results are collected for
all possible trigger edges in a WS network with N = 500 vertices,
k = 4, and q = 0.2 [20].

local in the sense that the probability for nonlocal failures
is smallest. This result may provide an additional reason why
many real-world networks have small-world properties (cf. the
discussion in Ref. [29]).

V. PREVENTING CASCADES BY INTENTIONAL
REMOVAL

An effective counterstrategy for preventing global cascades
of failures is the intentional removal (IR) of parts of the
network [17,19]. Similar actions are taken in real-world
power grids in case of an emergency. If the power is no
longer balanced in one part of the grid, for example, after
a cascade of transmission line failures, several consumers are
actively disconnected (see, e.g., Ref. [30]). An example for
a successful application of this strategy is shown in Fig. 6,
where the removal of one additional edge prevents the cascade
completely. A statistical analysis of the effectiveness of IR in
the Motter-Lai model is shown in Fig. 7 for a WS network. We
compare the effect of an optimized IR to cascades triggered
by the breakdown of a single edge (called N − 1 errors)
and the uncorrelated simultaneous breakdown of two edges
(called N − 2 errors). Remarkably, IR can reduce the number
of disconnected vertices by more than 50% for intermediate
values of the tolerance parameter α.

Two basic mechanisms contribute to the effectiveness of
intentional removal. First, a small part of the network can be
intentionally disconnected by removing a single edge. This is
possible if this part of the network is connected to the rest
through a single edge only, which is then called a bridge [26].
In the Motter-Lai model each vertex transmits one unit of
information or energy to all other vertices in the connected
component. If several vertices are disconnected they do no
longer send or receive information or energy from the rest such
that the overall network flow decreases. This method can be
used to limit the consequences to a small local outage instead

of a global cascade. This can be very effective in practice, but
in any case parts of the network become disconnected.

However, in many cases there are much more sophisticated
methods to prevent or stop a cascade of failures. An example is
shown in Fig. 6, where the breakdown of a single edge causes
a cascade of failures leading to a strong fragmentation of the
network. On the contrary, the intentional removal of another
edge at a distance of 2 prevents the cascade completely. In these
cases the intentional removal of an edge leads to a collective
redistribution of the network flows, which is beneficial and
improves network stability. We conclude that the removed edge
is actually counterproductive as it degrades network stability.
This is analog to Braess’ paradox, where the addition of new
edges in a supply or traffic network worsens its operation
or makes a network unstable [31–34]. Preventing cascades
by intentional removal can thus be seen as an application of
Braess’ paradox.

The effectiveness of optimal IR is further analyzed in
Fig. 7(b) as a function of the tolerance parameter α for a
WS network. For a low value of the α, IR is very effective in
most cases and does not rely on the intentional disconnection
of parts of the grid. For the given network topology, this holds
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FIG. 8. (Color online) Nonlocality of intentional removal for pre-
venting cascading failures. (a) Average distance of the intentionally
removed edge and the trigger edge as a function of the tolerance
parameter α. (b) Average betweenness centrality of the intentionally
removed edge as a function of the tolerance parameter α. In panels (a)
and (b) we disregard cases where IR has no effect or disconnects the
grid. The dashed line shows the average shortest path distance L and
the average centrality, respectively, for comparison. (c, d) Histogram
of the distances of the intentionally removed edge and the trigger
edge in the case that IR leads to an increase of the final cluster size
without disconnecting the network (green bars on the right) for two
values of α. Gray lines show the distance distribution for all edges in
the network for comparison. The left red bar indicates the probability
that IR has no effect and the middle blue bar the probability that IR
disconnects the grid. Results are averaged over all trigger edges for a
WS network with N = 500, k = 4, and q = 0.2.
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for more than 90% of all possible trigger edges. For high
values of α, most initial failures do not lead to a cascade
at all. Consequently, IR has no effect with a very high
probability—simply because it is not needed.

There is a further significant difference between networks
with high and low redundancy, respectively. In Fig. 8 we
analyze the characteristics of the intentionally removed edge,
which optimizes G/G0. The betweenness centrality of the
intentionally removed edges is higher than average, except for
intermediate values of the parameter α (cf. Ref. [17]). Similar
results are found for the closeness centrality (not shown). Most
interestingly, the distance of the intentionally removed edge to
the respective trigger edge decreases significantly with α. In
the case of low α the distance is approximately equal to the
average shortest path distance L, but for high α the distance is
much smaller. In this case, cascades propagate mostly locally
such that they can be stopped by local countermeasures.

This finding is further explicated in Figs. 8(c) and 8(d)
where we plot a histogram of the distance removed-to-trigger
as well as the probability that IR has no effect for two values of
the tolerance parameter α. For α = 0.05, the distribution of the
distance removed-to-trigger closely resembles the distribution
of the distance of two arbitrary edges. This observation
imposes the conclusion that the location of the intentionally
removed and the trigger edges are uncorrelated to a large
extent. On the contrary, the distribution of distances decreases
monotonically with a small average for α = 0.5.

VI. CONCLUSION

Large-scale outages in complex supply networks are often
caused by cascades of failures triggered by the breakdown of a
single element of the network. It is thus essential to understand

the propagation of cascades in order to improve the stability of
power grids and other supply networks as well as the security
of our electric power supply.

In this article we have analyzed cascading failures in an
elementary topological model introduced by Motter and Lai [9]
from a microscopic perspective. We have shown that nonlocal
failures occur regularly for general network topologies within
this model. Such events are hard to predict theoretically and
potentially hard to prevent in practice. Remarkably, nonlocal
effects are strongly suppressed in networks with a high
clustering and small average path length. In such networks,
including many examples from power grids to biological and
social networks, cascades propagate predominantly locally,
i.e., from one edge to an adjacent one.

One particularly effective countermeasure to stop or contain
cascades is the IR of a carefully selected additional edge [17].
Two very different microscopic scenarios were found depend-
ing on the tolerance parameter α, which measures the global
redundancy of the grid. If the tolerance parameter α is small
such that the network is vulnerable to cascades, IR must
be applied on a global scale. That is, the optimum edge to
be removed is generally located at a large distance to the
initially failing edge. On the contrary, cascades propagate
mostly locally in highly redundant networks (large α) such
that local countermeasures are generally sufficient.
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