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Liat Rosenfeld,1 Eldad Kepten,1 Sharon Yunger,2 Yaron Shav-Tal,2 and Yuval Garini1
1The Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel

2The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
(Received 11 May 2015; published 17 September 2015)

The stochastic process of gene expression is commonly controlled at the level of RNA transcription. The
synthesis of messenger RNA (mRNA) is a multistep process, performed by RNA polymerase II and controlled
by many transcription factors. Although mRNA transcription is intensively studied, real-time in vivo dynamic
rates of a single transcribing polymerase are still not available. A popular method for examining transcription
kinetics is the fluorescence recovery after photobleaching (FRAP) approach followed by kinetic modeling. Such
analysis has yielded a surprisingly broad range of transcription rates. As transcription depends on many variables
such as the chromatin state, binding and unbinding of transcription factors, and cell phase, transcription rates
are stochastic variables. Thus, the distribution of rates is expected to follow Poissonian statistics, which does
not coincide with the wide range of transcription rate results. Here we present an approach for analyzing FRAP
data for single-gene transcription. We find that the transcription dynamics of a single gene can be described
with a constant rate for all transcribing polymerases, while cell population transcription rates follow a fat-tailed
distribution. This distribution suggests a larger probability for extreme rates than would be implied by normal
distribution. Our analysis supports experimental results of transcription from two different promoters, and it
explains the puzzling observation of extreme average rate values of transcription.
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I. INTRODUCTION

Regulating gene expression in space and time is crucial
for controlling cells development and function. The gene
expression process is commonly controlled at the level of
transcription where the first step is the synthesis of messenger
RNA (mRNA) by RNA polymerase II (Pol II). Pol II can
initiate transcription after binding to a specific DNA sequence,
named the promoter, located upstream of the start site of
the transcribed gene. The promoter sequence together with
different transcription factors determine the affinity of Pol II
and thereby the level of expression of the gene. After initiation,
the Pol II slides along the gene template and incorporates
adequate nucleotides (elongation) to generate the mRNA
molecule. Transcription ends when the polymerase reaches
a termination sequence and detaches from the DNA together
with the nascent mRNA transcript. When Pol II progresses
along the gene, a new polymerase can bind with a certain
probability and begin transcribing, so that often there are
several transcribing polymerases along the gene.

A simple gene transcription model is based on the assump-
tion that a gene transcribes mRNAs at a constant average
rate. This model predicts a Poisson distribution for the mRNA
numbers in individual cells [1]. Individual transcription events
consist of small numbers of molecules in which individual
reaction events dominate the behavior. To properly describe
this system, stochastic kinetics methods are commonly used
[2], which are usually based on chemical master equations
[3,4]. This stochastic nature can generate considerable cell-to-
cell variability across isogenic cell populations [5]. Analysis of
this stochastic variation leads to the statistical distributions of
random variables of interest. By comparing the mathematical
models of the stochastic kinetics with experimental obser-
vations, it is possible to draw a better understanding of the
mechanisms involved in transcription.

A common experimental approach for studying transcrip-
tion in vivo is by imaging mRNA using the MS2 system
[6–8]. The system contains two elements, an MS2 coat protein
fused to a fluorescent protein such as GFP (MS2-CP-GFP),
and an insertion of a repeated MS2 DNA sequence into a
gene of interest. The MS2 repeats form stem-loop structures
in the mRNA that are bound efficiently and stably [9] by
MS2-CP-GFP. When the gene is active and transcribes mRNA
with MS2 repeats, several MS2-CP-GFP proteins bind to the
mRNA and, thus, mRNA transcription can be followed in real
time. In order to measure transcription rates, the recovery of the
fluorescent signal from photobleached [fluorescence recovery
after photobleaching (FRAP)] GFP-MS2-CP on the site of
transcription is monitored over time [10,11]. The recovery
kinetics are determined by the effective elongation rate of the
new stem loops and therefore contain kinetic information of
the actual transcription rates.

Initial FRAP experiment estimates of Pol II elongation
rates have used tandem gene arrays [10–12], where multicopy
gene arrays expressing MS2 stem loops were integrated.
However, under these conditions, the kinetics of a single
gene remains hidden within the averaged population of active
genes in the array, and hence the precise dynamics cannot
be measured. Recent studies have reported the kinetics of
transcription of single-copy genes [13–16] and have led to
a better understanding of the transcription rates of Pol II, but
even in these studies, the analysis was performed over the
ensemble average.

Previous experiments have provided a very wide range of
transcription rates varying from 0.31 to 100 kb/min [17].
Even when comparing data from a single gene to a tandem
array of the same gene in the same cell type, the rates are
not identical [18]. These results emphasize that transcription
dynamics on the single-gene level are obscure and we still lack
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full understanding of the process. Is there a single elongation
rate for all genes? Do all Pol II’s elongate at the same rate? If
not, what is the nature of the rates distribution?

In this study we present an analysis method for FRAP data
measured on a single copy of a transcribing gene. Moreover,
using this method we show that the transcription rates are
drawn from a distinct distribution that we find analytically. The
results reveal that transcription rates do not follow the central
limit theorem and predict large fluctuations in rate constants
leading to interesting and innovative insights. This behavior
can explain the inhomogeneity and variance in previously
published data of transcription rates.

II. MATERIALS AND METHODS

A. Sample preparation

HEK-293 Flp-In cells with an integrated cyclin D1 were
previously described [13,19]. Transient transfections were
performed by calcium phosphate precipitation (for transient
MS2-CP-GFP expression).

B. Microscopy

Time-lapse transcription fluorescent imaging experiments
were performed on a laser scanning confocal microscope
(Olympus FV1000, Japan) with a 60 × /1.35 NA PlanApo
objective. eGFP fluorescence was detected using an Argon
laser (488 nm, 3 mV output) with 1%–2% laser power.
Cells were maintained at 37 ◦C in a 5% CO2 humidified
atmosphere using a stage adapted incubator in conjunction
with an objective heater (Tokai, Japan).

C. FRAP

Four-dimensional FRAP experiments were performed mea-
suring three-dimensional images. FRAP experiments con-
sisted of 40 slices with Z intervals of 0.3 μm. Bleaching was
achieved with a 488-nm laser illuminated for 250 ms at full
power (3 mW) in a circular Region of Interest (ROI). After
bleaching, image sequences were acquired at time intervals of
30 s for a total time of 40 min. Image sequences were then
analyzed using IMAGEJ SPOT TRACKER plugin [20].

Bleach correction was applied to time-lapse images
using [13]

[Is(t) − In(t)]
/

[Is(t0) − In(t0)]

In(t)/In(t0)
, (1)

where t0 and t are the measurement times before and after
bleaching, respectively. In is the intensity of an arbitrary area
in the nucleus. Is is the intensity at the transcription site.
Exponential FRAP curves were analyzed using the “reaction
dominant” FRAP model [21]. The dissociation rate γ was
extracted by fitting the experimental curve according to
Eq. (2) where C is the intensity at the transcription site area
at the first image after bleach.

III. RESULTS AND DISCUSSION

We measured transcription in real time on a single inte-
grated cyclin D1 gene containing 24 MS2 stem-loop sequence

FIG. 1. (Color online) Single-gene FRAP experimental results.
Top: Images from a FRAP experiment. Scale bar 1.5 μm. Bottom: A
scheme of the fluorescent intensity as the Pol II (oval lobes) moves
along the gene. While a polymerase transcribes the MS2 region, the
nascent transcript folds into a structure of stem and loop (enlarged
inset). Each stem and loop is bound by up to two MS2-CP-GFP
molecules (circles). This region can contribute to an increase in the
intensity signal of a transcribed mRNA. From this region on, there
are no stem-loop structures that can bind fluorescent molecules and
therefore there is no further contribution to the intensity signal; the
intensity remains at a constant level until the Pol II and the transcript
detach from the gene and the intensity drops abruptly.

repeats integrated in human embryonic kidney cells (HEK-
293). For more information see the Methods section. The
gene was controlled by an efficient Cytomegalovirus (CMV)
promoter that ensures an active transcription. We combined
the measurements from the present study with previously
measured data [13]. The kinetic behavior of the transcribing
gene was explored using FRAP [Fig. 1(a)].

For the case of a single binding reaction, ensemble-averaged
FRAP data can be fitted with an exponential equation of the
form [21]

f (t) = 1 − e−γ t + C, (2)

where C is the steady state at equilibrium, and γ is the disso-
ciation rate. This model is adequate also for the transcription
site where occasionally a multiexponential fit has to be used
depending on the number of binding states in the process [11].

FRAP analysis of single-gene data can be accurately fitted
with a single exponent, even after the averaging of ten single-
site measurements [13].

The FRAP recovery curve of a single transcription site
results from polymerases moving along the gene. Under
the approximation that the Pol II has a constant speed, the
fluorescence time trace can be described with a naive dynamic
model [Fig. 1(b)]. Fluorescence intensity increases only where
the polymerase transcribes the region of MS2 repeats, which
can bind MS2-CP-GFP. Accordingly, the fluorescent time-
dependent signal is expected to be a trapezoidlike curve
with three distinct segments: (1) Linear growth during the
transcription of the stem loops; (2) steady signal until the end
of the gene; and finally (3) a sharp drop due to detachment
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FIG. 2. (Color online) Idealized fluorescent transcription curve. (a) A single polymerase transcription fluorescent curve. Transcription of
the MS2 region is shown as discrete steps followed by a steady signal while transcribing the 3′ UTR. The release of the nascent transcript
and the Pol II leads to a fast decrease in the intensity. (b) Representation of intensity distribution on a gene as a function of time and Pol II’s
position along the gene. Each intensity profile represents a single Pol II and reflects on its elongation progress. (c) FRAP intensity profile of a
transcribing gene. The curve represents the intensity sum of several transcripts scattered along the gene at different polymerization states.

and diffusion of the polymerase and the transcript [Fig. 1(b)]
[15,22].

As the binding of the MS2-CP-GFP proteins to the stem
loops is stochastic, a more realistic model is shown in Fig. 2(a)
[7], with a stepwise slope which represents the statistics
of MS2-CP-GFP binding to the RNA. As there are several
Pol II’s that can transcribe along the gene at the same time
[Fig. 2(b)], the sum of several trapezoid time traces represents
the recovery curve arising from a single transcribing gene.
However, when we consider the stochastic binding of each
Pol II and calculate the sum, it does not demonstrate an
exponential growth, as expected from experimental data, but
rather a linear recovery at the short time range and a roundoff to
a plateau at longer times [Fig. 2(c)]. This suggests that studying
transcription through a simplified model using a single
transcription rate for elongating polymerases demonstrates
discrepancies between experimental FRAP results and the
model.

To solve the discrepancy between our calculations and
experimental data, we examined the FRAP curves of single
cells (where only a single gene is being transcribed). As shown
in Figs. 3(a)–3(e), the recovery curves mostly demonstrate a
trapezoidlike behavior as predicted. However, the transcription
rates are not identical between cells, but rather distributed.
Nevertheless, the average of these measurements shows up as
an exponential recovery curve [Fig. 3(f)]. Attempting to fit
the averaged recovery curve to a linear form gave correlated
residuals, and was thus erroneous (Fig. 4).

Realizing that an exponential recovery curve can result from
an average of multiple trapezoid signals (Fig. 3), each with a
different slope, allows us to extract significant information
on the transcription rates. Each slope is analogous to the
single-gene transcription data where every experiment has a
slightly different effective polymerization rate. Assuming that
the transcription rates are randomly drawn from a well-defined
distribution, it is possible to extract the whole distribution of
rate constants from the resulting ensemble-averaged recovery
curve, f (t).

The slope of f (t) at time t , Kf (t), is the mean of all the
single-gene transcription slopes that did not reach the steady
state:

Kf (t) = 〈{k}t 〉 = ∂f

∂t
= γ e−γ t , (3)

where {k}t ≡ {ki ; ki < 1/t} are the rate constants of cells i

which have not reached the plateau by time t , and γ is the
exponent power as described in Eq. (2).

This average can be calculated by

〈{k}t 〉 =
∫ 1/t

0
P (k)kdk, (4)

where P (k) is the distribution probability for a rate k.
The upper limit of the integration is kmax = 1/t as faster
transcription rates have already finished transcribing at time t

and therefore they do not contribute to the slope of the recovery
curve.

By solving Eq. (4), one finds that

P (k)k = ∂[Kf (t)]

∂
(

1
t

) = γ 2t2e−γ t , P (k) = γ 2 1

k3
e− γ

k ,

where we have used k = 1/t .

FIG. 3. (Color online) Single-gene FRAP experimental results.
(a–e) Single-cell FRAP experiments are shown. Slopes that do not
reach steady state represent slow elongation rates that did not yet reach
the UTR region in the measurement time (for this presentation data
were minimally smoothed to decrease noise fluctuations). Dashed
curves are a guide to the eye to emphasize the trapezoid shape of
the data. (f) Average of n = 27 single-gene FRAP curves with an
exponential fit according to Eq. (2),γ = (2.3 ± 0.2) × 10−3 s−1.
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FIG. 4. (Color online) Fit to FRAP experimental data. (a) Fitting
FRAP data with Eq. (2). (b) Fitting FRAP data to a linear equation.
Both curves are the average of n = 27 experimental results. Data are
marked with dots and the curve fit with a continuous line. Goodness of
fit is evaluated by viewing the residuals distribution which is plotted
at the bottom of each panel. The fitting was done only to the first 15
data points.

Therefore, the distribution of transcription rates for an
exponential recovery following Eq. (2) of the ensemble-
averaged single-site FRAP is

P (k) = γ 2 1

k3
e− γ

k . (5)

It is important to note that the distribution P (k) that we
found has an asymptotic power-law tail (Fig. 5). It has a
finite mean but the second moment does not converge; i.e.,
the variance is infinite. It therefore falls under the category of
“fat-tailed distributions” and does not follow the central limit
theorem [23], which requires data to stem from a distribution
with finite variance. This divergence increases the probability

FIG. 5. (Color online) The distribution of Eq. (5) for different γ

values (circles, plus sign, and dots) and a normal distribution with
γ = 0.007 (solid line).The inset shows the same distribution on a
semilogarithmic scale to emphasize the difference in the tails of the
distributions according to Eq. (5) and the normal distribution.

FIG. 6. (Color online) Simulation results of average recovery
slopes according to different distributions. The average of 1500
trapezoidal intensity curves with slopes distributed according to
Eq. (5) (a) and according to normal distribution (b), Poisson with
λ = 4 (c) and λ = 10 (d). χ 2 distribution with k = 2,5,20 degrees
of freedom (e–g) and (h) Pareto distribution with finite mean and
infinite variance. Noise was added to each single trapezoidlike curve
in order to imitate experimental data. All panels present data in black
squares, fit with solid line. The bottom of each figure shows the
residuals plot. Inset figures show the distribution curves according to
the distributions discussed in (c–h).
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for extreme rate values and can therefore explain the wide
variability in published in vivo rates [17,18].

To validate this distribution we simulated a model for
transcription in MATLAB [24]. We assumed constant elongation
rates for each single gene, illustrated as a trapezoidlike
recovery curve. To mimic experimental data we also added
random noise to each curve. We draw the elongation rate for
each single-gene simulation experiment randomly, from the
distribution we found [Eq. (5)] and calculated the average
FRAP curve. This average produced an exponential growth
curve that resembles experimental results [Fig. 6(a)]. A good
fit was found even after taking only ten randomly selected
different rates from the distribution. In contrast, when applying
a normal distribution to the single-gene elongation rates the
resulting average FRAP curve did not result in an exponential
curve [Fig. 6(b)], but rather had a bilinear time dependency
with linear recovery at short times and a roundoff to the steady
state.

We have also tested other types of distributions to estimate
the accuracy and uniqueness of the distribution we have
found, and identify the necessary characteristics in order to
recreate the experimental results. We concentrated on studying
the significance of the distribution’s shape (symmetric or
asymmetric) and moments (finite mean and infinite variance).
We first tested how the shape of a distribution affects the
shape of the calculated average curve. We therefore chose two
known distributions that the dependence on their parameters
can show a transition from asymmetric to symmetric shape.
One is a Poisson distribution and the other is a χ2 distribution.
For the Poisson distribution we set λ = 4 which presents an
asymmetric distribution [Fig. 6(c), inset], and λ = 10 which
resembles the properties of normal distribution [Fig. 6(d),
inset]. χ2 distribution is another widely used distribution with
finite mean and variance; it is highly asymmetric for a low
number of degrees of freedom, and it converges again to normal
distribution at a large number of degrees of freedom [Fig. 6(g),
inset]. Finally we overview the weight of the moments of
a distribution to the ensemble average curve. We tested the
Pareto distribution which is a skewed heavy-tailed distribution

[Fig. 6(h), inset]. For suitable parameter values, the Pareto
distribution will have finite mean and infinite variance.

All results can be viewed in Fig. 6. These clearly show
that the shape of the distribution has a strong effect on the
recovery curve. Asymmetric distributions give better recovery
behavior. When examining the Poisson and χ2 distribution
it is easy to see that the fit of the curve is getting worse as
these distributions shift to a more symmetric shape distribution
[Figs. 6(c)–6(g)]. Moreover, the residuals become larger and
unevenly distributed. The next natural step was to examine
whether an asymmetric distribution that has similar features
will improve the fit. The Pareto distribution has the same
features as our distribution regarding its shape and moments,
but when looking at Fig. 6(h) one can see that the fit quality
and residuals did not present better results. χ2 distribution
with five degrees of freedom [Fig. 6(f)] presents the best fit
results and the minimal residuals among the additional tested
distributions. Therefore, we conclude that the characteristic of
the shape of the asymmetric distribution of transcription rates
has the biggest influence on the average curve shape. Even so,
the solution by our analytic distribution gives the best results
with R2 = 0.99 and smallest residuals [Fig. 6(a)].

In order to support our findings and to link them to
additional transcription FRAP data, we applied our analysis
and distribution to reconstruct previous experimental data
performed on the same gene with two different promoters
[13]. For most of the experiments, noise posed a problem as it
dominated the nature of the recovery curve; nevertheless, many
of the recovery curves showed a linear increase in the intensity.
To obtain a quantitative measure of transcription rates, we tried
fitting the single experiment’s data with both a linear fit and
an exponential fit following Eq. (2). About 10% of the data
could not be fitted based on a poor R2 (�0.7). For the rest
of the data sets, about 70% showed a better linear fit. These
findings support the simple representation of a recovery curve
of a single gene (Fig. 3), and suggest that it can be modeled
with a constant transcription rate.

Next, we turned to examine the rates distribution. To test
our distribution on more than one population experimental data

FIG. 7. Simulation results for rates distribution according to experimental results [13] for the CMV promoter (a) and endogenous cyclin
D1 promoter (b). Noisy signal is the simulation data and solid line is an exponential fit according to Eq. (2). Fit results: for CMV γ =
(2.8 ± 0.6) × 10−3 s−1 and for cyclin D1 γ = (1.6 ± 0.2) × 10−3 s−1.
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FIG. 8. Reconstruction of experimental data with rate distribution according to Eq. (5) (a) and according to normal distribution (b). For
both distributions the average was set with γ = 2.3 × 10−3 s−1. Data are shown as noisy signal with fitting according to Eq. (2) in a solid line.

we monitored transcription kinetics of the same gene under
the control of two promoters that differ in their expression
strength [13], the endogenous cyclin D1 promoter (D1) and a
more efficient viral CMV promoter. We used the exponential
parameter γ = 2.8 × 10−3 s−1 or γ = 1.4 × 10−3 s−1 as was
found from FRAP results [13] for the two promoter types
(CMV and cyclin D1 promoter, respectively), and inserted
them into Eq. (5). Using these values, we simulated a
FRAP curve that is the average of ten possible elongation
rates according to the distribution we found. We fitted
these curves with Eq. (2) and found dissociation rates that
match the experimental results with excellent fit R2 = 0.89
for the CMV promoter and R2 = 0.9 for the cyclin D1
promoter. Figure 7 shows our fit parameters for the two
promoters CMV, γ = (2.8 ± 0.6) × 10−3 s−1, and cyclin D1,
γ = (1.6 ± 0.2) × 10−3 s−1. They are in good agreement with
previous fit parameters.

We repeated this analysis for an average of more than ten
rates and examined the whole data set of 27 measurements of
the CMV promoter, and again got good agreement between
experimental results and our distribution simulation with γ =
(2.3 ± 0.2) × 10−3 s−1. Attempting to reconstruct the results
with a normal distribution with the same average rate did not
succeed (Fig. 8).

According to our findings, which are based on real-time
live-cell experimental results, we conclude that transcription
dynamics can only be described through a wide distribution
of single-cell kinetic rates. Single-gene transcription exhibits
constant average elongation rates but these rates vary widely

between different cells. Even if the single polymerase steps
have stochastic distribution, the net outcome of multiple such
steps would constantly converge to an effective mean. Thus,
elongation can be investigated as a single effective rate process.

IV. CONCLUSIONS

We have developed an analysis approach for ensemble-
averaged transcription dynamics and extracted the distribution
for single-site transcription rates. Our distribution analysis
predicts not only the single-cell average transcription rate
but also the diversity of transcription rates arising from
inhomogeneity between cells. This distribution provides an
explanation to the wide variability of previously published
transcription rates as it supports the emergence of extreme rate
values. The significant differences in rates between cells can be
related to the availability of different transcription factors and
nucleotides, chromatin state, and even to the stage of the cell
cycle. We suggest that this distribution of kinetic rates is not
only a signature of the cell state, but also a vital part of genetic
activity regulation and diversification. Future studies should
look into the biological factors that affect the elongation rate
distribution or even change its type altogether.
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