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Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules,
concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The
strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and
activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent
experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the
membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size
observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains
in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of
receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions
between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre-
and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic
receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased
scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or
scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic
domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for

the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.

DOI: 10.1103/PhysRevE.92.032705

I. INTRODUCTION

Synapses are asymmetric contact regions between neurons
which mediate signal transmission from pre- to postsynap-
tic cells. It is thought [1] that the stability and plasticity
of synapses constitute part of the physiological basis for
memory formation and learning. One of the key regulators
of signal transmission across chemical synapses are recep-
tor molecules [1-4] concentrated in postsynaptic membrane
domains opposite presynaptic terminals. Synaptic receptor
molecules transiently bind to neurotransmitter molecules
released by the presynaptic cell. The strength of the transmitted
signal—the so-called postsynaptic potential—depends on the
number of receptor molecules present in the postsynaptic do-
main [1,3], and activity-induced variation in the concentration
of synaptic receptors is one of the mechanisms governing
postsynaptic plasticity [5-7]. A fundamental question in
neurobiology is as follows: What determines the number of
receptor molecules in a postsynaptic domain? An even more
basic question is this: Why do synaptic receptors concentrate
at synapses rather than spread homogeneously on the cell
membrane through diffusion?

An important role in the localization of receptors at
synapses is played by scaffold molecules [1-4] which are
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thought to stabilize receptor molecules in synaptic membrane
domains. Yet recent experiments have demonstrated [7,8]
a rapid turnover of synaptic receptors [9-11] as well as
their associated scaffolds [12—15], with individual molecules
leaving and entering the synaptic domain on typical time scales
as short as seconds. But the synaptic strength, which depends
crucially on the number of receptor molecules concentrated
in the postsynaptic domain, can be stable over months or
even longer periods of time [16,17]. Thus, the time scales
of the synapse as a whole and its constitutive elements are
not commensurate [8—10], and the question arises of how the
measured molecular turnover and diffusion rates can be recon-
ciled with the presence of stable synaptic receptor domains of
the well-defined characteristic size observed in experiments.
This is a particular instance of the general problem, pointed
out many years ago [18], of how the physiological stability
necessary for memory formation is achieved in the presence
of the erratic dynamics that rule the molecular realm.

What are the minimal conditions sufficient for the formation
of receptor domains of a well-defined and stable characteristic
size? From a theoretical perspective, it has been demon-
strated [19] that cooperative interactions between receptors,
which favor the insertion of new receptors into membrane
regions with a high receptor density, can (transiently) sta-
bilize pre-existing receptor clusters, while still allowing for
a rapid turnover of individual receptors. A more recent,
thermodynamic model [20] includes both receptor and scaffold
molecules; it assumes that pre- and postsynaptic interactions
stabilize scaffold molecules in certain predetermined regions
of the cell membrane, resulting in phase separation with a
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high receptor density opposite the presynaptic terminals and a
relatively low density of receptors away from presynaptic con-
tacts. Alternative dynamical models [21,22] balance currents
of receptors into and out of synaptic domains. The stability
of synaptic domains then follows from an inward current
sufficient to compensate for receptor depletion. Stabilization of
receptor clusters has also been studied [23,24] using models
which rely on an interplay between spatial heterogeneity in
receptor recycling and diffusive trapping of receptors in pre-
existing synaptic domains. This has allowed quantitative de-
scription of single-molecule data on receptor diffusion in nerve
cells and suggested mechanisms for activity-dependent regu-
lation of receptor number through local changes in receptor
recycling.

From an experimental point of view, minimal systems
devoid of the molecular machinery commonly associated with
postsynaptic domain formation [25] have been used to study
the conditions sufficient for the formation of receptor domains
of a well-defined and stable characteristic size. In particular,
single non-neural (fibroblast) cells were transfected with
neuronal receptor and scaffold molecules [14,26], allowing
for the rapid diffusion of receptors [14,27,28] observed in
neurons [8—10] as well as for interactions between receptors
and scaffolds. If receptor and scaffold molecules were both
present, receptor-scaffold domains (RSDs) formed sponta-
neously [14,29-36]. Furthermore, RSDs were observed to be
stable once they reached a characteristic size comparable to
that of synaptic domains in neurons [14,26,29,37]. If only
receptors but no scaffolds were transfected, receptor domains
did not emerge, apart from possible occurrences of transient
microdomains [26,27]. If only scaffolds but no receptors
were transfected, large intracellular blobs of scaffolds were
observed, but no association with the cell membrane was
detected [26,38]. Collectively, these observations suggest [29]
that receptor-scaffold interactions, together with the diffusion
properties of each molecular species at the membrane, are
sufficient for the formation, stability, and characteristic size
of synaptic receptor domains. In particular, the presence of
a presynaptic terminal is not essential for the occurrence of
stable RSDs.

In this article, we build on the above experimental ob-
servations and our earlier theoretical work [29] to develop
a comprehensive model of synaptic domains in terms of the
underlying reaction and diffusion properties of receptor and
scaffold molecules. Our article is organized as follows. We
first discuss qualitative aspects of the spontaneous formation
of stable synaptic receptor domains from a reaction-diffusion
mechanism. This qualitative scenario is then translated into
a mathematical description of the reaction and diffusion
processes exhibited by receptors and scaffolds at the mem-
brane. The mathematical formulation of our reaction-diffusion
model yields constraints on the reaction and diffusion rates
of receptors and scaffolds, which must be satisfied for the
formation of stable synaptic receptor domains to occur. We
then describe the results of computer simulations of our
reaction-diffusion model, which allow us to make direct
comparisons between patterns obtained from our model and
the corresponding experimental patterns of RSDs. This is fol-
lowed by a discussion of how, based on the reaction-diffusion
model of synaptic receptor domains, local modifications in
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the receptor or scaffold diffusion rate induced by synaptic
activity may yield alignment of pre- and postsynaptic domains.
Furthermore, we show that the reaction-diffusion model of
synaptic receptor domains suggests a biophysical mechanism
of short-term postsynaptic plasticity in the number of receptors
contained in an RSD. We conclude by summarizing our
approach, discussing our predictions in light of experimental
observations, and describing open questions pertaining to our
model. The mathematical details of our reaction-diffusion
model are presented in the Appendix, along with a description
of our numerical methods and possible generalizations of the
reaction-diffusion model of synaptic receptor domains.

II. SPONTANEOUS FORMATION OF STABLE SYNAPTIC
RECEPTOR DOMAINS

Before describing our quantitative results, we summa-
rize here qualitative aspects of our mathematical model.
Postsynaptic domains containing neurotransmitter receptors
are enormously complex molecular assemblies involving
thousands of proteins [2,4,8,10]. Instead of considering the
postsynaptic apparatus in its full complexity, we focus here
on a minimal experimental system which was shown pre-
viously [29] to contain the components sufficient for the
spontaneous formation of stable synaptic receptor domains of
the characteristic size observed in neurons [14,26,37]. In this
minimal experimental system, fibroblast cells were transfected
with glycine receptors, which are one of the main receptor
types at inhibitory synapses, and their associated scaffolds,
gephyrin molecules. Accordingly, our model includes receptor
molecules and their associated scaffolds, together with the
reaction and diffusion properties of these molecules at the cell
membrane [see Fig. 1(a)].

We assume that the membrane geometry is locally flat
at the scale of synaptic receptor domains. This is a good
approximation for synaptic receptor domains in fibroblast
cells, but membrane curvature can be expected to introduce
further complications in highly curved regions of neural
membranes, e.g., in dendritic spines. We use the quantitative
experimental data available for glycine receptors and gephyrin
scaffolds [3,9-11,14,27] as the basis for our numerical calcula-
tions. Thus, while our qualitative predictions may be generic to
the self-assembly of synaptic receptor domains, our quantita-
tive results pertain to glycine receptors and gephyrin scaffolds.
Our model for the formation of stable RSDs relies crucially
on the difference between the diffusivity of receptors and
that of scaffolds, and on the property of scaffolds to stabilize
other scaffolds as well as receptors at the membrane. Indeed,
experiments on the diffusion properties of glycine receptors
and gephyrin scaffolds [3,9—-11,14,27] suggest that receptors
diffuse much more rapidly than scaffolds, while gephyrin
scaffolds transiently bind [3,9-11,14,27] other scaffold as well
as receptor molecules [Fig. 1(a)].

Figure 1(b) illustrates the reaction-diffusion (Turing [39])
mechanism which yields [29], in our model, the spontaneous
formation of synaptic receptor domains of a stable character-
istic size. In the terminology of the reaction-diffusion mecha-
nism of pattern formation [39-47], receptors play the role of
“inhibitors” of molecular concentrations in our model, while
scaffolds play the role of “activators.” In particular, we assume
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FIG. 1. (Color online) Reaction-diffusion mechanism for the for-
mation and stability of synaptic receptor domains. (a) Schematic
illustration of reactions between receptor (green) and scaffold (red)
molecules, and the diffusion of receptors and scaffolds along the
cell membrane (gray curve). Compared to free diffusion (thick
arrows), diffusion in crowded membrane regions is hampered by
steric constraints (thin arrows). The illustrated reactions correspond
to endocytosis and insertion of receptors and scaffolds, as well as
stabilization of receptors and scaffolds by scaffold molecules at the
membrane. Molecular complexes formed by receptors and scaffolds
are assumed to be transient [7—15]. See Sec. III for the mathematical
expression of the indicated reaction and diffusion processes. (b)
Mlustration of the reaction-diffusion mechanism producing stable
RSDs. Time evolution of receptor and scaffold concentrations in
the absence of diffusion (top panels) and in the presence of diffusion
(bottom panels) according to the mean-field reaction-diffusion model,
which neglects noise in the reaction and diffusion of molecules.

that receptors diffuse rapidly and inhibit increased molecular
concentrations through steric constraints [8§-10,14,27,28], and
that scaffolds diffuse slowly compared to receptors and activate
increased molecular concentrations through transient binding
to receptors as well as scaffolds [7-15].

Consider a random spatial fluctuation in the initial molec-
ular concentrations of receptors and scaffolds that produces
a local excess of scaffolds [Fig. 1(b)]. When this occurs,
additional molecules of both species are further recruited at
that membrane location because scaffolds activate increased
molecular concentrations of both receptors and scaffolds.
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Now, if receptors diffuse away faster than scaffolds, the
concentration of scaffolds initially wins over that of receptors
in the perturbed region. As a result, the receptor and scaffold
concentrations both increase in this region of the membrane,
again because scaffolds are activators, and the scaffold
concentration is further enhanced after diffusion. Eventually,
however, this positive feedback is damped and a dynamic
steady state is reached when a large diffusive current of
receptors balances out the effective attraction of receptors and
scaffolds into RSDs. This leads to the overall stability of RSDs
in the presence of rapid molecular turnover and diffusion at
the cell membrane [9-11,27,30]. Once the system reaches a
steady state, the concentration profiles of receptor and scaffold
molecules are inhomogeneous in space, i.e., there is spatial
patterning. A key point here is that in the absence of rapid
receptor diffusion the positive feedback responsible for the
patterning instability is absent. Random perturbations then
simply decay, and the steady-state concentrations of receptors
and scaffolds are homogeneous in space.

As just outlined, RSDs arise in our model because of the
combined “activator” nature of scaffold molecules, which
stabilize themselves and receptors at the membrane, and
“inhibitor” nature of receptors, due to their steric repulsion.
These features of the two molecular species, together with their
diffusion properties, result in a patterning instability. One may
wonder whether a converse scheme, in which scaffolds play
the role of inhibitors and receptors play the role of activators,
may yield another candidate model; we discuss this possibility
in some detail below, in Sec. V C.

III. REACTION-DIFFUSION MODEL OF SYNAPTIC
RECEPTOR DOMAINS

A. Receptor and scaffold diffusion

Based on the experimental phenomenology of RSDs
[3,9-14,27] we formulate a simple continuum model of
RSDs [29] which incorporates receptor-receptor, receptor-
scaffold, and scaffold-scaffold interactions, as well as the lat-
eral diffusion of both molecular species on the cell membrane
[Fig. 1(a)]. We represent the local concentrations of receptor
and scaffold molecules by the functions r(x,y,?) and s(x,y,?),
where the variables x and y denote coordinates along the cell
membrane and the variable ¢ denotes time. The movement
and insertion of receptors and scaffolds is inhibited by steric
repulsion [3,9—11], which counteracts high molecular concen-
trations of receptors or scaffolds. For instance, single-molecule
experiments have suggested [9,10] that steric repulsive inter-
actions yield nonlinear diffusion of receptors inside synaptic
receptor domains, while receptors are able to diffuse freely out-
side synaptic domains. In order to account for such crowding
effects in our coarse-grained model, we impose the constraint
0 < r + s < 1 on all reaction and diffusion processes, where
we have normalized r and s so the maximum concentration
of receptors and scaffolds is equal to 1. This steric constraint
then yields the generalized reaction-diffusion equations

= F(r,s)—v.V-J, (1)

ar
ar
95 _ G(r,s) — vV - Js, (2)
at ’ )
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where the polynomials F(r,s) and G(r,s) describe the
reactions in our system, and the diffusion currents read

J,=—-D,(1—-s)Vr —=D,rVs — (1 —r —s)rVD,, 3)
Js=—D;(1 —r)Vs — DgsVr —(1 —r —s)sVD;. (4)

The coefficients v, and vy in Egs. (1) and (2) are the
diffusion constants associated with receptors and scaffolds
moving freely outside of RSDs [8-10], and D,(x,y,t) and
Dy (x,y,t) account for spatial and temporal variations in the
receptor or scaffold diffusion rates [3,48-55]. Experimental
studies [3,9-11,13,14,27] of the diffusion properties of
glycine receptors and gephyrin scaffolds, as well as of other
types of receptors and scaffolds, suggest that v, > vy.

The nonstandard diffusion terms in the generalized
reaction-diffusion model in Egs. (1) and (2) can be derived
from a lattice gas formulation [56—-58] of receptor and scaffold
diffusion processes. In Appendix A we provide such a
systematic derivation of Eqgs. (1) and (2). Descriptions of
multispecies diffusion under steric constraints of the form
in Egs. (3) and (4) have been used before in the context of
population biology [56—58] and were found to yield the correct
continuum description of the underlying lattice gas model.
Here, for the purposes of the present discussion, we illustrate
the way in which such equations can be derived heuristically
and mention physical interpretations in the context of receptor
and scaffold diffusion [29]. If we discretize space according to
a mesh size a, the right-ward receptor current along the x-axis
direction is proportional to

Dy(x,y)r(x. [l —r(x +a,y) —sx +a,y)]. ()

Similarly, the left-ward receptor current along the x-axis
direction is proportional to

—Di(x +a,y)r(x +a,y)[l —rx,y) —six,y)]. (6
To first order in a, the total current is then proportional to

D or | D as dD,
"ox (1=s5) o ax ax
which amounts to the x component of Eq. (3). Thus, the
first term in Eq. (3), — D, (1 — s)Vr, represents the combined
effects of standard surface diffusion, biased in the direction
of decreasing r, and of the excluded-volume mechanism,
which limits diffusion in the direction of increasing s.
Similarly, the current —D,rVs is in the direction in which
s is decreasing and arises because, due to the exclusion
condition, it is favorable for receptor molecules to diffuse
into regions with fewer scaffold molecules. These nonlinear
corrections to the standard receptor diffusion current, —Vr,
in Eq. (3) are important in regions with substantial scaffold
concentrations and provide a simple mean-field description
of the observed steric effects on receptor diffusion inside
RSDs [9,10]. Finally, the current —(1 — r — s)rV D, is in the
direction of decreasing D, and is generated because membrane
regions where D, is reduced represent “sinks” of the diffusive
motion of receptors. Similar considerations hold for J; in
Eq. (4), which accounts for steric constraints on the diffusion
of scaffolds inside RSDs. In principle, the reaction-diffusion
mechanism for pattern formation [39-47] does not rely on
steric repulsion or spatiotemporal variations in the diffusion

r(l —r —ys), (7
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rates, but we include these generalizations in our description
of synaptic receptor domains in order to allow for the crowded
membrane environment of RSDs [3,9-11] and for putative
effects of synaptic activity on receptor or scaffold diffusion
[3,48-55].

B. Receptor and scaffold interactions

What are suitable representations of the receptor and
scaffold reaction kinetics in the reaction-diffusion model in
Egs. (1) and (2)? Even in our minimal model system for
receptor domain formation, which does not include most
of the synaptic machinery, molecular interactions are highly
complex [3,8—-11]. For instance, receptors may be inserted
into the cell membrane as receptor-scaffold complexes and,
conversely, receptors may diffuse on the cell membrane while
bound to scaffold molecules. Here our aim is to formulate
simple reaction kinetics between receptors and scaffolds which
are consistent with the basic biochemistry of glycine receptors
and gephyrin scaffolds [3,4,9—11] and which capture the
interactions essential for the formation and stability of RSDs
[Fig. 1(a)]. We therefore only consider the fields » and s
describing the concentrations of receptors and scaffolds at the
membrane. While our model allows for transient complexes of
receptors and scaffolds, it does not consider stable complexes
of receptors and scaffolds. The latter would necessitate
additional fields capturing the concentrations of stable bound
complexes at the membrane and corresponding parameter
sets describing the reaction and diffusion properties of stable
complexes. At the cost of introducing additional reaction and
diffusion parameters, our model could be extended to allow
for such stable higher-order complexes (see Appendix D).

On the most basic level, receptors and scaffolds both may
be removed from the cell membrane through endocytosis or
some other molecular process [3,9,10], yielding reactions of
the form R — R, and S — S,. In these expressions, R and
S stand for receptors and scaffolds at the membrane, while
R;, and S;, denote receptors and scaffolds in the cytoplasmic
“bulk” of the cell. Using the standard formalism of chemical
dynamics [40—47], these reactions are represented in Eqs. (1)
and (2) by the terms

Fy=—fir, @)
G] = —415, (9)

in F and G, respectively, where f; and g, are effective
parameters describing the reaction rates associated with the
decay of receptor and scaffold populations at the membrane.
While previous studies have allowed for spatial variations in
the rates of receptor recycling [23,24], we assume here, for the
sake of simplicity, that reaction rates are constant along the
cell membrane.

The reactions in Egs. (8) and (9) involve only single
receptors or scaffolds, but interactions between receptors and
scaffolds are crucial for the formation of stable RSDs in
experiments [26,27,29,38]. Thus, we must augment Egs. (8)
and (9) to allow for nonlinear reaction terms in Eqs. (1)
and (2). In particular, glycine receptors transiently bind to
gephyrin scaffolds. It has been argued [3,9—11] that this
reaction is paramount for the preferential accumulation of
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TABLE I. Reaction schemes for synaptic receptors and scaffolds. Chemical reactions are expressed in terms of R and S, which stand for
receptors and scaffolds at the membrane, R, and S,, which denote receptors and scaffolds in the bulk of the cell, and the unspecified bulk
molecule M,, which may be a receptor molecule, a scaffold molecule, or some other molecule interacting with receptors or scaffolds at the
membrane. All molecular complexes are assumed to be only transient [7—15].

Contributions to F

Contributions to G

Model A R— Ry, R,k +S—> R+ S

Model B R— Ry, R,k +S—> R+ S

Model A’ R— Ry, Rb+S— R+S,R,+R+S—>2R+S
Model B’ R—> R, R,b+S— R+S, R, +R+S—2R+ S
Model C R—)Rb,Rb—)R,Mb-f—R—)R[,-‘rMb,

Ry+S—R+S, R+R+S—2R+S

S— S, Sy +85— 2S5, 5,+25 = 3§
S—> 8, S, +25 —> 38
S—)Sh, S},+S—>25,S},+2S—>3S
S—)Sb, Sb—>S, Sb+2S—>3S
S—)Sb, Sb—)S,Mb+S—>Mb+Sb,
Sy +285 — 35

glycine receptors in RSDs. In our coarse-grained reaction-
diffusion model, the simplest expression of receptor stabiliza-
tion through scaffolds is provided by the reaction R, + S —
R + S, which corresponds to the preferential insertion of
receptors into membrane regions with an increased scaffold
population [9,10]. Following the same procedure [40—47] as
above, this reaction yields the contribution

Fy=f(l—r—s)s

to F'in Eq. (1), where f; is the rate associated with the reaction
Ry, + S — R + S and the factor 1 — r — s imposes the steric
constraint 0 < r + s < 1. Similarly, on the basis of structural
models of gephyrin scaffolds it has been suggested [3,9]
that gephyrin molecules can form dimers as well as trimers,
possibly yielding a honeycomb lattice of gephyrin in synaptic
membrane domains. In our model, a simple representation
of the transient dimerization and trimerization of scaffolds is
obtained by including the reactions S, + S — 2§ and S, +
28 — 38. These reactions yield [40—47] the contributions

(10)

Gy =g (1 —r —s)s, (11D

Gs = g3(1 —r — 5)s7, (12)

to G in Eq. (2), where g, and g3 are the corresponding reaction
rates and, as in Eq. (10), the factor 1 — r — s enforces the steric
constraint 0 <r +s < 1.

We show, below, that the sums of the reactions in Egs. (8)—
(12) constitute a simple reaction scheme yielding RSDs, and
we term this reaction scheme model A. It is mathematically
convenient to redefine the reaction rates in Eq. (8)—(12) to
write the reaction terms F and G in Egs. (1) and (2) associated
with model A as

Fa(r.s) = —b<r - EEr) (13)

Ga(r,s) = —B(s — E) + MEE(S -9, (14)

where b, B, and wu are constants with 8 > u, E = F
. . . . —r—=s
imposes the steric exclusion constraint 0 < r +s < 1, and
the concentrations (r,s) = (7,5) are nontrivial solutions of the

homogeneous fixed point equations
F@F#,5)=G@F,5) =0, (15)

with 7 #0,1 and 5§ # 0,1. Note that Egs. (8)—(12) and
Egs. (13) and (14) contain the same number of parameters, but

Egs. (13) and (14) yield the fixed point solution (r,s) = (¥,5)
in a transparent manner. As explained in Appendix B, the
reaction kinetics in Eqgs. (13) and (14) can, in addition to the
phenomenological argument given above, also be motivated
from the mathematical properties of reaction-diffusion insta-
bilities.

While model A provides a simple phenomenological
description of a few elementary interactions between glycine
receptors and gephyrin scaffolds, other molecular interactions
occur in general. Such additional interactions between recep-
tors and scaffolds can be included following similar steps as
above and, in order to ascertain the effect of different reaction
schemes on the dynamics of RSDs, we survey here a set of
different models of varying levels of complexity (see Table I).
In particular, a simple modification of the reaction kinetics of
model A is implemented in model A’ which, in addition to
the reactions incorporated in model A, allows for higher-order
reactions in F in Eq. (1) up to the same order as G. Conversely,
model B contains the same receptor reaction kinetics as model
A but fewer lower-order interactions in the scaffold reaction
kinetics and, in particular, does not allow for dimerization
of scaffolds. In analogy to model A’, model B' extends the
reaction kinetics of model B so F and G in Egs. (1) and (2)
contain reactions of the same order. Finally, model C [29]
represents the most complex reaction scheme considered here
and contains all the reactions included in models A, A’, B,
and B’. Mathematical representations of the various reaction
schemes in Table I are obtained following similar steps as for
model A (see Appendix B).

C. Constraining the interaction and diffusion
of receptors and scaffolds

In principle, reaction rates such as those in Egs. (13)
and (14), as well as the receptor and scaffold diffusion
coefficients, can be estimated on the basis of single-molecule
experiments. However, while great efforts have been ex-
pended [3,8-11] on the quantitative characterization of the
reaction and diffusion properties of glycine receptors and
gephyrin scaffolds, as well as of other types of synaptic
receptors and scaffolds, such measurements are difficult to
carry out in the complex membrane environment provided by
living cells. Our model provides a complementary approach
for constraining the reaction and diffusion rates of receptors
and scaffolds, which relies on the mathematical conditions
mandated by the reaction-diffusion mechanism for domain
formation [29,39-47]. These mathematical conditions are
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expressed in terms of the linear stability matrix associated
with Egs. (1) and (2). In particular, for the zero Fourier (infinite
wavelength) mode of our reaction-diffusion system only the
reaction terms in Eqgs. (1) and (2) contribute to the linear
stability matrix, which then can be written as

dF  OF
M = (;“ m) = (;’; fg), (16)

21 S22 T
with all terms evaluated at (r,s) = (7,5). For the reaction-
diffusion model in Egs. (1) and (2) to exhibit domain
formation, instability must occur at a finite wavelength. Thus,
the homogeneous nontrivial solution must be stable to uniform
perturbations and, hence, the real parts of the eigenvalues of
the stability matrix in Eq. (16) must be smaller than zero. It

follows that the trace of the stability matrix is negative and the
determinant is positive:

trM < 0, 17
detM > 0. (18)

Moreover, for Egs. (1) and (2) to admit domain formation at
a finite length scale, the real part of the larger eigenvalue
associated with the linear stability matrix at (r,s) = (7,5)
must pass through zero for some Fourier modes, yielding a
finite (positive) characteristic length scale in the system. This
means [29] that for certain Fourier modes the determinant of
the stability matrix of Egs. (1) and (2) vanishes, and we find

v [(1 = §)s22 — Fs21] + vg[(1 — P)ryp — 5r12]
> 2[v,v5(1 — 7 — 5) det M]"/2, (19)

where, for simplicity, we have set D, = D; = 1.

For a given choice of reaction kinetics, Eqs. (17) and (18)
impose constraints on the relative values of the reaction rates,
while Eq. (19) constrains the relative values of the reaction
and diffusion rates. For instance, in model A we obtain

b= pI[1 - S
M= 17273 s[ lfﬁrﬁv] (20)
-8 -5 n—B =%

from Eq. (16) with Eqgs. (13) and (14). We note that Eq. (20)
implies that 7;; < 0 and s,; < 0. Equations (17) and (18) then
yield

b(1—5) 4 B5 —pu(l —F —35) > 0, 1)
B +35) — u(l —5) > 0. (22)

These constraints, together with Eq. (19), must necessarily
be satisfied by the reaction and diffusion rates of model A
for Egs. (1) and (2) to exhibit domain formation through a
reaction-diffusion mechanism. The corresponding constraints
on the other formulations of the reaction kinetics in Table I are
obtained from Eqs. (17)—(19) following similar steps.

IV. RESULTS

A. The reaction-diffusion mechanism produces stable
synaptic receptor domains

In order to investigate the reaction-diffusion mechanism for
the formation and stability of RSDs we simulated Eqgs. (1)
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and (2) for a variety of different choices of the receptor
and scaffold reaction and diffusion dynamics. Using reaction
and diffusion rates within the ranges of values suggested by
experiments [3,9-11,14,27], we observed in our simulations
the spontaneous formation of stable patterns of RSDs with
a characteristic wavelength of approximately 1 pum (see
Fig. 2). Furthermore, we obtained in our simulations a stable
characteristic RSD area of 0.2 to 0.3 um?. Provided that
the constraints in Eqs. (17)—(19) were satisfied, these results
were robust with respect to perturbations to the reaction
kinetics. The spontaneous formation, stability, and charac-
teristic size of synaptic receptor domains found in our sim-
ulations are consistent with the corresponding experimental
results [14,26,29,37] on synaptic receptor domains in neurons
and transfected non-neural cells.

While the spontaneous formation and stability of RSDs are
generic features of our reaction-diffusion model, the detailed
properties of the patterns of RSDs obtained in our simulations
were dependent on the particular model formulation consid-
ered. We discuss first the most straightforward case of receptor
and scaffold diffusion rates which are constant along the cell
membrane, which corresponds to D, = D; = 1 in Egs. (1)
and (2). Figure 2(a) displays numerical solutions of Egs. (1)
and (2) with the reaction kinetics associated with model A in
Table I, or Egs. (13) and (14), at a time of 24 h after initiation
of pattern formation from random initial concentrations of
receptors and scaffolds. In the steady state, we obtained regular
(hexagonal) patterns of receptor and scaffold domains with a
wavelength of approximately 1 um. The receptor and scaffold
patterns were in phase with each other and formed on a time
scale of hours. Individual RSDs had an area of approximately
0.2 to 0.3 uwm? and, once the pattern had formed, the size and
location of RSDs was stable.

We note that the time scale of RSD formation in our
simulations, which is of the order of hours, is significantly
longer than the typical molecular time scales appearing in the
reaction-diffusion model, which are of the order of seconds
(see Appendix C for a discussion of the parameter values used
in our simulations). The emergence of this longer time scale
can be intuited along the lines of arguments used previously
in the context of focal adhesions [59]. The formation of
stable patterns of RSDs requires a redistribution of receptors
and scaffolds through diffusion [Fig. 1(b)]. Since scaffolds
diffuse slower than receptors in our model, the time scale
of RSD formation is set by the characteristic size of RSDs
together with the scaffold diffusion coefficient, for which we
use v = (0.02-0.05)x 1072 um?/s in Fig. 2. Combining this
range of scaffold diffusion coefficients with the characteristic
wavelength, 1 um, of patterns of RSDs in Fig. 2 yields a
characteristic time scale of ~30-80 min, consistent with the
time scale of RSD formation obtained in our simulations.

For model A’ in Table I we observed patterns which were
similar to the results in Fig. 2(a) and also found the same
characteristic size of RSDs. By contrast, with the reaction
kinetics of model B in Table I, we were not able to obtain
stable RSDs in our simulations; while model B allows for a
Turing instability, the resulting patterns of corrugated receptor
and scaffold concentrations are out of phase, and thus no
RSDs emerge. This can be intuited by noting that, in order
to satisfy Eq. (18), we must have sy, < 0 in model B, which
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FIG. 2. (Color online) Stable patterns of synaptic receptor do-
mains. Numerical solutions of Eqs. (1) and (2) with D,(x,y,t) =
Dy(x,y,t) = 1 for the reaction kinetics in (a) model A in Table I at
time t = 24 h, (b) model B’ in Table I at time r = 2 h, and (c) model C
in Table I at time ¢ = 24 h. In our simulations, we used random initial
conditions in the receptor and scaffold concentrations at time t = 0,
and the generated patterns were found to be stable. The top panels
show the receptor concentrations at the membrane, the middle panels
display the scaffold concentrations at the membrane, and the lower
panels were obtained by superimposing the receptor and scaffold
concentrations in the top and middle panels (receptors in green,
scaffolds in red, and overlapping receptor and scaffold concentrations
in yellow). For all reaction kinetics considered, receptor and scaffold
domains are in phase with each other. Reaction and diffusion rates
were chosen as specified in Eqs. (C6)—(C8) (see Appendix C for
further details). Scale bars, 0.5 pm.

means that scaffolds do not stabilize other scaffolds around
the homogeneous fixed point (r,s) = (¥,5). In other words,
our reaction-diffusion model suggests that to obtain RSDs,
scaffolds need to be autocatalytic, which is in agreement with
the basic phenomenology of gephyrin scaffolds [3,9—-11].

In contrast to model B, stable patterns of RSDs are readily
obtained with the reaction kinetics corresponding to model B
in Table I [see Fig. 2(b)]. The size of RSDs produced by
model B’ in our simulations was similar to that of the RSDs
obtained with models A and A’. However, the large-scale
patterns obtained with model B’ were more irregular than those
produced by models A and A’. The irregularity of the patterns
generated by model B’ is reminiscent of experimental results
on patterns of RSDs [14,29]. As shown in Fig. 2(c), irregular
patterns of RSDs were also obtained with model C in Table 1.
As for models A, A’, and B’, RSDs formed spontaneously on
a time scale of hours in model C, and the size of RSDs was
stable once the patterns had formed. We found the irregular
locations of the RSDs produced by models B’ and C to be
stable over the time scales accessible to our simulations.
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FIG. 3. (Color online) Perturbation of synaptic receptor do-
mains. Numerical solutions of Egs. (1) and (2) as in Fig. 2 for (a)
model A in Table I at time r =2 h and (b,c) model C in Table |
at time ¢ =24 h. For the simulations in panel (a), the scaffold
diffusion coefficient was decreased by a factor 0.2 compared to
the scaffold diffusion coefficient used in Fig. 2(a), with all other
parameter values remaining the same. For the simulations in panels
(b) and (c), the rate of receptor endocytosis R — R, was decreased
by a factor 10~ compared to Fig. 2(c), with (b) the rates of R, — R
and M, + R — M, + R, increased compared to Fig. 2(c), and (c)
the same parameter values as in Fig. 2(c) (with the exception of the
parameter value associated with therate of R — R;; see Appendix C).
The receptor and scaffold concentrations are out of phase in panel (a)
but in phase in panels (b) and (c). Reaction and diffusion rates were
chosen as specified in Egs. (C9)—(C11) (see Appendix C for further
details). Scale bar, 0.5 pum.

Depending on the model formulation used, the concentra-
tions of receptors and scaffolds inside RSDs can be increased
by factors of more than ~18 and ~11 or by as little as
~1.3 and ~#4.2 over their respective molecular concentrations
outside RSDs. For example, for model C in Fig. 2(c) receptor
and scaffold concentrations increase by factors of ~19 and
~4.2. However, the numerical values of the relative receptor
and scaffold concentrations inside and outside RSDs depend
on the details of the reaction kinetics and, considering the
uncertainties involved in experimental measurements of the
reaction and diffusion parameters entering our model, do not
represent general model predictions.

Akin to other types of reaction-diffusion models
[40—47,60,61], our reaction-diffusion model of synaptic re-
ceptor domains predicts that receptor and scaffold molecules
can produce a variety of different patterns depending on the
specific diffusion rates considered. For instance, after varying
the scaffold diffusion coefficient in model A, we observed
the stable patterns shown in Fig. 3(a). The characteristic
wavelength of these patterns was approximately 0.5 um, and
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circular RSDs were replaced with labyrinthine patterns of
receptors and scaffolds which were out of phase. This suggests
that experimental modification of the diffusion properties of
scaffolds (or receptors) may influence the shape of stable
domains in a manner that is, at least qualitatively, predictable.

We also observed in our simulations that, in contrast
to variations in diffusion rates, the formation of RSDs is
generally quite insensitive to variations in reaction rates.
For instance, experiments suggest [3,9,10] characteristic time
scales for receptor turnover ranging from seconds to hours. As
shown in Figs. 3(b) and 3(c), patterns comparable to those in
Fig. 2 were obtained when the rate of endocytosis of receptor
molecules was decreased by several orders of magnitude, from
decay times of seconds to decay times of hours. Thus, we
find that if the reaction rates are chosen within the broad
ranges of values suggested by experiments and constrained by
Egs. (17)-(19), our reaction-diffusion model can yield stable
RSDs of the characteristic size observed in experiments. One
caveat here is that the rates used in the model refer to molecular
reactions, while the time scales obtained experimentally may
be “effective time scales” that result from the concatenation
of several chemical reactions, and it is not straightforward to
relate the two. We return to this issue in Sec. V.

B. The reaction-diffusion mechanism yields a characteristic
size of synaptic receptor domains

The emergence of a characteristic size of RSDs in our
simulations can be understood from the linear stability analysis
of Egs. (1) and (2) [29]. In particular, the two Fourier modes for
which the larger eigenvalue associated with the linear stability
matrix of Egs. (1) and (2) at the homogeneous fixed point
(r,s) = (7,5) vanishes define a band of unstable modes. A
simple estimate of the characteristic wavelength of the patterns
generated by Eqs. (1) and (2), and corresponding characteristic
size of RSDs, is provided by the midpoint of the band of
unstable modes, from which we find the characteristic scale

2v,v5(1 — 7 —5)
EC = 27T — _ — _ )
\/Vr[(l — 8)s20 — Fsar] + v[(1 — F)rip — 5r12]
(23)

where, for the sake of simplicity, we have set D, = Dy = 1.
Note that the constraints in Eqgs. (18) and (19) ensure that
£, > 0. The estimate in Eq. (23) is obtained by calculating the
eigenvalues of the stability matrix associated with Egs. (1)
and (2) and, for the sake of simplicity, only allowing for
nonzero Fourier modes in one spatial direction, which is
equivalent to permitting diffusion in only one spatial direction
in Egs. (1) and (2). The eigenvalues of the stability matrix are
functions of the square of the wave number. The two zeros
of the larger eigenvalue yield expressions for the squares of
two critical wave numbers delineating the band of unstable
modes, which we average, invert, take the square root of, and
multiply by 27 to obtain Eq. (23). In agreement with our
numerical results, Eq. (23) yields £, & 1 um for the parameter
values used in Figs. 2, 3(b), and 3(c), and £, =~ 0.5 pm for the
parameter values used in Fig. 3(a).

In principle, Eq. (23) predicts the characteristic size of
RSDs for a given set of reaction and diffusion rates measured
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in experiments. In practice, however, experiments have so far
only been able to yield broad ranges for the rates of the reaction
and diffusion processes exhibited by synaptic receptors and
scaffolds. Moreover, Egs. (17)—(19) only constrain the relative
values of reaction and diffusion rates in the form of inequal-
ities, leaving considerable freedom in the choice of reaction
and diffusion rates for the various model formulations. Thus,
the characteristic size of RSDs obtained in our simulations is
not a model prediction but rather a consistency check that, for
reaction and diffusion rates within the broad ranges suggested
by experiments [3,9-11,14,27], our model can indeed yield
stable RSDs of the characteristic size found in experiments.

Equation (23) can be employed to make simple order-
of-magnitude estimates of the characteristic scale of RSDs
associated with different reaction and diffusion properties of
receptors and scaffolds. For instance, the general expression in
Eq. (23) can be simplified by noting that v, > v;. If we assume
further that the homogeneous fixed point is such that7 < 1 and
§ < 1, Eq. (23) is then approximated by £, ~ 2w /2v;/s25.
The magnitude of sy, in Eq. (16) is dominated by the fastest
scaffold interactions, for which various experiments [3,11]
suggest sy ~ 1072 s~! (though this may correspond to an
“effective” rate combining several chemical reactions—see
above and Sec. V). For a receptor diffusion coefficient
v, & 1072 um? s~! [3,9-11,14,27], we then find that the
characteristic size of RSDs varies from approximately 0.4 um
to 1 um as v, varies from to vy = 0.01 v, to vy = 0.1 v,.
These order-of-magnitude predictions of our model agree
with experiments on RSDs formed by glycine receptors and
gephyrin scaffolds [14,26,29,37].

C. Alignment of pre- and postsynaptic domains through local
modification of receptor or scaffold diffusion rate

Among the requirements for a mature synapse, perhaps
the most basic one is that the pre- and postsynaptic domains
face each other [1,2]. If synaptic domains form and stabilize
spontaneously, without any presynaptic involvement, what
aligns pre- and postsynaptic domains? Most obviously, per-
haps, membrane proteins, such as neurexin on the presynaptic
side and neuroligin on the postsynaptic side, may provide
mechanisms for the alignment of the two synaptic domains by
way of chemical bonds [62]. Our approach suggests a comple-
mentary, biophysical mechanism for the alignment of synaptic
domains which relies on local variations in the diffusion or
reaction rates of receptor or scaffold molecules induced by
neural activity. Indeed, it has been observed [3,53-55] that the
diffusion of receptors on the postsynaptic membrane can be
modified through the binding of presynaptic neurotransmitter
molecules. In addition, scaffold diffusion may be [48-52]
decreased by interactions with neuroligin and further mod-
ulated by synaptic activity. As a simple phenomenological
perturbation to the reaction-diffusion mechanism for the
formation and stability of synaptic receptor domains, we
implemented pre- and postsynaptic interactions through a local
increase in the receptor diffusion rate, or a local decrease in the
scaffold diffusion rate, and simulated our reaction-diffusion
model with now varying D,(x,y,t) or Ds(x,y,t) in Egs. (1)
and (2).
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FIG. 4. (Color online) Alignment of postsynaptic domains with
presynaptic domains through local variations in the diffusion rate.
(a) Sustained synaptic activity is turned on at locations marked
with a cross, after stable domains have already formed (at time
t = 2.7 h). Over a time scale of hours, RSDs slide to match the
locations of stimulation. (b) If stimulation is applied early in the
formation of RSDs, these nucleate preferentially at locations of
synaptic stimulation. (c) Response of a mature RSD to off-center
pulses of synaptic activity. Top panel: Temporal profile of on/off
stimulation. Insets: Snapshots of RSD at selected times. Bottom
panel: Separation, Ar, between the location of maximal synaptic
activity and the RSD center. The periods of activity in panel (c)
lasted 2000 s, 4000 s, and 6000 s. All results were obtained by
simulating Egs. (1) and (2) with D;(x,y,t) = 1 and alocally increased
D,(x,y,t) > 1 in the membrane regions marked by a cross, using the
reaction kinetics of model C in Table 1. Reaction and diffusion rates
were chosen as specified in Eq. (C8) (see Appendix C for further
details). Scale bar, 0.5 pum.

First we considered the case of a postsynaptic membrane
on which RSDs had already formed, without presynaptic
involvement. When sustained presynaptic activity, modelled
by increased receptor diffusion, was turned on at localized
spots (representing the postsynaptic membrane locations op-
posite presynaptic terminals), we found that RSDs slid on the
postsynaptic membrane in order to align their centers to these
spots, over a time scale of hours [Fig. 4(a)]. We considered
next the case in which sustained presynaptic stimulation
occurred concomitantly with the emergence of RSDs: These
then appeared preferentially across presynaptic terminals
[Fig. 4(b)]. In order to investigate the alignment mechanism
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more closely, we submitted a RSD to repeated episodes of
presynaptic activity from a terminal shifted in space with
respect to the RSD. We found that each stimulation episode
caused smooth sliding of the RSD toward the presynaptic
terminal [Fig. 4(c)]. According to the reaction-diffusion model
of synaptic receptor domains [Fig. 1(b)], a local increase in the
receptor diffusion rate such as considered in Fig. 4 has a similar
effect as a local decrease in the scaffold diffusion rate. Indeed,
we observed similar movements of RSDs as in Fig. 4 if the
scaffold diffusion rate was locally decreased instead of the
receptor diffusion rate increased. Conversely, we found that
RSDs were repelled from regions with decreased receptor or
increased scaffold diffusion rates, respectively.

The translation of RSDs shown in Fig. 4 has a simple
qualitative explanation in terms of the receptor and scaffold
molecule dynamics captured by our reaction-diffusion model:
Enhanced receptor diffusion (or reduced scaffold diffusion)
near the fringe of a domain [Fig. 4(c), top panel] yields a
local increase in the scaffold molecule concentration [by the
very same reaction-diffusion mechanism that governs RSD
formation, illustrated in Fig. 1(b)] and, in turn, of receptor
concentration. As a result, the RSD gradually shifts toward the
stimulation spot. The reverse argument holds for repulsion
of RSDs from membrane regions with reduced receptor
diffusion (or enhanced scaffold diffusion). We also found in
our simulations that, if receptor and scaffold diffusion rates
were both locally modified by an equal fraction, RSDs were
gradually drawn into regions with a decreased diffusion rate
and away from regions with an increased diffusion rate. But, in
this case, the balance between inhibitors (receptor molecules)
and activators (scaffold molecules) in our reaction-diffusion
model was not disturbed by the modification of diffusion rates,
and the (weak) localization of RSDs only resulted from the
collective diffusion of RSDs into low diffusivity regions.

D. Postsynaptic plasticity mediated by receptor trafficking

The scenario for pre- and postsynaptic alignment described
above suggests also a speculative mechanism for short-term
postsynaptic plasticity. It is well known [5-7] that synaptic
activity can lead to local variations in the postsynaptic receptor
number, which is one of the mechanisms of postsynaptic
plasticity. Short-term postsynaptic plasticity can result from
one of a number of possible molecular processes. In particular,
it has been proposed [63] that receptors are stabilized by
an “anchoring” protein molecule and that the functional
properties of individual receptors are modified upon binding
with the protein. Furthermore, it has been found that activity-
dependent changes in receptor currents into or out of synaptic
domains [21,22], or activity-dependent regulation of the local
recycling rates of receptors [19,23,24], can yield shifts in the
postsynaptic receptor number. Here, by contrast, we assume no
such chemical changes, modification of net receptor currents,
or local regulation of receptor recycling rates; short-term
plasticity results [29] from the same biophysical instability
which leads to self-assembly of domains together with the
assumption that the diffusion rates of receptors or scaffolds
can be locally modulated by synaptic activity. This assumption
is supported by the experiments mentioned above [3,7,48-55],
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FIG. 5. (Color online) Short-term plasticity of synaptic receptor
domains induced by spatiotemporal modulations of the diffusion rate.
Response of an individual RSD to synaptic stimulation implemented
as (a) a local increase in the receptor diffusion rate or (b) a local
decrease in the scaffold diffusion rate. Top panels: Duration of
step stimulations. Insets: Receptor concentration profiles at times of
maximum domain size. Middle (bottom) panels: Time course of the
total in-domain receptor (scaffold) population size, R (S), following
stimulation, normalized by the total in-domain receptor (scaffold)
population size in the absence of any stimulation, Ry (Sp). The
results in panel (a) [panel (b)] were obtained by simulating Eqs. (1)
and (2) with Dy(x,y,t) = 1 [D,(x,y,t) = 1] and a locally increased
D,(x,y,t) > 1[alocally decreased D,(x,y,t) < 1], using the reaction
kinetics of model C in Table I. The durations of stimulation in panels
(a) and (b) were 2 s, 4 s, 8 s, and 12 s, and the stimulation strength
(fractional increase or decrease in receptor or scaffold diffusion rate)
was identical for panels (a) and (b), and 10 times stronger than in
Fig. 4(c). Reaction and diffusion rates were chosen as specified in
Eq. (C8). (See Appendix C for further details; top and middle panels
of (a) as in Ref. [29] and shown here for completeness.)

according to which synaptic stimulation may modify receptor
or scaffold diffusion.

We implemented [29] synaptic activity in our reaction-
diffusion model of synaptic receptor domains through a local
increase [Fig. 5(a)], or alocal decrease [Fig. 5(b)], in the recep-
tor, or scaffold, diffusion rate, respectively. As shown in Fig. 5,
with this representation of synaptic activity we found, once
the pre- and postsynaptic parts of the synapse were aligned,
a transient increase in the synaptic receptor population due to
synaptic activity. A notable feature of both scenarios in Fig. 5
is that the increase in the receptor population extended for a
longer time than the synaptic activity. Furthermore, while the
receptor and scaffold concentrations both increased, the size of
the RSDs remained approximately constant. We also observed
that if receptor and scaffold diffusion rates were increased or
decreased together by an equal fraction, there entailed little
change in the in-domain receptor and scaffold populations.
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The behavior described above follows from the interplay
between the inhibitors (receptors) and activators (scaffolds) in
our reaction-diffusion model. Once synaptic activity is turned
on, membrane regions with an increased receptor diffusion rate
(a decreased scaffold diffusion rate) are initially distinguished
by a relative decrease in the receptor population (increase in
the scaffold population) because the net diffusion current of
receptors (scaffolds) out of postsynaptic membrane domains
is increased (decreased). However, since the receptors are
the inhibitors, and the scaffolds the activators, of increased
molecular concentrations in our reaction-diffusion model,
more receptors as well as more scaffolds are drawn into such
regions through the receptor and scaffold reaction kinetics,
leading to a shift in the dynamic steady state responsible for
the spontaneous formation of stable RSDs [Fig. 1(b)] and an
increased receptor population. A notable qualitative difference
between the evolution of the receptor populations in Figs. 5(a)
and 5(b) is that, in the case of synaptic activity implemented
as a local increase in the receptor diffusion rate, the prolonged
increase in receptor concentration is preceded by a brief,
transient decrease in receptor population. Again, this behavior
follows from the increase in the net receptor diffusion current
out of postsynaptic membrane domains in Fig. 5(a), together
with the coupling of receptor and scaffold reaction kinetics.
Finally, Fig. 5 shows that, for a given fractional change in
receptor or scaffold diffusion rate, a local increase in the
receptor diffusion rate produces a greater increase in receptor
population.

V. DISCUSSION

A. Summary and outlook

Based on previous experimental and theoretical work [29],
we have developed a reaction-diffusion (Turing) model which
describes the spontaneous self-assembly of stable postsynaptic
receptor domains. The proposed reaction-diffusion model
explains how a small set of interactions between receptors and
scaffolds is sufficient for the formation of stable postsynaptic
receptor domains of the characteristic size observed in neurons
and transfected non-neural cells [26,27,29,38] and why no
presynaptic or otherwise sophisticated molecular machinery
may be necessary for the emergence of postsynaptic receptor
domains. Using reaction and diffusion rates within the broad
ranges of values suggested by experiments, the spatial scales
and geometry of the simulated arrays of domains, as well as the
time scale of their emergence, are consistent with experimental
observations.

At the heart of the model is a linear (Turing) instability,
for which the differential diffusion of receptor and scaffold
molecules is essential and which triggers the formation of
synaptic domains. This same mechanism can also explain
a preferential alignment of pre- and postsynaptic molecular
machineries (provided that presynaptic activity alters the
diffusive properties of receptor or scaffold molecules) and,
further, suggests a new form of short-term postsynaptic
plasticity [5-7]. In particular, our model predicts that the
receptor and scaffold populations in RSDs can be increased
through a local increase in the receptor diffusion rate or a
local decrease in the scaffold diffusion rate. For instance, our
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simulations indicate that an increase (decrease) in the receptor
(scaffold) diffusion coefficient by 20% can enhance the total
receptor population in RSDs by more than 10% (3%) (Fig. 5).
Experimental observations indeed suggest [3,7,48-55] that
synaptic activity may modify receptor or scaffold diffusion.
Quantitative measurements of the magnitude and sign of
activity-induced changes in receptor or scaffold diffusion,
and the resulting changes in synaptic receptor populations,
may allow direct experimental tests of the speculative mech-
anism for short-term postsynaptic plasticity suggested by our
reaction-diffusion model.

Following Turing’s seminal theoretical and computational
work [39,64] on the spontaneous formation of stable biological
patterns with a well-defined characteristic wavelength [40—47]
from random initial conditions, concerted experimental and
theoretical efforts to align reaction-diffusion models more
closely with pattern formation in specific biological systems
have begun to bear fruit over recent years [60,61]. In particular,
reaction-diffusion models have been invoked in the context of
morphogenesis in multicellular organisms [65-68] to address
how, in the absence of any pre-existing pattern [61,69], cells
can be endowed with positional information. More recently,
reaction-diffusion models have been employed [70-77] to
understand how cells determine the cell center as the site of
cell division. Here, we use similar concepts to describe the
self-assembly of stable RSDs. RSD formation, unlike mor-
phogenesis and spatial cell regulation, occurs on a subcellular
scale: Domains are localized at different locations on the cell
membrane and do not extend over the whole cell membrane.

The model developed here provides a conceptual bridge that
connects the “mesoscopic” realm of synaptic receptor domains
to the “microscopic” realm of synaptic receptor and scaffold
molecules; the former, in order to carry out a biological func-
tion, must be stable over long times scales, while the latter is
governed by rapid chemical reactions and diffusion processes.
Our model constitutes a step towards the goal [9,10,30] of
unraveling the minimal molecular components required for the
maturation, maintenance, and regulation of synapses. Along-
side other recent applications of reaction-diffusion models that
aim at uncovering the molecular mechanisms responsible for
biological pattern formation [60,61], the model we discussed
here, together with potential new experiments it can help
design, may bring us closer to a quantitative understanding of
the relations between the properties of biologically important
supramolecular structures and the dynamics and interactions
that rule their components.

B. Relation of model predictions and experimental observations

A number of experimental studies [9,10,29-36], carried
out on a variety of synapses, suggest that domains of synaptic
receptor molecules form spontaneously even in the absence
of presynaptic terminals. In particular, in our minimal model
system [29] the presence of glycine receptors and gephyrin
scaffolds is sufficient for the formation of synaptic receptor
domains of the stable characteristic size reported [14,26,37]
for neurons and transfected non-neural cells. The reaction-
diffusion model of synaptic receptor domains provides a
quantitative explanation for the spontaneous formation of
RSDs of a stable characteristic size. Indeed, our model predicts
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that the characteristic size of RSDs is set by the reaction and
diffusion properties of receptors and scaffolds [see Eq. (23)].

A crucial feature of the proposed reaction-diffusion model
is that the formation of membrane domains composed of
receptors or scaffolds can only occur if receptors and scaffolds
are both present [Fig. 1(b)], which is in agreement with
experimental observations [26,27,38] on cells transfected with
only glycine receptors or gephyrin scaffolds. Our simulations
show that the characteristic scale and time of formation of
the patterns produced by our reaction-diffusion model are
consistent with the experimental patterns of RSDs [14,26,29].
In particular, irregular patterns of RSDs emerge over a time
scale of hours, and ultimately individual RSDs occupy an
area of approximately 0.2 to 0.3 um?. The resulting profiles
of receptor and scaffold concentrations are in phase and
the cluster shapes and positions are stable. The reaction-
diffusion model of synaptic receptor domains predicts [29]
that the receptor and scaffold concentration profiles are
inhomogeneous across RSDs, with a maximal concentration
of receptors and scaffolds at the center of RSDs, and that the
receptor concentration profiles across RSDs are broader than
the scaffold concentration profiles.

One mathematical constraint imposed by the model is
of particular note: In our model, a crucial reaction for the
formation of synaptic receptor domains is the stabilization of
a scaffold molecule at the membrane by two other scaffold
molecules already present at the membrane (see Table I).
Gephyrin scaffold molecules are indeed thought to form
both dimers and trimers on the neural membrane, in the
natural conditions in which synaptic receptor domains are
observed [9]. However, if trimerization of gephyrin molecules
is prevented, no glycine receptor domains (or only very
small ones) appear [14], in agreement [29] with our reaction-
diffusion model. Similarly, the reaction-diffusion model of
synaptic receptor domains predicts that no stable domains
of receptors and scaffolds appear if stabilizing receptor-
scaffold interactions, such as the (transient) binding of glycine
receptors by gephyrin scaffolds at the membrane, are disabled.
Moreover, our model predicts that receptor aggregation trails
behind [29] scaffold aggregation in time during receptor
domain formation [Fig. 1(b)]. This indeed appears to be
in agreement with experimental observations [78,79]. The
corollary to this model prediction—namely that a loss of
scaffolds precedes a decrease in the receptor population—is
also consistent with recent in vivo experiments [80].

While we find that the gross features of synaptic receptor
domains obtained from our mathematical model and observed
in the corresponding minimal experimental system [29] are
in agreement with synaptic receptor domains in neurons, a
quantitative description of the self-assembly and plasticity
of synaptic receptor domains in neurons will necessitate
consideration of the full complexity of the synaptic appara-
tus [2,4,8,10]. In particular, mature synapses involve inter-
actions between thousands of proteins, interactions between
pre- and postsynaptic domains, and, possibly, an interplay
between membrane geometry and the formation and dynamics
of synaptic receptor domains. Such additional layers of com-
plexity do not, in principle, invalidate the reaction-diffusion
mechanism for pattern formation discussed here, which has
been successfully employed to understand the spontaneous
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emergence of ordered molecule distributions in a variety of
highly complex biological systems [45-47,60,61,70-77] (see
Appendix D for a discussion of possible model extensions and
modifications).

C. Open questions

In our model, molecular domains emerge from the com-
bined presence of “activator” scaffold molecules, which bind
themselves as well as receptors, and receptors which act as
“inhibitors” due to their steric repulsion. Would the converse
scheme, in which scaffolds play the role of inhibitors and
receptors play the role of activators, provide an alternate candi-
date model? Experimental results [1-4,9—14] and quantitative
reasoning suggest arguments both ways.

The observation that receptors are less numerous than
scaffolds in domains, by about an order of magnitude [8],
suggests that steric repulsion may be more significant for
scaffolds than for receptors (and, indeed, we also included
steric repulsion between scaffolds in our model). Furthermore,
the fact that bound receptor-scaffold complexes can be ferried
from the cytoplasm to the membrane suggests that receptors
may act as activators by tending to “pin” scaffolds at the
membrane; indeed, receptors can spend an appreciable time
at the membrane in the absence of scaffolds, while the reverse
may not be true. These remarks tend to a picture in which
receptors play the role of activators and scaffolds that of
inhibitors, at odds with our model. However, scaffolds are
known to be autocatalytic, as required for “activators,” and
domains disappear if their trimerization is prevented. By
contrast, as putative “activators” receptors would have to be
autocatalytic via indirect reactions, and it is not obvious that
these would yield a Turing instability. Finally, one would need
Vs > v, if receptors were to play the role of activators, which
is not validated by experiments.

Yet, it may be possible to devise an alternate model, in
which receptors stabilize scaffolds, rather than the reverse,
and which is also consistent with the basic experimental
phenomenology of RSDs; we relegate the investigation of such
a “converse model” to a later study. We note, however, that a
model which goes some length in this direction is discussed
in Ref. [22]. There, domain evolution is not governed by
a reaction-diffusion mechanism but rather by a convection-
aggregation mechanism. It bares some similarities to models
of phase separation through diffusion and clustering [81,82],
in which, generically, domains continue to coarsen and have
no stable characteristic size. Thus, the respective roles of the
different molecular species and the stability of domains in such
models may have to be considered with some care.

Some aspects of our model will have to be explored in
greater detail or extended. While we find, indeed, that the
time scale of emergence and stabilization of synaptic domains
corresponds to the experimental time scale, this result is
surprising in that these very long time scales emerge from
relatively simple reaction-diffusion equations that contain
only short time scales. One would like to gain a more
thorough understanding of the way in which collective long
time scales emerge in the patterning process. Furthermore,
the reaction and diffusion rates used in our simulations are
difficult to measure directly and, for the most part, only broad
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ranges for these parameters are available from experiments.
Indeed, experiments address quantities such as the turnover
of receptors on the membrane; the time scale associated with
the latter may reflect the concatenation of a large number
of chemical reactions. By contrast, in the reaction-diffusion
model of synaptic receptor domains “bare” rates are used,
which correspond to individual chemical reactions. New
experiments will be necessary to extract microscopic time
scales and, possibly, new theory will be required to relate these
to the effective time scales currently measured in experiments.
Similarly, while the diffusion properties of synaptic receptors,
such as the glycine receptors considered here, have been
experimentally characterized in some detail [3,9-11,14,27],
the corresponding data on scaffold diffusion, which is needed
for a quantitative description of RSDs, is less complete.
Finally, throughout we have focused on a mean-field
description of RSDs, and we ignored the molecular noise
induced by the underlying reaction and diffusion processes.
As described in Appendix A, noise can be incorporated
systematically into our reaction-diffusion model and, indeed,
the low copy number of receptors and scaffolds in RSDs sug-
gests [8] that noise may play an important role in the formation
and stability of RSDs. Previous theoretical work [83,84] has
shown that molecular noise can have intriguing effects on
reaction-diffusion patterns and even stabilize the self-assembly
of reaction-diffusion domains against perturbations in the
reaction or diffusion rates. Thus, complementary to the rapid
molecular turnover we focused on here, molecular noise may
also help to stabilize RSDs against molecular perturbations.
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APPENDIX A: LATTICE MODEL OF RECEPTOR AND
SCAFFOLD REACTION AND DIFFUSION DYNAMICS

Following similar steps as in previous work on lattice
models in population biology [56-58], we derive Eqs. (1)
and (2) from a lattice model of reaction and diffusion
dynamics. In this model, the system is discretized so that
reactions only occur between molecules which simultaneously
occupy a lattice site (membrane patch) (7, j), while receptor
and scaffold molecules are allowed to hop randomly from one
lattice site to a nearest-neighbor site. We denote the hopping
rates of receptors and scaffolds at site (7, j) by DE? /Tg and

Dfi)/tg, respectively. Reaction and diffusion processes are
only permitted if the resultant lattice configuration satisfies
the condition 0 < R; ; + §; ; < 1 at all lattice sites, where
R; j/€ and §; j /e denote the occupation numbers of receptor
and scaffold molecules at site (i, j), and we have introduced
the normalization constant € so the maximum particle number
per lattice site is equal to 1/€. A more complicated crowding
condition, 0 < AR; ; + BS; ; < 1, in which receptors and
scaffolds are weighed differently according to two constants
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A and B, would be possible, too, but would raise the number
of parameters in the model. For the sake of simplicity, we set
A = B = 1. For the sake of simplicity, also, we consider a
square lattice, but all considerations are readily extended to
other lattice symmetries.

The lattice model described above is Markovian
and, hence, completely characterized by the occupation
numbers R(t) = [R; 1(¢),R12(t), ..., Rp (1)] and S(t) =
[S1.1(8),S1.2(2),...,8SL..(¢)] at time ¢ for a lattice of size
Lx L. The dynamics of the model are governed by a set of
coupled master equations [85] for the probabilities that the
configurations are R and S at time ¢. The central quantities
in this formulation are Wy(N;m), the transition rates for
switching from a configuration N to a configuration N + m,
where N = R or N = S. Following the approach developed in
Refs. [85-88], we transform these master equations into the
more tractable lattice Langevin equations

dRi (D |
S (AD)
dsi; D (9
7 = Ki,j ‘I’rll‘,/‘» (Az)
where K (R.5:D are the first moments of the transition rates Wgr
(R.S)

are Gaussian noises that have zero mean

J

and W, and the U

WO (N:m

25“‘)1)(”)5(% j+ ) 8(mis je1 — €
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and covariance

(@) nY @) = K}’,V 8 — 1), (A3)
for N =R or N = §, where K; W ij: k 1 are the second moments
of the transition rates, and &(x) is the Dirac § function. The

transition moments are defined as

K,»(,ZJV-;I)(N) = /m,-,j Wy(N;m) dm, (A4)

KNP N = f mi jmi; Wy(N;m)ydm. — (A5)
On aformal level, Eqs. (A1) and (A2), together with Eqs. (A3)—
(AS5), completely specify our lattice model.

The rules of our lattice model enter the Langevin equa-
tions (A1) and (A2) through the expressions for W and Wg.
Each of these transition rates is a sum of contributions due to
diffusion and reactions. The transition rates for the diffusion
processes take the form

Wo=wP + w2+ wd +wi, (A6)
in which Wék), with k = 1,2,3, or 4, denote the transition
rates for hopping from site (i,j) to the sites (i £ 1,j + 1).
We have

(AT)

I1 8(m p.q),

(P, )), (£, j£1)

where the summation extends over all lattice sites and the exclusion condition Eiﬁl;) is

g(k) =N, [1 _

LJ

(Rit1,j+1 + Six1,j+0],

(A8)

and N; ; = R, j or N; ; = S; ;. Substituting Eq. (A7) into Eq. (A6) and using Eq. (A4), we calculate the first moment of the
hopping rates of receptors or scaffolds constrained by the bounds 0 < R; ; + §; ; < 1 as

;1)
K" = ——
bJ 47,'1\/

+DfN)Nij[1 -

(D,‘(S’)Ni,j[l — (Rig1,j + Siv1, )1+ Dg)Ni,j[l —(Ri—1,j + Si—1,))]

(Rijj—1+ S -0+ D;fY)Ni,j[l — (Rij1 + Sij+D])

+ — (D,(ill iNi1j + D, 1 Nij-1+ DgilNi,jH)[l — (R j + Si )] (A9)

4ty
for N; j = R; jor N; j = S; ;. The above expression provides a direct microscopic interpretation of the nonlinear diffusion terms
in Egs. (1) and (2): The first (negative) term in Eq. (A9) arises from the random hopping of particles away from site (i, j), whereas
the second (positive) term corresponds to transitions onto site (7, j). Also note from Eq. (A9) that our formulation of diffusion
conserves the particle number and that the number of receptors or scaffolds per lattice site cannot decrease below zero or increase
beyond 1/e. Rearranging Eq. (A9) we find

KR i[(l -y
TR

S _ € S a-
4ts

N;_1,;+ D"

J 111

S VA (DI R: ;) + DIV R; j(APR: j + AS; )], (A10)

R — S,-M,»)AZ(DiSj)S,-,J-) + D}fjs,,.,-(AZRi, J+ A% )] (A11)

LJ

(

operator with square symmetry acting on R; ; or S; ;. This
is of course to be expected for unbiased random hopping.
(With a bias in the hopping rates one would obtain a discrete
version of the Burgers equation [89].) Expressions of the
second moments for random hopping with thresholds 0 <
R; j + S;; <1, which capture the effects of diffusive noise

in which the discrete second derivative operator
A’N;j=Ni_1j+ Nij-1 —4N;j+ Niy1j+ Nijy1 (A12)

acts on all indices (i,j) in Egs. (A10) and (All). For a
single-particle species with a constant diffusion rate the above
expressions would simply reduce to a discrete Laplacian
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in Eqs. (A1) and (A2), can be obtained by following similar
steps as above. As an alternative to the continuum approach
we focus on in this article, particle-based approaches [90,91]
could be used to quantify steric effects on the diffusion of
individual receptors and scaffolds.

The transition rates for the chemical reactions in our
reaction-diffusion model take the generic form

WeN;m) =Y "R;;8(mij+e) [ 80men). (A13)
ij (kDG J)
in which R; ; incorporates the details of the specific reaction
under consideration. For instance, for the reaction R, + R +
S — 2R + S we have

Rij=oai[l —(Ri; + Si )R ;Si s

where «; is the reaction rate associated with R, + R + S —
2R + S, with analogous expressions for all other reactions in
Table I [92,93]. From Eqgs. (A4) and (AS), the first and second
moments associated with Eq. (A13) are

(Al4)

N,c;1
Kz(] cb = :l:ER[J,

(Ne2) _ 21>
K;; =€"Rij,

(A15)
(A16)

which determine the parts of the lattice Langevin equa-
tions (A1) and (A2) describing the reactions in our reaction-
diffusion model.

Using the above expressions of the transition moments
associated with diffusion and reaction processes, we obtain
simplified versions of the lattice Langevin equations (Al)
and (A2) by introducing the continuous fields r(x,y,t),
s(x,y,t), and D, s(x,y,t):

00 k+l
F(i+n,jtmi) = Z(a f)

kqvl
Py dx*ay

(£an)* (am)
k! 1!

3

@,J)
(A17)

for F=R, S, DR and f =r, s, D,;, respectively, where
a is the lateral lattice spacing. Employing Eq. (A17) and
setting v, ; = 6612/41,'&5, the deterministic parts of Egs. (A1)
and (A2) are, to lowest order, equivalent to the reaction-
diffusion model in Eqgs. (1) and (2). The continuum limit of the
first moment of the reaction processes in Eq. (A15) thereby
yields [92,93] terms consistent with the standard formalism
of chemical dynamics [40-47], while the first moments of
receptor and scaffold diffusion yield the generalized diffusion
currents in Egs. (3) and (4). In particular, in agreement
with previous studies of similar lattice models [S6-58] we
find that, if receptors and scaffolds are both present, steric
repulsion between receptors and scaffolds yields nonlinear
contributions to the mean-field diffusion currents as in Egs. (3)
and (4).

APPENDIX B: REACTION KINETICS FOR
RECEPTOR-SCAFFOLD AGGREGATION

In this appendix we provide a detailed discussion of
how the mathematical conditions in Eqs. (17)—(19), together
with the basic experimental phenomenology of interactions
between glycine receptors and gephyrin scaffolds [3,8—-11],
motivate the reaction schemes in Table 1. First, consider the
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polynomial F = F(r,s) in Eq. (1). The lowest-order reaction
in which receptors are activated by scaffolds is the first-order
reaction R, + S — R + S. For (r,s) = (¥,5) to be a nontrivial
fixed point, this “activation” (adsorption at the membrane)
of r must be compensated by “inhibition” (desorption from
the membrane) [40-47]. The lowest-order reaction which
decreases r while respecting 0 < r < 1is R — R;. Thus, the
most basic expression of F is given by

F(r,s)= b-Es —br, (B1)
Ky —
~—~—" R—>R,
Ry+S—R+S

which is equivalent to the receptor reaction kinetics for model
Ain Eq. (13). [Recall that E = (1 —r — s5)/(1 — 7 — §5).] Be-
low each term in Eq. (B1) we have indicated the corresponding
chemical reaction. Equation (B1) is easily extended to include
additional reactions.

To determine G = G(r,s) we assume that receptor
molecules do not actively remove scaffold molecules from
the cell membrane but passively inhibit s through steric con-
straints. The lowest-order reaction through which s activates its
own productionis S, + § — 28. To ensure that (r,s) = (¥,5)is
indeed a nontrivial fixed point, this reaction must be balanced
by a reaction depleting s. However, it is not possible to
choose this reaction at first (or second) order such that the
conditions 0 < s < 1 and sy, > 0 are both satisfied, where
the latter condition mandates that, consistent with the basic
phenomenology of gephyrin [3,9-11], scaffolds stabilize other
scaffolds around the homogeneous fixed point (r,s) = (7,5). At
second order, there are two possible reactions that activate s:
Sy, +S+R—>2S+ R and S, +2S — 38S. For the first of
these reactions, one again finds upon expanding G(r,s) that
this reaction cannot be balanced by a reaction depleting s at
first or second order such that 0 < s < 1 and sy, > 0.

But the reaction S, + 2S5 — 3§ can activate s while sat-
isfying Eqgs. (17)—(19). The lowest-order inhibiting processes
associated with S, +28 — 3S are S — S, and M, + S —
S» + M), respectively. The expression of G obtained with the
first of these inhibiting reactions is

G(rs) = —ps + 2 Es? (B2)
—_— 5

S5, ——
Sp+25—3S

which can satisfy sy, > 0 as well as s5; < 0 so scaffolds are
inhibited by receptors (but see the discussion of model B
in Sec. IV A). The reaction M, + S — S, + M, however,
yields s,; > O if the steric constraint affects a temporary
adsorption of species M}, at the membrane. But one can clearly
include additional reactions which ensure that s5; < 0. To low
order, this is achieved by including (transient) dimerization of
scaffolds [3,9], which extends the reaction kinetics to

G(rs) = —ps +(B — WEs +%Es2 , (B3)

——

S—S, Sp+S—28
b Sp+25—38

where we have assumed that B8 > u. Equation (B3) is

equivalent to the expression of G for model A in Eq. (14).
Model B in Table I is obtained by combining the receptor

reaction kinetics in Eq. (B1) with the scaffold reaction kinetics
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in Eq. (B2):

Fg(r,s) = Fu(r,s),
Gy(rs) = Mg(Es —3).

(B4)
(BS)
We note that scaffold molecules must necessarily be activated
by a second-order reaction while F in Eq. (B1) only involves
reactions up to first order, which motivates the inclusion of

reactions of the same order in F as in G and vice versa. For
model A this yields model A’ in Table I,

Fu(r.s) = —b<r _ Em) + m%E(r 7). (B6)

Ga(r,s) = Ga(r,s), B7)

where m is a constant, while for model B we obtain model B’
in Table I,
s r
Fg(r,s) = —b(r— jEF) +m—=(Es — %), (BS)
S r

Gu(r,s) = —B(s — E5) + M;;(Es —5.  (BY)

Finally, combining the various reactions included in models
A, A’, B, and B’, we arrive at model C in Table I:

Fc(r,s) = —br +m1EF—<m1 +M2;>EV

R—Ry, R,—R

Mp+R—>Mp+R),
r my
+bE-s +—Ers , (B10)
\q,i/ J\,—/

Ry+S—R+S Ry+R+S—>2R+S

Ge(rs) = —Bs+BE5 —uEs +2Es®,  (B11)
e~ —— S — N

S8y Sy—S My+S— Syt M, "
b b P Sy+25—38

where m and m, are constants. From a biological perspective
itis particularly noteworthy that model C includes endocytosis
and insertion of receptor and scaffold molecules as well as
the reactions M, + R — R, + M}, and M, + S — S, + M,,
which correspond to the removal of receptor and scaffold
molecules from the cell membrane by a bulk molecule M,
or by some alternate molecular mechanism which involves
a temporary increase in the local crowding of the cell
membrane.

We note that model C does not encompass all reactions up
to some specified order. Rather, we constructed model C from
reactions suggested by experimental observations [3,9-11].
Model C could be supplemented, for instance, by reactions
suchas S, + S + R — 2§ + R. In all our formulations of the
reaction kinetics in Table I, several reactions could be freely
added without actually changing the model. For example, in
model C we consider the reaction M, + R — R, + M, in F.
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The reaction R, + R — 2R is then automatically included
because of the identity

—Erflax(1 =7 —=38)]+ax(1 —r —s)r=0, (B12)

where o, is the reaction rate associated with the reaction R, +
R — 2R. Note, however, that «; is necessarily smaller here
than the overall reaction rate of M}, + R — R}, + M,,.

APPENDIX C: SIMULATION OF
REACTION-DIFFUSION EQUATIONS

To simulate a given model of the reaction-diffusion dy-
namics, we solved numerically the dimensionless versions of
Egs. (1) and (2) using the variables

~ b ~ |b ~
X—>xXx=/—x, y—>y=_[—Y, t—>t=>bt, (Cl)
Yy

'

in terms of which Eqgs. (1) and (2) become

0 ~ ~ ~ ~ o~
a_;‘ — F4+V[D.(1—$)Vr + D.rVs + ErVD,], (C2)
9 o~ - .
a_j” — G+, V[Dy(1 — r)Vs + D,sVr + EsVD,], (C3)

where E=1—r — S, F = F(r,s;n?) or, (jvepending on
the model formulation considered, F = F (r,s;m1,m>),
G(r,s) = G(r,s; B,it), and

— o — o~ 1
(m,ny, iy, B, 10) = E(m,ml,mz,ﬂ,/x), (C4)

pol o (22).
vy ax dy

Physical dimensions were restored to the solutions of Egs. (C2)
and (C3) using representative values of v, and b measured in
experiments. In particular, experiments on the diffusion of
glycine receptors [3,9-11,14,27] suggest v, = 1072 um? s~/
as a typical value of the receptor diffusion coefficient, although
measurements of v, are complicated by interactions between
receptors and scaffolds, as well as crowding in the cell
membrane. We used v, = 1072 um? s~ for all the calculations
described here. For the rate of receptor turnover, experiments
have indicated [3,9,10] characteristic time scales ranging from
seconds to hours. These time scales, assuming they are related
directly to the rates entering our model, yield values of b
ranging from b = 10~ s~!, which we used for Figs. 2, 3(a), 4,
and 5,to b = 10~*s~!, which we used for Figs. 3(b) and 3(c).

Various experiments have indicated [3,9—-11,13,14,27] that
vy K v, for synaptic receptors and scaffolds and, hence,
Vs < 1. In our simulations we used values of 7 in the
range (0.01,0.05). In the absence of precise, quantitative
measurements of v, we chose phenomenological values vy <
1 which satisfied the mathematical constraint in Eq. (19) for
a given formulation of the reaction kinetics. Similarly, we
used values of the dimensionless reaction rates consistent with
Egs. (17) and (18) and the available experimental data on
receptor and scaffold reaction kinetics [3,9—11]. The patterns

(C5)
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TABLE II. Approximate receptor reaction rates in Eq. (1) for
various reaction schemes. All rates were estimated to one significant
figure from Eqs. (C6)—(C9) and are quoted in units of s~'.

Contributions to F Model A Model B’ Model C
R — R, 1x107! 8x107! I1x107!
R, —> R 0 0 2x1073E
M,+ R — R, + M, 0 0 1E
R,+S— R+ S IXI07'E  Ix107'E  Ix10'E
R,+R+S—>2R+S 0 2x10E 2x10E

in Fig. 2 were obtained using the (dimensionless) parameter
values

(B.1.%) = (7,0.7,0.05), (C6)
(i, B,1L,7) = (7,0.7,1.2,0.05), (C7)
(7,72, B, 1,T,) = (0.4,10,0.5,0.7,0.02),  (C8)

for Figs. 2(a), 2(b), and 2(c), respectively. The results in Fig. 3
were obtained with

(B.1LV;) = (7,0.7,0.01), (C9)
(%1,%2,E,ﬁs§s)
= (1.2x10%, 1x10*5%x10%,7x10%,0.02), (C10)
(%1 v%Zsﬁsﬁvvs)
= (4x10%,1x10%,5x10%,7x10%,0.02), (Cl11)

for Figs. 3(a), 3(b), and 3(c), respectively. The patterns
in Figs. 4 and 5 were obtained with model C using the
parameter values in Eq. (CS8). For illustration, Tables II
and III provide estimates of the dimensional reaction rates
implied by Egs. (C6)—(C9) for Figs. 2, 3(a), 4, and 5 to
one significant figure. The initial conditions for r and s
were randomly distributed in the interval [0,0.01] and we set
(7,5) = (0.05,0.05). We used in our simulations a grid spacing
of 0.063 pm and periodic boundary conditions.

To study the sensitivity of RSD size with respect to
variations in the numerical values of model parameters, we
perturbed the parameter values in model C in Eq. (C8) [used
for Figs. 2(c), 4, and 5] and compared the resulting sizes
of stable RSDs to the RSD domain size obtained with the
model parametrization in Eq. (C8) [Fig. 2(c)]. Our results
are summarized in Fig. 6. With the exception of i, we

TABLE III. Approximate scaffold reaction rates in Eq. (2) for

various reaction schemes. All rates were estimated to one significant

figure from Eqs. (C6)—(C9) and are quoted in units of s~*.

Contributions to G Model A Model B’ Model C

S— S, 7x107! 2x107! 5x1072

Sy, = S 0 4%x1073E 3103 E
M, +S— S,+ M, 0 0 8x102E
Sy 4§ — 28 7x107'E 0 0

S, +28 — 38 2F 3E 2E
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Percentage change in RSD diameter

FIG. 6. (Color online) Sensitivity of RSD domain size to pertur-
bations in model parameters. Percentage change in RSD diameter
for each of the indicated model parameters, in model C, using the
parameter values in Eq. (C8) as a reference model parametrization.
With the exception of 1y, all parameters were decreased (blue) or
increased (red) by 10%. The parameter i1, was decreased to 0 (blue)
and increased to five times its value in Eq. (C8) (red). The initial
conditions for r and s were randomly distributed in the interval
[0,0.1].

decreased or increased all model parameters by 10% relative
to their values in Eq. (C8). We found that the size of RSDs
depends only weakly on the value of m; and, to produce
an appreciable effect on domain size, we decreased m; to
zero and increased 71, to 5 times its value in Eq. (C8).
The insensitivity of RSD size and stability with respect to
perturbations of the value of 7, can be understood intuitively
by noting, from Eq. (B10), that 71, only affects the reactions
R, — R and M, + R — M, + R, in model C which, as
described above, are not crucial for the activation or inhibition
of increased receptor concentrations. By contrast, Fig. 6 shows
that perturbations in the value of i have the strongest effect
on domain size among all model parameters. This can be
intuited, from Eq. (B11), by noting that [ sets the rate for the
trimerization of scaffolds, S, + 25 — 3, which, as discussed
in Sec. V, is a crucial reaction for the formation of stable RSDs
by the reaction-diffusion mechanism described here.

For our simulations of pre- and postsynaptic interactions
and synaptic activity we set D(x,y,t) = 1 in Figs. 4 and 5(a)
and D,(x,y,t) =1 in Fig. 5(b). In Figs. 4 and 5(a) we took
the function D, (x,y,t) to be a sum of Gaussians in the spatial
variables with a threshold dependence on time,

D,(X.5.7)
= 1+ A {07 = o — e (TG,

(C12)
where tN/ > 7; and the step function 6(x) is defined by
1 ifx >0,
o) = {o ifx <0, (€13)

032705-16



SELF-ASSEMBLY AND PLASTICITY OF SYNAPTIC ...

with an analogous expression for D(x,y,t) in Fig. 5(b)
with A_ =—A,. We set £, = 3 for all the simulations shown
in Figs. 4 and 5; A, = 1/5 for Figs. 4(a), 4(b), and 5; and
A4 = 1/50 for Fig. 4(c). The results displayed in Figs. 4(a)
and 4(b) were obtained with #; = 2.7 h and #; = 0 in the limit
t| — o0. The values of 7; and 7/ in Figs. 4(c) and 5 were chosen
as indicated in the temporal profiles of on/off stimulation. The
values of the coordinates (X;,y;) in Eq. (C12) were chosen
to correspond to the spatial positions marked with crosses in
Fig. 4. For Fig. 5, we chose the values of (%;,y;) to coincide
with the centers of RSDs. The qualitative behavior displayed
in Figs. 4 and 5 is generic to our reaction-diffusion model, but
the quantitative response of RSDs to synaptic activity depends
on the details of the simulation.

APPENDIX D: EXTENSIONS OF THE
REACTION-DIFFUSION MODEL

The reaction-diffusion model of synaptic receptor domains
described in the present article is minimal, in the sense that it
considers only two molecular species, receptors and scaffolds.
It is also parsimonious in that it involves a small number of
chemical reactions. Synaptic domains contain a large number
of molecular species and involve a much longer list of chemical
reactions (some of which possibly poorly described as bulk
chemical reactions) [2,4,8,10]. In an approach similar to the
one we employed in this article, it is possible to extend
the reaction-diffusion model to include alternative chemical
species and additional reactions. Here we describe some
simple examples which represent mild departures from our
original model and, hence, may also yield domain formation;
the detailed study of these extended models lies beyond the
scope of this article.

Measurements have demonstrated that (unbound) receptors
can diffuse on the cellular membrane [3,7-11,14,27]; by
contrast, when scaffolds are transfected into a cell, they tend
to gather in the cytoplasm in clumps of different sizes [26,38].
Thus, it is possible that scaffolds cannot diffuse at the
membrane if they are unbound and that receptors, effectively,
“pin” them to the membrane. In this picture, one should
not consider the concentrations of unbound receptors and
unbound scaffolds at the membrane as the relevant variables,
but rather the concentrations of unbound receptors and bound
receptor-scaffold complexes. If we assume that scaffolds are
ferried from the cytoplasm to the membrane in the form of
bound complexes (which is known to occur) and, conversely,
that scaffolds leave the membrane also in the form of bound
complexes, then the relevant models are formally identical
to the models discussed in this article. Hence, patterns of
stable molecular domains can also emerge spontaneously
when the two interacting species are receptors and bound
receptor-scaffold complexes.

The relevant models start to change, though, when we relax
our fairly constraining assumptions. For example, if we allow
a bound receptor-scaffold complex to unbind at the membrane
in such a way that the scaffold is reabsorbed into the cytoplasm
while the receptor remains at the membrane, we obtain new
reaction terms. Let us denote the concentration of bound
receptor-scaffold complexes at the membrane by the symbol
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§. If we modify our model C minimally in order to account for
our new assumptions, we obtain the reaction terms

—cEr +dE§
N’ N e’
Ry,—R R— Ry My+R—Mp+Ry Ry+5— R+3

F;(r,5)= aE —br

+eErs  +B85  +yEs (D1)
‘.f-‘ H\/-J \q/—/
Rp+R+S—2R+S §— 5, My+5—Sp+M,
Gs(r,5) = aE —B5 —yE5 +8E5* , (D2)

8—§ §— Sy My+5— Sy+Mp Sp+25—38

where E =cy—r—5 and a, b, ¢, d, e, o, B, y, 8, and
co are constants. Chemical reactions are indicated under
corresponding terms in the equations, where the symbols
S and S, denote bound receptor-scaffold complexes at the
membrane and in the cytoplasm, respectively. The last two
terms in Eq. (D1) represent the release of a receptor at the
membrane from a bound receptor-scaffold complex, when
the latter unbinds and its scaffold leaves the membrane. If,
furthermore, unbound scaffolds reach the membrane from the
cytoplasm, and then bind to a receptor at the membrane, the

equations acquire additional terms, as
F/(r,5) = aE —br  —cEr
—_— —_ =

Ry—>R R— Ry My+R— My+R,,

+dE§ +eErs

—— ~———

Ry+S— R+S Ry+R+S—2R+S

—aEr+B5  +yEs  —S8Eri®, (D3)

e ———— N— —

Sp—S S—8, My+S—S,+M, Sp+285—38
Gs(r,5) = aEr -5 —yE§ SErs*. (D4
5(r,§) = aEr —B§ yES 48Er§ (D4)

858 55 5, My+5—Sy+M, Sy+25—358

The last four terms in Eq. (D3) result from receptors either
unbinding from bound receptor-scaffold complexes or binding
to (unbound) scaffolds, at the membrane.

Analogous model variants can be formulated for the con-
verse case, in which receptors can be found at the membrane
only in their bound form, while scaffolds can be either bound
or unbound. While this scenario appears to be less likely
experimentally, it may be interesting on theoretical grounds.
Here, in the case in which receptors arrive at the membrane
in their unbound form and leave the membrane by unbinding
from receptor-scaffold complexes, the reaction terms in the
model variant become

F;(7,s) = aEs —biF  —cEF +eEFs , (DS)
\z-i —— —— ——
Ry—R R— Ry My+R—>My+Ry Ry+R+S—>2R+S
G:(,s) = aE —Bs —yEs +8Ers* —aEs
~—~ —— ——— ——— N —
Sp=>S S8y My+S—> Sp+M, Sp+25—3S R, R
+bF +cEF —eEFs (D6)

R— Ry My+R—My+Ry Ry+R+S—2R+S

where 7 stands for the concentration of bound receptor-scaffold
complexes, R represents a bound receptor-scaffold complex,
and, here, E = co — 7 — s.
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Our rationale for pointing out these “minimal variants”
of model C is that, because they are formally similar to
the original model, they can be analyzed using the general
framework described in the present article. More generally,
however, one would like to examine models with more than
two variables. Additional variables are needed if both unbound

PHYSICAL REVIEW E 92, 032705 (2015)

and stable bound forms of receptors or scaffolds can be present
at the membrane, and also if one is to consider other chemical
species beyond receptors and scaffolds. More detailed models
with a larger number of coupled equations would require an
extensive study of the sort we have summarized in this article
for the case of two-variable models.

[1] A. Citri and R. C. Malenka, Neuropsychopharmacology 33, 18
(2008).

[2] P. Legendre, Cell. Mol. Life Sci. 58, 760 (2001).

[3] C. G. Specht and A. Triller, BioEssays 30, 1062 (2008).

[4] S. K. Tyagarajan and J.-M. Fritschy, Nat. Rev. Neurosci. 15, 141
(2014).

[5] R. C. Carroll, E. C. Beattie, M. von Zastrow, and R. C. Malenka,
Nat. Rev. Neurosci. 2, 315 (2001).

[6] J. D. Shepherd and R. L. Huganir, Ann. Rev. Cell Dev. Biol. 23,
613 (2007).

[7]1 M. Kneussel, A. Triller, and D. Choquet, Cell 157, 1738 (2014).

[8] D. Choquet and A. Triller, Neuron 80, 691 (2013).

[9] D. Choquet and A. Triller, Nat. Rev. Neurosci. 4, 251 (2003).

[10] A. Triller and D. Choquet, Neuron 59, 359 (2008).

[11] A. Triller and D. Choquet, Trends Neurosci. 28, 133 (2005).

[12] S. Okabe, H.-D. Kim, A. Miwa, T. Kuriu, and H. Okado,
Nat. Neurosci. 2, 804 (1999).

[13] N. W. Gray, R. M. Weimer, 1. Bureau, and K. Svoboda, PLoS
Biol. 4, €370 (20006).

[14] M. Calamai, C. G. Specht, J. Heller, D. Alcor, P. Machado,
C. Vannier, and A. Triller, J. Neurosci. 29, 7639 (2009).

[15] N. E. Ziv and A. Fisher-Lavie, Neuroscientist 20, 439 (2014).

[16] J. T. Trachtenberg, B. E. Chen, G. W. Knott, G. Feng, J. R.
Sanes, E. Welker, and K. Svoboda, Nature 420, 788 (2002).

[17] J. Grutzendler, N. Kasthuri, and W.-B. Gan, Nature 420, 8§12
(2002).

[18] F. Crick, Nature 312, 101 (1984).

[19] H. Z. Shouval, Proc. Natl. Acad. Sci. USA 102, 14440 (2005).

[20] K. Sekimoto and A. Triller, Phys. Rev. E 79, 031905 (2009).

[21] D. Holcman and A. Triller, Biophys. J. 91, 2405 (2006).

[22] V. M. Burlakov, N. Emptage, A. Goriely, and P. C. Bressloff,
Phys. Rev. Lett. 108, 028101 (2012).

[23] B. A. Earnshaw and P. C. Bressloff, J. Neurosci. 26, 12362
(2006).

[24] K. Czondor, M. Mondin, M. Garcia, M. Heine, R. Frischknecht,
D. Choquet, J.-B. Sibarita, and O. R. Thoumine, Proc. Natl.
Acad. Sci. USA 109, 3522 (2012).

[25] A. K. McAllister, Ann. Rev. Neurosci. 30, 425 (2007).

[26] J. Meier, C. Meunier-Durmort, C. Forest, A. Triller, and
C. Vannier, J. Cell Sci. 113, 2783 (2000).

[27] J. Meier, C. Vannier, A. Sergé, A. Triller, and D. Choquet,
Nat. Neurosci. 4, 253 (2001).

[28] M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and
A. Triller, Science 302, 442 (2003).

[29] C. A. Haselwandter, M. Calamai, M. Kardar, A. Triller, and
R. Azeredo da Silveira, Phys. Rev. Lett. 106, 238104 (2011).

[30] J. R. Sanes and J. W. Lichtman, Nat. Rev. Neurosci. 2, 791
(2001).

[31] M. J. Anderson and J. Cohen, J. Physiol. 268, 757 (1977).

[32] E. Frank and G. D. Fischbach, J. Cell Biol. 83, 143 (1979).

[33] T. Misgeld, R. W. Burgess, R. M. Lewis, J. M. Cunningham,
J. W. Lichtman, and J. R. Sanes, Neuron 36, 635 (2002).

[34] H. Flanagan-Steet, M. A. Fox, D. Meyer, and J. R. Sanes,
Development 132, 4471 (2005).

[35] J. A. Panzer, S. M. Gibbs, R. Dosch, D. Wagner, M. C. Mullins,
M. Granato, and R. J. Balice-Gordon, Dev. Biol. 285, 340 (2005).

[36] T. T. Kummer, T. Misgeld, and J. R. Sanes, Curr. Opin.
Neurobiol. 16, 74 (2006).

[37] C. Hanus, M.-V. Ehrensperger, and A. Triller, J. Neurosci. 26,
4586 (2006).

[38] J. Kirsch, J. Kuhse, and H. Betz, Mol. Cell. Neurosci. 6, 450
(1995).

[39] A. M. Turing, Phil. Trans. B 237, 37 (1952).

[40] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear
Chemical Dynamics (Oxford University Press, New York,
1998).

[41] D. Walgraef, Spatio-Temporal Pattern Formation (Springer-
Verlag, New York, 1997).

[42] M. Cross and H. Greenside, Pattern Formation and Dynam-
ics in Nonequilibrium Systems (Cambridge University Press,
Cambridge, 2009).

[43] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[44] A. Gierer and H. Meinhard, Kybernetik 12, 30 (1972).

[45] J. D. Murray, Mathematical Biology, 3rd ed. (Springer-Verlag,
Berlin, 2002).

[46] H. Meinhardt, Models of Biological Pattern Formation
(Academic Press, London, 1982).

[47] P. K. Maini and H. G. Othmer, eds., Mathematical Models
for Biological Pattern Formation (Springer-Verlag, New York,
2001).

[48] M. Irie, Y. Hata, M. Takeuchi, K. Ichtchenko, A. Toyoda,
K. Hirao, Y. Takai, T. W. Rosahl, and T. C. Siidhof, Science
277, 1511 (1997).

[49] J.-Y. Song, K. Ichtchenko, T. C. Siidhof, and N. Brose,
Proc. Natl. Acad. Sci. USA 96, 1100 (1999).

[50] N. K. Hussain and M. Sheng, Science 307, 1207 (2005).

[51] B. Chih, H. Engelman, and P. Scheiffele, Science 307, 1324
(2005).

[52] C. Dean and T. Dresbach, Trends Neurosci. 29, 21 (2006).

[53] C. Tardin, L. Cognet, C. Bats, B. Lounis, and D. Choquet,
EMBO J. 22, 4656 (2003).

[54] S. Lévi, C. Schweizer, H. Bannai, O. Pascual, C. Charrier, and
A. Triller, Neuron 59, 1 (2008).

[55] H.Bannai, S. Lévi, C. Schweizer, T. Inoue, T. Launey, V. Racine,
J.-B. Sibarita, K. Mikoshiba, and A. Triller, Neuron 62, 670
(2009).

[56] C. A. Lugo and A.J. McKane, Phys. Rev. E 78, 051911 (2008).

[57] A. J. McKane and T. J. Newman, Phys. Rev. E 70, 041902
(2004).

032705-18


http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1007/PL00000899
http://dx.doi.org/10.1007/PL00000899
http://dx.doi.org/10.1007/PL00000899
http://dx.doi.org/10.1007/PL00000899
http://dx.doi.org/10.1002/bies.20831
http://dx.doi.org/10.1002/bies.20831
http://dx.doi.org/10.1002/bies.20831
http://dx.doi.org/10.1002/bies.20831
http://dx.doi.org/10.1038/nrn3670
http://dx.doi.org/10.1038/nrn3670
http://dx.doi.org/10.1038/nrn3670
http://dx.doi.org/10.1038/nrn3670
http://dx.doi.org/10.1038/35072500
http://dx.doi.org/10.1038/35072500
http://dx.doi.org/10.1038/35072500
http://dx.doi.org/10.1038/35072500
http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123516
http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123516
http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123516
http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123516
http://dx.doi.org/10.1016/j.cell.2014.06.002
http://dx.doi.org/10.1016/j.cell.2014.06.002
http://dx.doi.org/10.1016/j.cell.2014.06.002
http://dx.doi.org/10.1016/j.cell.2014.06.002
http://dx.doi.org/10.1016/j.neuron.2013.10.013
http://dx.doi.org/10.1016/j.neuron.2013.10.013
http://dx.doi.org/10.1016/j.neuron.2013.10.013
http://dx.doi.org/10.1016/j.neuron.2013.10.013
http://dx.doi.org/10.1038/nrn1077
http://dx.doi.org/10.1038/nrn1077
http://dx.doi.org/10.1038/nrn1077
http://dx.doi.org/10.1038/nrn1077
http://dx.doi.org/10.1016/j.neuron.2008.06.022
http://dx.doi.org/10.1016/j.neuron.2008.06.022
http://dx.doi.org/10.1016/j.neuron.2008.06.022
http://dx.doi.org/10.1016/j.neuron.2008.06.022
http://dx.doi.org/10.1016/j.tins.2005.01.001
http://dx.doi.org/10.1016/j.tins.2005.01.001
http://dx.doi.org/10.1016/j.tins.2005.01.001
http://dx.doi.org/10.1016/j.tins.2005.01.001
http://dx.doi.org/10.1038/12175
http://dx.doi.org/10.1038/12175
http://dx.doi.org/10.1038/12175
http://dx.doi.org/10.1038/12175
http://dx.doi.org/10.1371/journal.pbio.0040370
http://dx.doi.org/10.1371/journal.pbio.0040370
http://dx.doi.org/10.1371/journal.pbio.0040370
http://dx.doi.org/10.1371/journal.pbio.0040370
http://dx.doi.org/10.1523/JNEUROSCI.5711-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5711-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5711-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5711-08.2009
http://dx.doi.org/10.1177/1073858414523321
http://dx.doi.org/10.1177/1073858414523321
http://dx.doi.org/10.1177/1073858414523321
http://dx.doi.org/10.1177/1073858414523321
http://dx.doi.org/10.1038/nature01273
http://dx.doi.org/10.1038/nature01273
http://dx.doi.org/10.1038/nature01273
http://dx.doi.org/10.1038/nature01273
http://dx.doi.org/10.1038/nature01276
http://dx.doi.org/10.1038/nature01276
http://dx.doi.org/10.1038/nature01276
http://dx.doi.org/10.1038/nature01276
http://dx.doi.org/10.1038/312101a0
http://dx.doi.org/10.1038/312101a0
http://dx.doi.org/10.1038/312101a0
http://dx.doi.org/10.1038/312101a0
http://dx.doi.org/10.1073/pnas.0506934102
http://dx.doi.org/10.1073/pnas.0506934102
http://dx.doi.org/10.1073/pnas.0506934102
http://dx.doi.org/10.1073/pnas.0506934102
http://dx.doi.org/10.1103/PhysRevE.79.031905
http://dx.doi.org/10.1103/PhysRevE.79.031905
http://dx.doi.org/10.1103/PhysRevE.79.031905
http://dx.doi.org/10.1103/PhysRevE.79.031905
http://dx.doi.org/10.1529/biophysj.106.081935
http://dx.doi.org/10.1529/biophysj.106.081935
http://dx.doi.org/10.1529/biophysj.106.081935
http://dx.doi.org/10.1529/biophysj.106.081935
http://dx.doi.org/10.1103/PhysRevLett.108.028101
http://dx.doi.org/10.1103/PhysRevLett.108.028101
http://dx.doi.org/10.1103/PhysRevLett.108.028101
http://dx.doi.org/10.1103/PhysRevLett.108.028101
http://dx.doi.org/10.1523/JNEUROSCI.3601-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.3601-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.3601-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.3601-06.2006
http://dx.doi.org/10.1073/pnas.1109818109
http://dx.doi.org/10.1073/pnas.1109818109
http://dx.doi.org/10.1073/pnas.1109818109
http://dx.doi.org/10.1073/pnas.1109818109
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112830
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112830
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112830
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112830
http://dx.doi.org/10.1038/85099
http://dx.doi.org/10.1038/85099
http://dx.doi.org/10.1038/85099
http://dx.doi.org/10.1038/85099
http://dx.doi.org/10.1126/science.1088525
http://dx.doi.org/10.1126/science.1088525
http://dx.doi.org/10.1126/science.1088525
http://dx.doi.org/10.1126/science.1088525
http://dx.doi.org/10.1103/PhysRevLett.106.238104
http://dx.doi.org/10.1103/PhysRevLett.106.238104
http://dx.doi.org/10.1103/PhysRevLett.106.238104
http://dx.doi.org/10.1103/PhysRevLett.106.238104
http://dx.doi.org/10.1038/35097557
http://dx.doi.org/10.1038/35097557
http://dx.doi.org/10.1038/35097557
http://dx.doi.org/10.1038/35097557
http://dx.doi.org/10.1113/jphysiol.1977.sp011880
http://dx.doi.org/10.1113/jphysiol.1977.sp011880
http://dx.doi.org/10.1113/jphysiol.1977.sp011880
http://dx.doi.org/10.1113/jphysiol.1977.sp011880
http://dx.doi.org/10.1083/jcb.83.1.143
http://dx.doi.org/10.1083/jcb.83.1.143
http://dx.doi.org/10.1083/jcb.83.1.143
http://dx.doi.org/10.1083/jcb.83.1.143
http://dx.doi.org/10.1016/S0896-6273(02)01020-6
http://dx.doi.org/10.1016/S0896-6273(02)01020-6
http://dx.doi.org/10.1016/S0896-6273(02)01020-6
http://dx.doi.org/10.1016/S0896-6273(02)01020-6
http://dx.doi.org/10.1242/dev.02044
http://dx.doi.org/10.1242/dev.02044
http://dx.doi.org/10.1242/dev.02044
http://dx.doi.org/10.1242/dev.02044
http://dx.doi.org/10.1016/j.ydbio.2005.06.027
http://dx.doi.org/10.1016/j.ydbio.2005.06.027
http://dx.doi.org/10.1016/j.ydbio.2005.06.027
http://dx.doi.org/10.1016/j.ydbio.2005.06.027
http://dx.doi.org/10.1016/j.conb.2005.12.003
http://dx.doi.org/10.1016/j.conb.2005.12.003
http://dx.doi.org/10.1016/j.conb.2005.12.003
http://dx.doi.org/10.1016/j.conb.2005.12.003
http://dx.doi.org/10.1523/JNEUROSCI.5123-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.5123-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.5123-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.5123-05.2006
http://dx.doi.org/10.1006/mcne.1995.1033
http://dx.doi.org/10.1006/mcne.1995.1033
http://dx.doi.org/10.1006/mcne.1995.1033
http://dx.doi.org/10.1006/mcne.1995.1033
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1126/science.277.5331.1511
http://dx.doi.org/10.1126/science.277.5331.1511
http://dx.doi.org/10.1126/science.277.5331.1511
http://dx.doi.org/10.1126/science.277.5331.1511
http://dx.doi.org/10.1073/pnas.96.3.1100
http://dx.doi.org/10.1073/pnas.96.3.1100
http://dx.doi.org/10.1073/pnas.96.3.1100
http://dx.doi.org/10.1073/pnas.96.3.1100
http://dx.doi.org/10.1126/science.1110011
http://dx.doi.org/10.1126/science.1110011
http://dx.doi.org/10.1126/science.1110011
http://dx.doi.org/10.1126/science.1110011
http://dx.doi.org/10.1126/science.1107470
http://dx.doi.org/10.1126/science.1107470
http://dx.doi.org/10.1126/science.1107470
http://dx.doi.org/10.1126/science.1107470
http://dx.doi.org/10.1016/j.tins.2005.11.003
http://dx.doi.org/10.1016/j.tins.2005.11.003
http://dx.doi.org/10.1016/j.tins.2005.11.003
http://dx.doi.org/10.1016/j.tins.2005.11.003
http://dx.doi.org/10.1093/emboj/cdg463
http://dx.doi.org/10.1093/emboj/cdg463
http://dx.doi.org/10.1093/emboj/cdg463
http://dx.doi.org/10.1093/emboj/cdg463
http://dx.doi.org/10.1016/j.neuron.2008.06.016
http://dx.doi.org/10.1016/j.neuron.2008.06.016
http://dx.doi.org/10.1016/j.neuron.2008.06.016
http://dx.doi.org/10.1016/j.neuron.2008.06.016
http://dx.doi.org/10.1016/j.neuron.2009.04.023
http://dx.doi.org/10.1016/j.neuron.2009.04.023
http://dx.doi.org/10.1016/j.neuron.2009.04.023
http://dx.doi.org/10.1016/j.neuron.2009.04.023
http://dx.doi.org/10.1103/PhysRevE.78.051911
http://dx.doi.org/10.1103/PhysRevE.78.051911
http://dx.doi.org/10.1103/PhysRevE.78.051911
http://dx.doi.org/10.1103/PhysRevE.78.051911
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://dx.doi.org/10.1103/PhysRevE.70.041902
http://dx.doi.org/10.1103/PhysRevE.70.041902

SELF-ASSEMBLY AND PLASTICITY OF SYNAPTIC ...

[58] J. E. Satulovsky, J. Theor. Biol. 183, 381 (1996).

[59] I. L. Novak, B. M. Slepchenko, A. Mogilner, and L. M. Loew,
Phys. Rev. Lett. 93, 268109 (2004).

[60] S. Kondo and T. Miura, Science 329, 1616 (2010).

[61] J. Howard, S. W. Grill, and J. S. Bois, Nat. Rev. Mol. Cell Biol.
12,392 (2011).

[62] S. Butz, M. Okamoto, and T. C. Stidhof, Cell 94, 773 (1998).

[63] E. Yeramian and J.-P. Changeux, C. R. Acad. Sc. Paris 302, 609
(1986).

[64] J. Reinitz, Nature 482, 464 (2012).

[65] P. K. Maini, Proc. Natl. Acad. Sci. USA 100, 9656 (2003).

[66] N. Suzuki, M. Hirata, and S. Kondo, Proc. Natl. Acad. Sci. USA
100, 9680 (2003).

[67] P. K. Maini, R. E. Baker, and C.-M. Chuong, Science 314, 1397
(2006).

[68] S. Sick, S. Reinker, J. Trimmer, and T. Schlake, Science 314,
1447 (2006).

[69] L. Wolpert, J. Theor. Biol. 25, 1 (1969).

[70] M. Howard, A. D. Rutenberg, and S. de Vet, Phys. Rev. Lett. 87,
278102 (2001).

[71] H. Meinhardt and P. A. J. de Boer, Proc. Natl. Acad. Sci. USA
98, 14202 (2001).

[72] K. C. Huang, Y. Meir, and N. S. Wingreen, Proc. Natl. Acad.
Sci. USA 100, 12724 (2003).

[73] R. V. Kulkarni, K. C. Huang, M. Kloster, and N. S. Wingreen,
Phys. Rev. Lett. 93, 228103 (2004).

[74] L. Rothfield, A. Taghbalout, and Y.-L. Shih, Nat. Rev. Microbiol.
3, 959 (2005).

[75] K. Kruse, M. Howard, and W. Margolin, Mol. Microbiol. 63,
1279 (2007).

PHYSICAL REVIEW E 92, 032705 (2015)

[76] J. Lutkenhaus, Annu. Rev. Biochem. 76, 539 (2007).

[77] M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, and P.
Schwille, Science 320, 789 (2008).

[78] J. Kirsch, 1. Wolters, A. Triller, and H. Betz, Nature 366, 745
(1993).

[79] C. Béchade, I. Colin, J. Kirsch, H. Betz, and A. Triller, Eur. J.
Neurosci. 8, 429 (1996).

[80] C. M. McCann, J. C. Tapia, H. Kim, J. S. Coggan, and J. W.
Lichtman, Nat. Neurosci. 11, 807 (2008).

[81] G. Strobl, The Physics of Polymers, 3rd ed. (Springer-Verlag,
Berlin, 2006).

[82] A. Gamba, I. Kolokolov, V. Lebedev, and G. Ortenzi, Phys. Rev.
Lett. 99, 158101 (2007).

[83] T. Butler and N. Goldenfeld, Phys. Rev. E 80, 030902
(2009).

[84] T. Butler and N. Goldenfeld, Phys. Rev. E 84, 011112 (2011).

[85] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry, 2nd ed. (North-Holland, Amsterdam, 1992).

[86] C. A. Haselwandter and D. D. Vvedensky, Phys. Rev. E 76,
041115 (2007).

[87] R. F. Fox and J. Keizer, Phys. Rev. A 43, 1709 (1991).

[88] W. Horsthemke and L. Brenig, Z. Phys. B 27, 341 (1977).

[89] C. A. Haselwandter and D. D. Vvedensky, J. Phys. A: Math.
Gen. 35, L579 (2002).

[90] S. Hanna, W. Hess, and R. Klein, Physica A: Stat. Mech. Appl.
111, 181 (1982).

[91] J. Sun and H. Weinstein, J. Chem. Phys. 127, 155105
(2007).

[92] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).

[93] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).

032705-19


http://dx.doi.org/10.1006/jtbi.1996.0229
http://dx.doi.org/10.1006/jtbi.1996.0229
http://dx.doi.org/10.1006/jtbi.1996.0229
http://dx.doi.org/10.1006/jtbi.1996.0229
http://dx.doi.org/10.1103/PhysRevLett.93.268109
http://dx.doi.org/10.1103/PhysRevLett.93.268109
http://dx.doi.org/10.1103/PhysRevLett.93.268109
http://dx.doi.org/10.1103/PhysRevLett.93.268109
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1038/nrm3120
http://dx.doi.org/10.1038/nrm3120
http://dx.doi.org/10.1038/nrm3120
http://dx.doi.org/10.1038/nrm3120
http://dx.doi.org/10.1016/S0092-8674(00)81736-5
http://dx.doi.org/10.1016/S0092-8674(00)81736-5
http://dx.doi.org/10.1016/S0092-8674(00)81736-5
http://dx.doi.org/10.1016/S0092-8674(00)81736-5
http://dx.doi.org/10.1038/482464a
http://dx.doi.org/10.1038/482464a
http://dx.doi.org/10.1038/482464a
http://dx.doi.org/10.1038/482464a
http://dx.doi.org/10.1073/pnas.1734061100
http://dx.doi.org/10.1073/pnas.1734061100
http://dx.doi.org/10.1073/pnas.1734061100
http://dx.doi.org/10.1073/pnas.1734061100
http://dx.doi.org/10.1073/pnas.1731184100
http://dx.doi.org/10.1073/pnas.1731184100
http://dx.doi.org/10.1073/pnas.1731184100
http://dx.doi.org/10.1073/pnas.1731184100
http://dx.doi.org/10.1126/science.1136396
http://dx.doi.org/10.1126/science.1136396
http://dx.doi.org/10.1126/science.1136396
http://dx.doi.org/10.1126/science.1136396
http://dx.doi.org/10.1126/science.1130088
http://dx.doi.org/10.1126/science.1130088
http://dx.doi.org/10.1126/science.1130088
http://dx.doi.org/10.1126/science.1130088
http://dx.doi.org/10.1016/S0022-5193(69)80016-0
http://dx.doi.org/10.1016/S0022-5193(69)80016-0
http://dx.doi.org/10.1016/S0022-5193(69)80016-0
http://dx.doi.org/10.1016/S0022-5193(69)80016-0
http://dx.doi.org/10.1103/PhysRevLett.87.278102
http://dx.doi.org/10.1103/PhysRevLett.87.278102
http://dx.doi.org/10.1103/PhysRevLett.87.278102
http://dx.doi.org/10.1103/PhysRevLett.87.278102
http://dx.doi.org/10.1073/pnas.251216598
http://dx.doi.org/10.1073/pnas.251216598
http://dx.doi.org/10.1073/pnas.251216598
http://dx.doi.org/10.1073/pnas.251216598
http://dx.doi.org/10.1073/pnas.2135445100
http://dx.doi.org/10.1073/pnas.2135445100
http://dx.doi.org/10.1073/pnas.2135445100
http://dx.doi.org/10.1073/pnas.2135445100
http://dx.doi.org/10.1103/PhysRevLett.93.228103
http://dx.doi.org/10.1103/PhysRevLett.93.228103
http://dx.doi.org/10.1103/PhysRevLett.93.228103
http://dx.doi.org/10.1103/PhysRevLett.93.228103
http://dx.doi.org/10.1038/nrmicro1290
http://dx.doi.org/10.1038/nrmicro1290
http://dx.doi.org/10.1038/nrmicro1290
http://dx.doi.org/10.1038/nrmicro1290
http://dx.doi.org/10.1111/j.1365-2958.2007.05607.x
http://dx.doi.org/10.1111/j.1365-2958.2007.05607.x
http://dx.doi.org/10.1111/j.1365-2958.2007.05607.x
http://dx.doi.org/10.1111/j.1365-2958.2007.05607.x
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142652
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142652
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142652
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142652
http://dx.doi.org/10.1126/science.1154413
http://dx.doi.org/10.1126/science.1154413
http://dx.doi.org/10.1126/science.1154413
http://dx.doi.org/10.1126/science.1154413
http://dx.doi.org/10.1038/366745a0
http://dx.doi.org/10.1038/366745a0
http://dx.doi.org/10.1038/366745a0
http://dx.doi.org/10.1038/366745a0
http://dx.doi.org/10.1111/j.1460-9568.1996.tb01226.x
http://dx.doi.org/10.1111/j.1460-9568.1996.tb01226.x
http://dx.doi.org/10.1111/j.1460-9568.1996.tb01226.x
http://dx.doi.org/10.1111/j.1460-9568.1996.tb01226.x
http://dx.doi.org/10.1038/nn.2145
http://dx.doi.org/10.1038/nn.2145
http://dx.doi.org/10.1038/nn.2145
http://dx.doi.org/10.1038/nn.2145
http://dx.doi.org/10.1103/PhysRevLett.99.158101
http://dx.doi.org/10.1103/PhysRevLett.99.158101
http://dx.doi.org/10.1103/PhysRevLett.99.158101
http://dx.doi.org/10.1103/PhysRevLett.99.158101
http://dx.doi.org/10.1103/PhysRevE.80.030902
http://dx.doi.org/10.1103/PhysRevE.80.030902
http://dx.doi.org/10.1103/PhysRevE.80.030902
http://dx.doi.org/10.1103/PhysRevE.80.030902
http://dx.doi.org/10.1103/PhysRevE.84.011112
http://dx.doi.org/10.1103/PhysRevE.84.011112
http://dx.doi.org/10.1103/PhysRevE.84.011112
http://dx.doi.org/10.1103/PhysRevE.84.011112
http://dx.doi.org/10.1103/PhysRevE.76.041115
http://dx.doi.org/10.1103/PhysRevE.76.041115
http://dx.doi.org/10.1103/PhysRevE.76.041115
http://dx.doi.org/10.1103/PhysRevE.76.041115
http://dx.doi.org/10.1103/PhysRevA.43.1709
http://dx.doi.org/10.1103/PhysRevA.43.1709
http://dx.doi.org/10.1103/PhysRevA.43.1709
http://dx.doi.org/10.1103/PhysRevA.43.1709
http://dx.doi.org/10.1007/BF01320526
http://dx.doi.org/10.1007/BF01320526
http://dx.doi.org/10.1007/BF01320526
http://dx.doi.org/10.1007/BF01320526
http://dx.doi.org/10.1088/0305-4470/35/41/104
http://dx.doi.org/10.1088/0305-4470/35/41/104
http://dx.doi.org/10.1088/0305-4470/35/41/104
http://dx.doi.org/10.1088/0305-4470/35/41/104
http://dx.doi.org/10.1016/0378-4371(82)90088-7
http://dx.doi.org/10.1016/0378-4371(82)90088-7
http://dx.doi.org/10.1016/0378-4371(82)90088-7
http://dx.doi.org/10.1016/0378-4371(82)90088-7
http://dx.doi.org/10.1063/1.2789434
http://dx.doi.org/10.1063/1.2789434
http://dx.doi.org/10.1063/1.2789434
http://dx.doi.org/10.1063/1.2789434
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008



