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Role of mechanical factors in cortical folding development
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Deciphering mysteries of the structure-function relationship in cortical folding has emerged as the cynosure of
recent research on brain. Understanding the mechanism of convolution patterns can provide useful insight into the
normal and pathological brain function. However, despite decades of speculation and endeavors the underlying
mechanism of the brain folding process remains poorly understood. This paper focuses on the three-dimensional
morphological patterns of a developing brain under different tissue specification assumptions via theoretical
analyses, computational modeling, and experiment verifications. The living human brain is modeled with a soft
structure having outer cortex and inner core to investigate the brain development. Analytical interpretations of
differential growth of the brain model provide preliminary insight into the critical growth ratio for instability and
crease formation of the developing brain followed by computational modeling as a way to offer clues for brain’s
postbuckling morphology. Especially, tissue geometry, growth ratio, and material properties of the cortex are
explored as the most determinant parameters to control the morphogenesis of a growing brain model. As indicated
in results, compressive residual stresses caused by the sufficient growth trigger instability and the brain forms
highly convoluted patterns wherein its gyrification degree is specified with the cortex thickness. Morphological
patterns of the developing brain predicted from the computational modeling are consistent with our neuroimaging
observations, thereby clarifying, in part, the reason of some classical malformation in a developing brain.
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I. INTRODUCTION

Brain development and related cerebral convolution have
been fascinating research topics for more than a century [1–3].
The grooves in the convoluted brain are called sulci and the
ridges between them are called gyri. The outer layer of the
brain is composed of folded gray matters, called the cortex,
which is in turn made up of neuronal cell bodies and other
support materials. The subcortex, or inner core, consists mostly
of the white myelinated sheaths of neuronal axons [4]. Brain
development is a sequence of complicated and convoluted
processes starting from the growth of neuronal tubes, followed
by neuronal proliferation, glial cell proliferation, neuronal
migration and differentiation, axonal wiring, synaptogenesis,
and myelination.

However, a comprehensive understanding of how those
processes interactively accomplish the brain development still
remains to be elucidated [5–7]. During the development,
the cerebral cortex experiences a noticeable expansion in
volume and surface area accompanied by tremendous tissue
folding [8,9]. Although there have been extensive studies on
the brain folding over the past several decades, the mechanism
of cortical folding is still ambiguous and debatable [10].
The most famous hypotheses in this area are related to the
roles of radial growth, internal tension in neuronal fibers, and
differential expansion of the cortex [10,11]. However, there
are some evidences from experimental observations which
contradict the first two hypotheses [10,12]. In the differential
growth hypothesis, the outer layer of the brain is assumed
to grow at a faster rate than the inner layer, acting as the
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driving mechanism of cortical folding [13]. Mismatch between
growth rates of the layers engenders residual stresses which
have been observed in a growing brain [14] and are believed
to play a crucial role in the brain morphogenesis. Based
on the differential growth hypothesis, several theoritical and
computational studies have been conducted to reveal, in part,
the cortical folding phenomenon, for example; buckling of
an elastic surface on an elastic foundation [15], continuum
mechanics-based model of growth [16], and 2D and 3D com-
putational models [12,17,18]. In most previous studies related
to the elastic buckling models of the brain, the elastic modulus
of the outer layer was much higher than the core in order
to produce buckling patterns which were not consistent with
experimental observations [15,16]. In fact, the elastic modulus
of the outer layer of cortex is not significantly different than
that of inner regions of the brain [19–21]. A computational
model of cortical convolution [18] suggested that without any
additional assumption, the simple mechanical property of the
cortex and differential growth is sufficient to produce cortical
folding, which has been proven by other studies [11,13].

Recently, it has been shown that morphological abnormal-
ities related to the cortex of the developing brain can be
demonstrated by the mechanical model [22]. For example,
Lissencephaly, which literally means “a smooth brain,” is a
rare brain formation disorder caused by imperfect neuronal
migration characterized by the absence of normal convolutions
in the cerebral cortex [23–25]. A mechanical model with
thick cortex and reduced growth in the cortical layer can
identify specifications of this malformation [22]. Another
example of brain abnormality is Polymicrogyria which surface
of the brain normally has many folds. Either the whole
surface (generalized) or parts of the surface (focal) can be
affected [23,26]. A model with thin cortex and reduced growth
in subcortical layer can mimic Polymicrogyria [22]. There are
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FIG. 1. (Color online) (a) Idealized spherical bilayer brain model; (b) and (c) biological foundation of neurogenesis we are interested in; (d)
flow chart of how Trnp1 regulates the cortical folding pattern. The dashed line arrows suggest macroscale features of the cortex. Abbreviations:
aRGC, apical RGC; bRGC, basal RGC; BP, basal progenitor; CP, cortical plate; VZ, ventricular zone; SVZ, subventricular zone; SP, subplate;
IZ, intermediate zone.

few reports on the 3D computational understanding of the brain
morphology and its link to brain malformation. Therefore,
study and research in this area is worthy of pursuit and may
open new windows to diagnosis, treatment, and therapy of
severe disorders. The aim of this work is to investigate the
growth and instability of a growing (cortex and core) 3D
brain model, introduce a way to find the criteria for instability
and gyrification, and link the gyrification patterns and their
hinge types to the brain geometry and material property.
Computational simulations are also performed in order to
compare with the results from the analytical approach and
to predict secondary morphological patterns of the growing
brain model. Finally, experimental observations are presented
to validate the simulation results.

II. METHODS

We use an analytical model to establish a primary intuition
into crease formation of the developing brain and determine
the critical growth for the onset of folding. Nevertheless,
the analytical method cannot predict the evolution of corti-
cal complex convolution after the critical point. Therefore,
following the critical growth of the brain model, nonlinear
finite element models based on finite differential growth are
employed to investigate the secondary morphological folds of
the growing brain. Here we briefly introduce the the concept
of each approach.

A. Analytical method

A three-dimensional (3D) spherical model consisting of
bilayer soft tissue [Fig. 1(a)] is constructed to explore the
mechanism of cortical folding. The outer layer of the model
represents the developing cortical plate of the brain (cortex)
and the inner layer is considered as the core of the brain which
is a simple organization of the subplate, intermediate zone,
and ventricular zone. Typically, cerebral cortex is a thin layer
(2–4 mm) [10] in contrast to the core usually with a thickness of
50 mm. As mentioned in the Introduction section, the differen-
tial growth theory assumes that the cortex grows at a faster rate
than the core of the brain, which is considered as the driving
mechanism of cortical folding. Figure 1 provides the biological

support of our 3D brain model. The flowchart in Fig. 1(d)
summarizes the mechanism of the diffrential growth from
a biological viewpoint. Generally, radial glial cells (RGCs)
with lower levels of Trnp1 can generate basal progenitors
(BPs), also known as intermediate progenitors (IPCs), and
basal radial glial cells (bRGCs). BPs can produce neurons,
while bRGCs provide additional guiding structures inducing
faster neuron migration and finally resulting in considerable
radial and lateral expansion, i.e., the convex folding pattern
suggested in Refs. [27,28]. Hence the distribution difference
of RGCs, at the cell level, regulates the cortical plate expansion
by controlling the amount of migrating neurons. Based on the
abovementioned biological mechanism, we can consider the
outer layer of our model (cortex) grows faster than the inner
layer (core) in our brain model.

We investigate the deformation, instability and gyrification
of a cortex-core spherical brain model within the framework
of finite elasticity. We use spherical coordinate systems; X =
(R, �, �) for the reference configuration and x = (r, θ, ϕ)
for the grown and current configuration, Fig. 2.

Following the theory of multiplicative decomposition [29],
the deformation gradient, F(X), is decomposed to a growth
tensor G(X) indicating the addition of materials, and an
elastic deformation tensor A(X) describing pure deformation
resulting from stresses:

F = A · G, (1)

FIG. 2. (Color online) Growth of a spherical bilayer brain model
from the initial configuration to current configuration.
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where F = ∂x/∂ X . The growth tensor maps a stress-free
reference configuration to a grown stress-free state, and then
the elastic deformation tensor maps the grown state to a
stressed current state, Eq. (1). Although both G and A tensors
may be incompatible deformations, their multiplication, F,
should be a compatible deformation [29].

Without loss of generality, we assume that growth takes
place only in the cortex of our brain model. For an isotropic
growth, the growth tensor can be characterized by G = g I ,
where g (g � 1) is a constant and I is a unit tensor; for a
tangential growth we consider there is no growth in the radial
direction. Due to the spherical symmetry of our model, the
elastic deformation tensor can be expressed for the isotropic
growth as

A = diag(λr,λθ ,λϕ) , λr = g−1∂r/∂R,

λθ = λϕ = g−1r/R (2)

and for the tangential growth as

A = diag(λr,λθ ,λϕ), λr = ∂r/∂R, λθ = λϕ = g−1r/R.

(3)

In general, the elastic deformation of a living soft tissue
yields a small amount of volume change; therefore, the
nonlinear response of the living tissue can be described
by an isotropic incompressible hyperelastic material. The
incompressibility of the material implies that the determinant
of the elastic deformation tensor should be equal to unit, i.e.,
detA = 1. Here, to ensure incompressibility and hyperelastic-
ity, a simple and common isotropic nonlinear neo-Hookean
constitutive relationship is implemented

W = μ

2

(
λ2

r + λ2
θ + λ2

ϕ − 3
)
, (4)

where μ is the shear modulus, and λr , λ, and λϕ are the radial
and tangential principal stretches. Therefore, Cauchy stress σ

can be related to the strain energy function by

σ = A
∂W

∂ A
− p I, (5)

where p is the hydrostatic pressure and I is a second-order
unit vector. Mechanical equilibrium, without any body force,
enforces the governing equation as

divσ = 0, (6)

where “div” stands for the divergence operator in the current
configuration. Due to the symmetry of our brain model, the
deformation field after growth only depends R, r = r(R).
For simplicity, we assume that a fixed boundary condition
is applied at R = A = C/2 in our brain model as shown in
Fig. 2.

In order to find the critical growth ratio for instability, we
follow the approach from our previous study on the crease
formation of a biological tube due to growth in a confined
environment [30]. Creases typically happen at the surface of
a soft material without any hard skin in which an initially
smooth surface forms a self-contacting shape with a sharp
ridge or sulci [31]. The critical condition for the onset of crease
formation in a compressed neo-Hookean soft material is

λr/λθ,ϕ � 2.4, (7)

where λr is the ratio of the principal stretch in the radial
direction, while λθ,ϕ are the ratio of the principal stretches
in the circumferential directions. This principle has been
derived from a comparison of the elastic energy between in
a creased body and in a smooth body [32]. In our bilayer brain
model, the cortex grows faster than the core which acts as
a confinement on the cortex. Mismatch between the growth
rates of the cortex and core may induce compressive stresses.
When this compressive stress exceeds a critical value, creases
are expected to occur on the free surface of our model [30].

B. Numerical method

After onset of instability in a developing brain model,
in order to predict the secondary morphological change,
computational models based on a nonlinear finite element
are carried out to complement the investigation from the
analytical method. Both the cortex and core of the brain
model are considered as hyperelastic neo-Hookean materials
and the growth is mimicked via thermal expansion [33,34].
Self-contact property is added on the free surface of the
cortex to reproduce the contact phenomenon while avoiding
mesh penetration. A spherical hole is placed in the center
of the model and a fixed boundary condition is applied.
Since this fixed boundary is far enough from the surface
of the cortex, its influence on the deformation pattern of
the model can be negligible. Dynamic-explicit solver in the
commercial software Abaqus [35], which is suitable for
large deformation, nonlinear, and quasistatic problems, is
implemented to perform the secondary morphological changes
in the brain model. Both the cortex and core of the brain
model are meshed by a 3D stress, eight-node linear brick
C3D8R element type with linear and quadratic viscosity of
0.06 and 1.2 in the dynamic step, respectively. Morphological
patterns after instability in the brain model are not guaranteed
to be exactly symmetric although the initial configuration is
symmetric [36,37]. Robustness studies conclude that as long
as the mesh size is small enough the qualitative features of the
brain model do not depend on mesh size. The morphological
pattern of the brain model also does not depend on the absolute
value of shear moduli of the cortex and core but on the ratio
of shear moduli. With the condition of incompressibility and
Eq. (2), the growth rate of the cortex (g) for the isotropic growth
case can be estimated from the volume ratio of the deformed
system, V , to the undeformed system, V0, gs

3 = V/V0.

III. RESULTS

With the application of Eq. (1), along with governing
equations and boundary conditions, deformation and stress
fields, the growth criterion for instability, and the secondary
morphology can be achieved. These analytical findings com-
bined with the FE models are able to explain some unique
mechanical characteristics of a developing brain.

A. Deformation and stress fields

Based on Eq. (1) and its extension to the brain model in
Fig. 2, the deformation field of a growing brain model can
be determined. For the case of isotropic growth, the growth
tensor can be characterized by G = g I , where g (g � 1)
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FIG. 3. (Color online) (a) Normalized deformation for the outer radius of cortex according to the isotropic growth ratios of cortex. Initial
thickness of cortex is 2 and initial outer radius of cortex is 50 units. Cortex and core have the same material property. (b) Normalized tangential
stress (σ/μs) distribution in the cortex with different thicknesses. Isotropic growth ratio for cortex of all models is gs = 2.

is a constant and I is the unit tensor, so gr = gθ = gϕ = g.
The incompressibility condition implies the determinant of the
elastic deformation tensor should be equal to unit, detA = 1.
Therefore, for the isotropic growth of the brain model we can
have

r2∂r = g3R2∂R. (8)

By introducing r = r
A

, R = R
A

, B = B
A

, C = C
A

, and
integrating Eq. (8), the deformation field for the core can be
derived as

r
3 = 1 + gc

3(R
3 − 1) 1 � R � B, (9)

where gc is the isotropic growth rate in the core. Following
the similar way and the continuity condition at the interface of
the cortex and core, we can have the deformation field of the
cortex as follows:

r
3 = 1 + g3

c (B
3 − 1) + g3

s (R
3 − B

3
) B � R � C, (10)

where gs is the isotropic growth rate of the cortex. Without
loss of generality, we assume that growth takes place only in
the cortex, so gc = 1, and Eq. (10) can be simplified as

r̄3 = 1 + g3
s (R̄3 − 1) 1 � R̄ � C̄, (11)

where r̄ = r
B

, R̄ = R
B

, and C̄ = C
B

. To find the normalized
deformed outer radius of the cortex, c̄ = c

B
, we should

substitute the normalized initial outer radius of the cortex,
C̄, into Eq. (11).

Figure 3(a) depicts the normalized outer radius of the cortex
after deformation under different isotropic growth rates. The
initial thickness for the cortex is 2 (T = C − B) and the
initial outer layer radius of the cortex (C) is 50 units [12].
c̄ is a normalized value with c̄ = c/B, where B is the initial
undeformed inner radius of the cortex shown in Fig. 2.

From Fig. 3(a) it can be clearly noticed that there is a
very good agreement between the theoretical analysis and the
finite element (FE) result for the deformation field of our brain
model. From the FE model, after a critical growth rate the
model loses stability and reaches to an irregular configuration.
However, theoretical analysis cannot predict the evolution
of cortical complex convolutions after the critical point for
instability.

Figure 3(b) shows the normalized tangential stress (the ratio
of the tangential stress to the shear modulus of the cortex) of
the models under three different thicknesses of the cortex. We
fix the isotropic growth rate of the cortex as gs = 2 in all three
models. Results point out that due to the growth of the cortex
considerable compressive stresses are engendered through the
cortex thickness. The thinner the cortex in the brain model
is, the higher the compressive stress is. Also this compressive
stress may play a crucial role in the instability of our brain
model since several previous studies have shown that this kind
of compressive stress in the free surface of soft materials leads
to the formation of creases [30,32,33,36]. Before that, we need
to answer what the critical growth rate of the cortex is for
instability.

B. Instability and secondary deformation

The previous section has revealed that a compressive stress
can be built up on the free surface of the cortex, thereby
possibly resulting in creases [32]. Following Eqs. (7), (8),
and (11), we can find the critical growth rate of the cortex for
the case of isotropic growth

gcrit = [1/(1 − 7/12C̄3)]1/3. (12)

For the case of tangential growth, the critical growth rate
for the cortex is

g3
critC̄

3 − 2.4g2
crit(C̄

3 − 1) − 2.4 = 0. (13)

Figure 4 depicts the results from Eqs. (12) and (13), in
which the critical growth rate depends on the initial geometry
of the model, especially the thickness of the cortex.

As shown in Fig. 4, with respect to the isotropic growth
case, beyond a critical value of the outer radius of the cortex,
C̄ ∼= 1.2, instability does not occur no matter what the growth
ratio of the cortex to core is. Similar phenomenon has been
observed experimentally in a bilayer tissue model [37]. In
other words, it means that a growing brain with a thick cortex
is more stable than one with a thin cortex. With the decrease
of the cortex thickness, the critical growth ratio for instability
decreases, and g � 1.34 is required to start instability for a
brain model with a very thin cortex which means from the
analytical viewpoint the cortex should grow at least 1.34 times
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FIG. 4. (Color online) Critical growth ratio for starting instability
for isotropic and tangential growth of cortex. C̄ is the normalized
value as defined C̄ = C/B, where C and B are the initial unreformed
inner and outer radius of cortex.

faster than the core to generate cortical folding. In contrast,
with respect to the case of the tangential growth, instability
always happens in the brain model once it reaches the critical
growth irrespective of the thickness ratio of the cortex to core.
In the model with a thin cortex, the critical growth ratio for
starting instability in both tangential and isotropic growth cases
are very close to each other as shown in Fig. 4. Also we have
made a comparison of the critical growth ratio in the cortex
for instability between the results from analytical methods and
FE models, which show a good agreement with each other.

Beyond instability, we can carry out a series of nonlinear
FE models with different thicknesses and material properties
of the cortex and core to capture the morphological evolution
of the brain model during the gyrification process. For the
sake of computational efficiency and based on the symmetry
of our brain model, a half spherical model is adopted in our
FE analysis. For example, Fig. 5 shows the morphological
evolution of the brain model during the gyrification process
with a set of special parameters, C̄ = 50/48 ≈ 1.042 and
μcortex/μcore = 2. It can be observed that after a critical growth

FIG. 5. (Color online) Morphological evolution steps for a grow-
ing bilayer spherical brain model; (a)–(f) initial thickness of cortex
is 2 and initial outer layer of cortex (C) is 50 units. Contour shows
displacement (figures are not in same scale).

FIG. 6. Morphological evolution of the growing model with
different thickness of cortex, μcortex/μcore = 2. Time steps from 1
to 3 show gyrification of models step by step (figures are not in same
scale).

ratio the brain model starts to deviate from the spherical shape
as depicted in Fig. 5(a), indicating the model loses its stability
and enters a new configuration with developed folds. With the
continuation of growth, folds start to become more convoluted
and go deeper inside the brain. Simulation results indicate that
the gyrification pattern from our brain model is very similar to
the real brain, although it should be kept in mind that the real
gyrification of the brain is a sequence of complicated processes
which starts from the growth of neuronal tubes, followed
by neuronal proliferation, glial cell proliferation, neuronal
migration and differentiation, axonal wiring, synaptogenesis,
and myelination [5].

C. Effect of cortex thickness

Figure 4 has shown that the thickness of the cortex is a
crucial parameter in the determination of critical growth ratio
for instability in a growing brain model. Therefore, it can
be expected that the cortex thickness exerts a positive effect
on the morphological patterns of the brain after instability.
With this regard, Fig. 6 shows the morphological evolution
dependency on the thickness of the cortex in the brain model.
The left column of Fig. 6 for the thin cortex (T/C = 1/50)
shows the formation of numerous small gyri and sulci after
instability on the brain model. Recently, it has been shown
that morphological abnormalities related to the cortex of the
developing brain can be demonstrated by the mechanical
model [22]. In the polymicrogyria malformation, the surface
of the brain normally has many folds and the cortex thickness
is thinner than one in a healthy brain. Either the whole surface
(general) or parts of the surface (local) can be affected [23,26],
as seen in Fig. 2 of the reference [38]. Another evidence which
may prove a thinner cortex leads to more creases is central
sulcus, a primary somatosensory cortex which roughly consists
of Brodmann areas no. 1, 2, and 3, and visual cortex [39]. The
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FIG. 7. Morphological evolution of the growing model with
different shear modulus ratio of cortex to core (T/C = 2/50). Time
steps from 1 to 3 show gyrification of models step by step (figures
are not in the same scale).

central sulcus and the primary visual cortex are the thinnest
parts in the cortical region of the human brain [40]. By visual
observation, central sulcus might be one of the deepest sulci
in brain and primary visual cortex has the most complicated
folding patterns among all cortical cortex regions [41–43]. On
the other hand, for the start of instability in the model with
thick cortex a larger critical growth ratio is needed. As shown
in the right column of Fig. 6, for the case with a thick cortex
(T/C = 3/50), the number of folds is less than the normal
one and the thickness of gyri is higher. This phenomenon has
been observed in Lissencephaly, a malformation of the brain
resulting in a thicker cortex than normal [23,24], as seen in
Fig. 1 of Ref. [44]. These results show that cortex thickness
has a crucial effect on the healthy development of the brain.

D. Effect of material properties

In addition to the geometrical parameters, the material
property of the brain model may also play a vital role in

the convolution pattern of the brain. In previous analytical
derivations we assumed that the material properties of the
cortex and core are the same or in some FE models the cortex
is two times stiffer than the core. However, until now it is
still very difficult to characterize brain matter mechanical
properties accurately, because characterization of brain tissue
is highly dependent on the definitions, tools, and procedures
used [19]. The shear moduli of the cortex (gray matter)
and core (white matter) have been reported differently in
various studies [17,22,45,46]. Therefore, there is no firm and
proven data for the relative material properties between gray
and white matter. Hence we want to show morphological
evolution sensitivity to the relative shear modulus between
the cortex and core rather than the absolute magnitude of
shear moduli. Figure 7 shows the evolution of a developing
brain with different material properties for the cortex and the
core under the same geometric configuration, T/C = 2/50.
Shear modulus ratio of cortex to core is considered to be 1,
2, and 4. Result shows difference between the shear moduli
of the cortex and core has a great influence on the patterns of
the developing brain model after instability. The brain model
with a small shear moduli ratio prefers to develop creases
first after instability; however, when the shear moduli ratio
is large, the brain model prefers to wrinkle first and then
develop creases. This finding reveals that, for the formation
of creases in the brain, the shear moduli of the cortex and
the core should be close to each other. This result shows that
a change of the stiffness in the cortex or core of the brain
caused by abnormalities or disorders may lead to a change in
the pattern of the formation of gyri and sulci.

IV. DISCUSSIONS

By the measurement in the real brain, we observe the
same dependency of gyri thickness on the cortex thickness.
Figure 8(a) is a neuroimage from the real adult brain with dif-
ferent special areas which show different cortical thicknesses.
Dashed line in Fig. 8(b) connects the gyri thickness to the
cortical thickness in the mentioned areas. It can be seen that
the area with thick cortex (such as precentral gyrus) forms
thick or large gyri, while the area with thin cortex (such as
postcentral gyrus) forms thin or small gyri. This trend was
observed in the FE model results; see Fig. 6.

As can be inferred from Fig. 8(b), gyri thickness is
closely related to the cortex thickness. If gyri thickness in

FIG. 8. (Color online) (a) Gyri annotation on adult brain gray matter surfaces, PreCG: precentral gyrus; PostCG: post-central gyrus.
(b) Dependency of gyri thickness to the thickness of cortex. Gyral thickness is measured on gray matter (cortex) surfaces.
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FIG. 9. (Color online) First row: three examples of three hinges on convoluted models; second row: similar gyral folding patterns on white
matter surface in real brains. Red color regions highlight the crests of gyral regions which are based on T1-weighted MRI segmentation (figures
are not in the same scale).

the FE models is roughly calculated and compared with
the wavelength of a buckling stiff layer on a soft substrate
from a theoretical viewpoint, a similar trend and results
are observable. The wavelength λ of the wrinkling pattern
predicted by linear buckling theory is λ = 2πt[μf /3μs]1/3,
where t is the thickness of the film and μf and μs are the
shear moduli of the film and substrate, respectively [47]. From
a theoretical viewpoint there is a linear relationship between
wavelength (in the FE models referred as gyri thickness) and
thickness of the film which is the same as the result of the FE
models. Our results also reveal that a linear relationship may be
considered between amplitude of gyri and cortical thickness,
as from a theoretical view the amplitude of the wrinkles varies
linearly with the thickness of film [48].

Another interesting result of convoluted models is the
formation of a special type of hinges same as in the real brain.
It has been reported that cortical gyral folding pattern can be
effectively described by the hinges number [49]. In addition to
the number of hinges on gyri, the shape of hinge line can also be
used to describe the local cortical gyral folding pattern [50]. In
the first row of Fig. 9, we show three different patterns of three
hinges in the convoluted models. Curves on the convoluted
models represent the crest lines in the “gyral” regions. Those
three-hinge patterns can find their counterparts in real cerebral
cortical surfaces (see the second row of Fig. 9). Those cortical
surfaces were reconstructed on the boundaries between gray
matters and white matters obtained based on T1-weighted MRI
segmentation from our previous study [51]. Similarity between

the three-hinge patterns in convoluted models and their real-
world counterparts can be appreciated by visual examination.

V. CONCLUSION

In this paper, we have investigated the instability and
morphological evolution of a developing brain with an in-
tegrated analytical and computational methodology. Critical
growth ratios for instability in the brain model have been
derived both analytically and numerically. Results show that
the thickness of the cortex and the relative material properties
of the cortex to core of the brain play critical roles in the
determination of the secondary morphological patterns of the
developing brain model. Finally, the present study along with
other neuroimaging findings can be used as a tool to clarify
some malformations in a developing brain.
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[27] M. Götz and W. B. Huttner, Nat. Rev. Mol. Cell. Biol. 6, 777

(2005).
[28] R. Stahl et al., Cell 153, 535 (2013).
[29] E. K. Rodriguez, A. Hoger, and A. D. McCulloch, J. Biomech.

27, 455 (1994).

[30] M. J. Razavi and X. Wang, RSC Adv. 5, 7440 (2015).
[31] B. Li, Y.-P. Cao, X.-Q. Feng, and H. Gao, Soft Matter 8, 5728

(2012).
[32] W. Hong, X. Zhao, and Z. Suo, Appl. Phys. Lett. 95, 111901

(2009).
[33] L. Jin, S. Cai, and Z. Suo, EPL 95, 64002 (2011).
[34] Y. Cao, Y. Jiang, B. Li, and X. Feng, Acta Mech. Solida Sin. 25,

483 (2012).
[35] Abaqus analysis user’s manual, Version 6.13, Dassault System

Simula Corp, RI, USA, 2013.
[36] T. Tallinen, J. S. Biggins, and L. Mahadevan, Phys. Rev. Lett.

110, 024302 (2013).
[37] J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, and M. Ben

Amar, Phys. Rev. Lett. 107, 018103 (2011).
[38] B. Rai, R. Gouda, S. Moka, and L. E. Dunbar, J. Child Neurol.

30, 1086 (2015).
[39] K. Brodmann and L. J. Garey, Brodmann’s: Localisation in the

Cerebral Cortex (Springer, New York, 2007).
[40] B. Fischl and A. M. Dale, Proc. Natl. Acad. Sci. USA. 97, 11050

(2000).
[41] P. Rakic, Science 241, 170 (1988).
[42] K. Im, J. M. Lee, U. Yoon, Y. W. Shin, S. B. Hong, I. Y. Kim,

J. S. Kwon, and S. I. Kim, Hum. Brain Mapp. 27, 994 (2006).
[43] W. Welker, Cerebral Cortex (Springer, New York, 1990), p. 3.
[44] S. Sharma, P. Jain, and S. Aneja, IJEP 1, 49 (2014).
[45] P. J. McCracken, A. Manduca, J. Felmlee, and R. L. Ehman,

Magn. Reson. Med. 53, 628 (2005).
[46] S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee,

C. R. Jack, Jr., and R. L. Ehman, NeuroImage 39, 231 (2008).
[47] X. Chen and J. W. Hutchinson, J. Appl. Mech. 71, 597 (2004).
[48] S. Yang, K. Khare, and P. C. Lin, Adv. Funct. Mater. 20, 2550

(2010).
[49] K. Li, L. Guo, G. Li, J. Nie, C. Faraco, G. Cui, Q. Zhao, L. S.

Miller, and T. Liu, NeuroImage 52, 1202 (2010).
[50] X. Yu, H. Chen, T. Zhang, X. Hu, L. Guo, and T. Liu,

in Biomedical Imaging (ISBI), 2013 IEEE 10th International
Symposium (IEEE, New York, 2013), p. 85.

[51] T. Liu, J. Nie, A. Tarokh, L. Guo, and S. T. Wong, NeuroImage
40, 991 (2008).

032701-8

http://dx.doi.org/10.1146/annurev.neuro.26.041002.131137
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131137
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131137
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131137
http://dx.doi.org/10.1016/j.tics.2005.03.005
http://dx.doi.org/10.1016/j.tics.2005.03.005
http://dx.doi.org/10.1016/j.tics.2005.03.005
http://dx.doi.org/10.1016/j.tics.2005.03.005
http://dx.doi.org/10.1016/j.tins.2013.01.006
http://dx.doi.org/10.1016/j.tins.2013.01.006
http://dx.doi.org/10.1016/j.tins.2013.01.006
http://dx.doi.org/10.1016/j.tins.2013.01.006
http://dx.doi.org/10.1016/j.jmbbm.2013.02.018
http://dx.doi.org/10.1016/j.jmbbm.2013.02.018
http://dx.doi.org/10.1016/j.jmbbm.2013.02.018
http://dx.doi.org/10.1016/j.jmbbm.2013.02.018
http://dx.doi.org/10.1093/cercor/bht082
http://dx.doi.org/10.1093/cercor/bht082
http://dx.doi.org/10.1093/cercor/bht082
http://dx.doi.org/10.1093/cercor/bht082
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1088/1478-3975/10/1/016005
http://dx.doi.org/10.1088/1478-3975/10/1/016005
http://dx.doi.org/10.1088/1478-3975/10/1/016005
http://dx.doi.org/10.1088/1478-3975/10/1/016005
http://dx.doi.org/10.1007/s10237-008-0131-4
http://dx.doi.org/10.1007/s10237-008-0131-4
http://dx.doi.org/10.1007/s10237-008-0131-4
http://dx.doi.org/10.1007/s10237-008-0131-4
http://dx.doi.org/10.1126/science.1135626
http://dx.doi.org/10.1126/science.1135626
http://dx.doi.org/10.1126/science.1135626
http://dx.doi.org/10.1126/science.1135626
http://dx.doi.org/10.1006/jtbi.1997.0450
http://dx.doi.org/10.1006/jtbi.1997.0450
http://dx.doi.org/10.1006/jtbi.1997.0450
http://dx.doi.org/10.1006/jtbi.1997.0450
http://dx.doi.org/10.1016/j.jmps.2014.07.010
http://dx.doi.org/10.1016/j.jmps.2014.07.010
http://dx.doi.org/10.1016/j.jmps.2014.07.010
http://dx.doi.org/10.1016/j.jmps.2014.07.010
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.3233/BIR-2010-0576
http://dx.doi.org/10.3233/BIR-2010-0576
http://dx.doi.org/10.3233/BIR-2010-0576
http://dx.doi.org/10.3233/BIR-2010-0576
http://dx.doi.org/10.1115/1.1449907
http://dx.doi.org/10.1115/1.1449907
http://dx.doi.org/10.1115/1.1449907
http://dx.doi.org/10.1115/1.1449907
http://dx.doi.org/10.1016/j.jmbbm.2009.09.001
http://dx.doi.org/10.1016/j.jmbbm.2009.09.001
http://dx.doi.org/10.1016/j.jmbbm.2009.09.001
http://dx.doi.org/10.1016/j.jmbbm.2009.09.001
http://dx.doi.org/10.1038/srep05644
http://dx.doi.org/10.1038/srep05644
http://dx.doi.org/10.1038/srep05644
http://dx.doi.org/10.1038/srep05644
http://dx.doi.org/10.1097/NRL.0b013e31816606b9
http://dx.doi.org/10.1097/NRL.0b013e31816606b9
http://dx.doi.org/10.1097/NRL.0b013e31816606b9
http://dx.doi.org/10.1097/NRL.0b013e31816606b9
http://dx.doi.org/10.1016/j.nic.2011.05.014
http://dx.doi.org/10.1016/j.nic.2011.05.014
http://dx.doi.org/10.1016/j.nic.2011.05.014
http://dx.doi.org/10.1016/j.nic.2011.05.014
http://dx.doi.org/10.1055/s-2007-979744
http://dx.doi.org/10.1055/s-2007-979744
http://dx.doi.org/10.1055/s-2007-979744
http://dx.doi.org/10.1055/s-2007-979744
http://dx.doi.org/10.1016/j.tins.2007.12.004
http://dx.doi.org/10.1016/j.tins.2007.12.004
http://dx.doi.org/10.1016/j.tins.2007.12.004
http://dx.doi.org/10.1016/j.tins.2007.12.004
http://dx.doi.org/10.1038/nrm1739
http://dx.doi.org/10.1038/nrm1739
http://dx.doi.org/10.1038/nrm1739
http://dx.doi.org/10.1038/nrm1739
http://dx.doi.org/10.1016/j.cell.2013.03.027
http://dx.doi.org/10.1016/j.cell.2013.03.027
http://dx.doi.org/10.1016/j.cell.2013.03.027
http://dx.doi.org/10.1016/j.cell.2013.03.027
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1039/C4RA12795A
http://dx.doi.org/10.1039/C4RA12795A
http://dx.doi.org/10.1039/C4RA12795A
http://dx.doi.org/10.1039/C4RA12795A
http://dx.doi.org/10.1039/c2sm00011c
http://dx.doi.org/10.1039/c2sm00011c
http://dx.doi.org/10.1039/c2sm00011c
http://dx.doi.org/10.1039/c2sm00011c
http://dx.doi.org/10.1063/1.3211917
http://dx.doi.org/10.1063/1.3211917
http://dx.doi.org/10.1063/1.3211917
http://dx.doi.org/10.1063/1.3211917
http://dx.doi.org/10.1209/0295-5075/95/64002
http://dx.doi.org/10.1209/0295-5075/95/64002
http://dx.doi.org/10.1209/0295-5075/95/64002
http://dx.doi.org/10.1209/0295-5075/95/64002
http://dx.doi.org/10.1016/S0894-9166(12)60043-3
http://dx.doi.org/10.1016/S0894-9166(12)60043-3
http://dx.doi.org/10.1016/S0894-9166(12)60043-3
http://dx.doi.org/10.1016/S0894-9166(12)60043-3
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1177/0883073814544367
http://dx.doi.org/10.1177/0883073814544367
http://dx.doi.org/10.1177/0883073814544367
http://dx.doi.org/10.1177/0883073814544367
http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1126/science.3291116
http://dx.doi.org/10.1126/science.3291116
http://dx.doi.org/10.1126/science.3291116
http://dx.doi.org/10.1126/science.3291116
http://dx.doi.org/10.1002/hbm.20238
http://dx.doi.org/10.1002/hbm.20238
http://dx.doi.org/10.1002/hbm.20238
http://dx.doi.org/10.1002/hbm.20238
http://dx.doi.org/10.1016/j.ijep.2013.12.001
http://dx.doi.org/10.1016/j.ijep.2013.12.001
http://dx.doi.org/10.1016/j.ijep.2013.12.001
http://dx.doi.org/10.1016/j.ijep.2013.12.001
http://dx.doi.org/10.1002/mrm.20388
http://dx.doi.org/10.1002/mrm.20388
http://dx.doi.org/10.1002/mrm.20388
http://dx.doi.org/10.1002/mrm.20388
http://dx.doi.org/10.1016/j.neuroimage.2007.08.030
http://dx.doi.org/10.1016/j.neuroimage.2007.08.030
http://dx.doi.org/10.1016/j.neuroimage.2007.08.030
http://dx.doi.org/10.1016/j.neuroimage.2007.08.030
http://dx.doi.org/10.1115/1.1756141
http://dx.doi.org/10.1115/1.1756141
http://dx.doi.org/10.1115/1.1756141
http://dx.doi.org/10.1115/1.1756141
http://dx.doi.org/10.1002/adfm.201000034
http://dx.doi.org/10.1002/adfm.201000034
http://dx.doi.org/10.1002/adfm.201000034
http://dx.doi.org/10.1002/adfm.201000034
http://dx.doi.org/10.1016/j.neuroimage.2010.04.263
http://dx.doi.org/10.1016/j.neuroimage.2010.04.263
http://dx.doi.org/10.1016/j.neuroimage.2010.04.263
http://dx.doi.org/10.1016/j.neuroimage.2010.04.263
http://dx.doi.org/10.1016/j.neuroimage.2007.12.027
http://dx.doi.org/10.1016/j.neuroimage.2007.12.027
http://dx.doi.org/10.1016/j.neuroimage.2007.12.027
http://dx.doi.org/10.1016/j.neuroimage.2007.12.027



