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Phase diagram and the pseudogap state in a linear chiral homopolymer model
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The phase structure of a single self-interacting homopolymer chain is investigated in terms of a universal
theoretical model, designed to describe the chain in the infrared limit of slow spatial variations. The effects of
chirality are studied and compared with the influence of a short-range attractive interaction between monomers, at
various ambient temperature values. In the high-temperature limit the homopolymer chain is in the self-avoiding
random walk phase. At very low temperatures two different phases are possible: When short-range attractive
interactions dominate over chirality, the chain collapses into a space-filling conformation. But when the attractive
interactions weaken, there is a low-temperature unfolding transition and the chain becomes like a straight rod.
Between the high- and low-temperature limits, several intermediate states are observed, including the θ regime
and pseudogap state, which is a novel form of phase state in the context of polymer chains. Applications to
polymers and proteins, in particular collagen, are suggested.
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I. INTRODUCTION

A linear homopolymer is made of a single type of a
repeat unit. An important example is polyacetylene, an organic
conductive polymer which is the paradigm material for the
fractional fermion number [1,2]. Additional examples, among
many others, are poly-L-lysine and poly-L-glutamic. The
former is a food preservative with potential for wider, even
pharmaceutically relevant, antimicrobial effects [3] while the
latter is used for drug delivery against cancer [4].

From a theoretical point of view, the concept of a homopoly-
mer chain is a useful coarse-grained approximation, even in
the case of a heteropolymer that exhibits only approximatively
repeating patterns: For a sufficiently long chain the distinct
monomers are simply combined into appropriate subunits,
to dispose of the inhomogeneities in the monomer species.
For example, collagen, which is the most abundant protein
in mammals, displays a repeated glycine-proline-X pattern,
where X is any amino acid other than glycine and proline.
DNA, RNA, and the Cα backbone of a protein chain are
additional examples where a homopolymer approximation is
occasionally profitably introduced [5–7].

Here the phase structure of a chiral linear homopolymer is
investigated, in terms of a universal energy function [8–13]; a
chiral polymer is one where parity is broken, and the mirror
image of a stable chiral polymer conformation is in general not
stable. A chiral polymer often has a tendency to form helical
structures. For example, in the case of proteins right-handed
helical structures are more common than left-handed ones.
There are also chiral proteins that can form different right-
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and left-handed structures. An important example is collagen
for which the right-handed polyproline I conformation is more
compact than the left-handed polyproline II.

It is found that the phase structure of a chiral homopolymer
is more complex than that of a nonchiral one. In particular, a
chiral homopolymer can be in a pseudogap state. Here we give
a brief description of this phase, following Refs. [14–18] for
some abstract statistical system which displays a continuous
symmetry that is associated with a complex order parameter

� = ρeiϕ. (1)

Here ρ and ϕ are just the modulus and phase of this abstract
order parameter. Such an order parameter is often present,
e.g., in models of superconductivity. Further in Sec. II E [see
Eq. (30)] we give a description of this complex order parameter
in terms of polymer degrees of freedom. The restoration of
the continuous symmetry commonly takes place so that the
free energy of the symmetry breaking state with nonvanishing
condensate ρ �= 0 becomes larger than the free energy of the
symmetric state where ρ vanishes. But the symmetry can also
be restored by phase decoherence, even when ρ �= 0. This
occurs when the phase ϕ in the order parameter becomes
disordered so that 〈eiϕ〉 = 0. This implies that the expectation
value of the order parameter also vanishes, 〈�〉 = 0. The
system is then in the pseudogap state [14–18]. The pseudogap
state is a symmetric phase precursor state in the broken
symmetry phase. In particular, the transition between the
broken symmetry phase and the pseudogap state is not a phase
transition but a crossover prelude to the fully symmetric state
that the system enters when the lowest energy state of the
effective potential is one where the modulus vanishes.

Note that the general arguments due to Kadanoff and
Wilson [19–23] imply that in the thermodynamical limit the
phase transition properties of a material system are commonly
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universal, i.e., independent of the atomic-level details. From
this perspective, the construction of the phase diagram of a
linear and chiral structureless homopolymer presented here
should be relevant for the understanding of the phase diagram
of more elaborate linear chiral homopolymers, maybe even
that of certain heteropolymers [5–7]. Indeed, linear polymers
are presumed to have a very similar phase structure, quite
independently of their chemical composition [5–7] even
though the phase where a particular polymer resides depends
on many factors such as concentration, the quality of solvent,
ambient temperature, and pressure.

The article is organized as follows: The next section
describes the background and the methods. The standard phase
structure of linear polymers is first reviewed. The geometrical
order parameter variables that are used to model the free
energy of a homopolymer are defined, followed by an outline
how the ensuing universal Hamiltonian emerges in the limit
of low wavelength deformations. The order parameter that
detects the presence of a pseudogap state is then defined.
The zero temperature ground state is identified in the case
of pure steric repulsion, and a universal attractive long-range
interaction is introduced to model the effect of hydrophobic
forces in the homopolymer chain. A detailed analysis of
various Monte Carlo algorithms is presented, to identify one
that is computationally most effective in the case of a single
homopolymer chain. In the subsequent section the results
are then described. The effect of the various parameters to the
phase structure is revealed, and in particular the pseudogap
state is identified. Finally, the phase diagram is constructed
as a function of the various parameters. It is found that in
the case of a chiral homopolymer the phase diagram has
a much richer structure than in the case of a nonchiral
homopolymer.

II. METHODS

A. Phases

A review of the known phase structure of linear, nonchiral
homopolymers is now presented, as a background and moti-
vation for the subsequent study.

Three different, universal phases are commonly identified,
and these phases are categorized by the way how the polymer
structure fills the space [5–7]: Under poor solvent conditions or
at low temperatures, when the attractive interactions between
the monomers dominate, a single polymer chain is presumed
to collapse into a configuration which is space filling. On the
other hand, in a good solvent or at high temperatures, when
the repulsive interactions dominate and cause the chain to
effectively swell, its geometric structure resembles that of a
self-avoiding random walk (SAW). Between the two, there is
a θ regime (possibly a tricritical θ point) where the attractive
and repulsive interactions cancel each other. In the θ regime
the polymer chain is presumed to have the characteristics of an
ordinary random walk (RW). Finally, some polymers such as
collagen are more like straight, rigid rods. Each of these four
phases, rigid rod, SAW, RW, and the space-filling one, can be
characterized by the inverse of the Hausdorff dimension of the
chain, called the scaling exponent ν [5–7]. This quantity is

defined by the radius of gyration

Rgyr =
√√√√ 1

2N2

∑
i,j

(ri − rj )2, (2)

where ri are the coordinates of the individual monomers. When
the number of monomers N becomes very large, the radius of
gyration has the asymptotic expansion [24–27]

R2
gyr

N large−→ R2
0N

2ν(1 + R1N
−δ1 + · · · ) ∼ R2

0N
2ν . (3)

Here the length scale R0, the Kuhn length, is the effective
distance between the monomers in the large-N limit. The
Kuhn length is not a universal quantity; its value can in
principle be computed from the atomic-level details of the
polymer and environment including pressure, temperature, and
chemical microstructure of the solvent. The dimensionless
scaling exponent ν, i.e., the inverse Hausdorff dimension
that governs the large-N asymptotic form of Eq. (3), is
presumed to be a universal quantity. Its numerical value
is independent of the local atomic-level structure of the
polymer [5,7,24–26]. Here δ1 are critical exponents, and R1 are
the corresponding amplitudes, and together they constitute the
finite-size corrections. Also, δ1 are universal quantities [26],
but R1 are not universal [26].

The following mean field values are conventionally as-
signed to ν [5–7]:

ν =

⎧⎪⎨
⎪⎩

1/3 collapsed
1/2 RW
3/5 SAW
1 rod

. (4)

Under poor solvent conditions or at low temperatures, the
polymer collapses into a space-filling conformation [28–30]
with the mean field exponent ν = 1/3. Folded proteins are
commonly found in this phase. For an ordinary RW the mean
field value is ν = 1/2. This corresponds to the θ regime that
separates the collapsed phase from the high-temperature self-
avoiding random walk phase for which the Flory value ν = 3/5
is found. Finally, when ν = 1, the polymer loses its inherently
fractal structure and behaves like a straight rod.

The transition between the collapsed phase and the SAW
phase has been studied extensively, and it involves the RW
phase as a tricritical θ point or more generally as a transitional θ
regime. But the transitions between the rigid rod phase and the
other three are less studied. However, there is a physically and
biologically very important scenario where such a transition
could have a role: that of cold denaturation of a protein chain.
The presence of all four phases (4) opens the possibility of a
four-critical point, under proper conditions [31].

Finally, the θ -point value ν = 1/2 is exact for a polymer
with no long-range interactions [5]. For a space-filling struc-
ture the value ν = 1/3 is also exact, and similarly ν = 1 is
exact for a straight, linear rodlike structure. But in the case
of SAW the mean field value is corrected by fluctuations. A
numerical Monte Carlo evaluation, computed directly by using
the self-avoiding random-walk model on a square lattice, gives
the estimate [26]

ν = 0.5877 ± 0.0006. (5)

032602-2



PHASE DIAGRAM AND THE PSEUDOGAP STATE IN A . . . PHYSICAL REVIEW E 92, 032602 (2015)

In the sequel the scaling exponent ν in (4) is evaluated
as a function of various parameters in different phases of the
homopolymer, using numerical simulations in the context of
a universal off-lattice energy function. Of particular interest is
the effect of the parameter that characterizes the chirality and
the parameter that characterizes the strength of the attractive
(hydrophobic) forces.

B. Geometry

The order parameters that determine the free energy of
the homopolymer chain in terms of its geometry are now
identified, following Ref. [32]. For this a homopolymer chain
with i = 1, . . . ,N monomers is considered, with ri the three-
dimensional space coordinates. The unit tangent vectors along
the lines that connect two consecutive monomers are

ti = ri+1 − ri

|ri+1 − ri | . (6)

The unit binormal vectors are defined by

bi = ti−1 × ti
|ti−1 × ti | . (7)

The unit normal vectors are defined by

ni = bi × ti . (8)

The three vectors (ni ,bi ,ti) determine an orthonormal frame
at the monomer position ri . The discrete bond angles are

κi ≡ κi+1,i = arccos (ti+1 · ti), (9)

and the discrete torsion angles are

τi ≡ τi+1,i = sgn[(bi−1 × bi) · ti] × arccos (bi+1 · bi). (10)

Conversely, when the angles (κi,τi) are known the discrete
Frenet equation [32]⎛
⎝ni+1

bi+1

ti+1

⎞
⎠ =

⎛
⎝cos κ cos τ cos κ sin τ − sin κ

− sin τ cos τ 0
sin κ cos τ sin κ sin τ cos κ

⎞
⎠
i+1,i

·
⎛
⎝ni

bi

ti

⎞
⎠

(11)

determines the frames iteratively, by computing the frame at
the position of the (i + 1)-th monomer from the frame at the
position of the ith monomer. Once all the frames have been
constructed, the entire chain is obtained as follows:

rk =
k−1∑
i=0

|ri+1 − ri | · ti . (12)

With no loss of generality one can set r0 = 0 and orient t0 to
point into the direction of the positive z axis.

A framing is necessary for the construction of the chain
from the bond and torsion angles. But Eq. (12) does not involve
the vectors ni and bi . Thus any linear combination of these two
vectors could be chosen to define a framing, to construct the
chain from the angles. This also determines the symmetry that
enables the identification of the pertinent order parameter (1):
Consider a local SO(2) transformation that rotates the frame
(ni ,bi) by an angle �i leaving ti intact,⎛

⎝n
b
t

⎞
⎠

i

→
⎛
⎝cos �i sin �i 0
− sin �i cos �i 0
0 0 1

⎞
⎠·
⎛
⎝n

b
t

⎞
⎠

i

. (13)

On the Frenet frame bond and torsion angles in (11), this has
the following effect:

κiT
2 → e�iT

3
(κiT

2) e−�iT
3
, (14)

τi → τi + �i−1 − �i, (15)

where the (T a)bc = εabc are the SO(3) generators [T a,T b] =
εabcT

c. The range of τi is [−π,π ) mod(2π ). Equations (14)
and (15) may be used to extend the range of the bond angle
from [0,π ) to κi into [−π,π ) mod(2π ). The extension is
compensated for by the following discrete Z2 symmetry

κk → −κk for all k � i

τi → τi − π
(16)

which leaves the chain intact.
In the numerical simulations presented here, all the dis-

tances between nearest neighbor monomers are fixed to the
uniform constant value

|ri+1 − ri | = δ = 3.8 Å. (17)

This equals the average distance between two consecutive Cα

atoms along a protein backbone, measured in Ångströms.
A polymer is subject to steric constraints, due to overlap-

ping electron clouds and various short-range Born repulsions.
Accordingly the following forbidden volume constraint is
introduced:

|ri − rk| � δ ≡ 3.8 Å for |i − k| � 2. (18)

This is in line with the minimum distance observed between
any two Cα atoms, in folded protein structures. The numerical
values (17) and (18) can both be independently modified, with
no effect on conclusions.

In the sequel only scaled dimensionless units are used, and
in particular the dimensionless unit of length is 1 Å.

C. Free energy in the infrared limit

The bond and torsion angles constitute a complete set of
geometric variables, to describe protein Cα backbones [33].
Furthermore, according to Eq. (3) and Eq. (4) the structure-
dependent phase diagram of a homopolymer is determined
by the three-dimensional chain geometry. Thus the bond and
torsion angles are a complete set of order parameters, in the
sense of Kadanoff and Wilson [19–23]: The geometrically
defined, structural phase diagram of a homopolymer can be
fully determined by a thermodynamical free energy which is
constructed from these order parameters only.

A detailed derivation of the free energy used here is now
presented. For this a homopolymer chain in thermal equilib-
rium is considered. Let F be the ensuing thermodynamical
Helmholtz free energy. Thus, the minimum of F describes
the chain configuration, under thermodynamical equilibrium
conditions. The free energy is the sum of the internal energy
U and the entropy S, at temperature T

F = U − T S. (19)

It is a function of all the interatomic distances

F = F (rαβ); rαβ = |rα − rβ |, (20)
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where the indices α,β, . . . extend over all the atoms in
the homopolymer system, including those of the solvent
environment. Consider the infrared, long distance limit where
the characteristic length scales of spatial deformations along
the homopolymer chain around its thermal equilibrium con-
figuration are large in comparison to the distance (17) between
neighboring monomers. This is synonymous to an assumption
that there are no abrupt wrenches and buckles along the chain,
that there are only gradual long wavelength bends, which is
the limit of adiabatic deformations. The completeness of the
bond and torsion angles to describe a protein structure [33]
implies that, in order to determine the thermodynamical phase
state of the homopolymer chain, it is sufficient to consider
the response of all the distances between all the atoms to the
variations in the bond and torsion angles only:

rαβ = rαβ(κ,τ ). (21)

Here, and in the sequel, (κ,τ ) denotes collectively all the
variables κi and τi .

Suppose that at a local extremum of the free energy, the
bond and torsion angles along the homopolymer chain have
the values

(κi,τi) = (κi0,τi0). (22)

Consider a conformation where the (κi,τi) deviate from these
extremum values. The deviations are

�κi = κi − κi0,

�τi = τi − τi0. (23)

Start by Taylor expanding the infrared limit Helmholtz free
energy (19) around the extremum,

F [rαβ = rαβ(κi,τi)]

≡ F (κ,τ ) = F (κ0,τ0)

+
∑

k

{
∂F

∂κk |0
�κk + ∂F

∂τk |0
�τk

}

+
∑
k,l

{
1

2

∂2F

∂κk∂κl |0
�κk�κl + ∂2F

∂κkτl |0
�κk�τl

+1

2

∂2F

∂τk∂τl |0
�τk�τl

}
+ O(�3). (24)

The first term in the expansion evaluates the free energy at
the extremum. Since (κi0,τi0) correspond to the extremum, the
second term vanishes. Denote in the sequel (κi,τi) collectively,
as the variable ρi . Then,

F (κ,τ ) ≡ F (ρ)

= F (ρ0) + 1

2

∑
k,l

∂2F

∂ρk∂ρl |0
�ρk�ρl + O(�3). (25)

Following Ref. [34] the expansion (25) is rearranged in terms
of of the differences in the angles ρi ∼ (κi,τi), as follows:

F (ρ) =
∑

k

{Vk(ρk; ρ0k)

+Zk(ρk; ρ0k)(ρkρk+1 + ρkρk−1) + · · · }. (26)

Here ρ0k denotes a combination of the various parameters
(κi0,τi0) along the chain. But Vk(ρk; ρ0k), Zk(ρk; ρ0k) and so
forth depend on the variable ρk only on the site k; these
functions are ultralocal. The terms that are not shown explicitly
consist of higher order differences ρkρk+i with i � 2, and
higher powers of the differences. The local terms Vk(ρk)
constitute the effective potential

Veff =
∑

k

Vk(ρk). (27)

The structure of the effective potential is commonly used
to conclude whether a spontaneous symmetry breaking takes
place [34].

The transition from (25) to (26) involves, a priori, an infinite
rearrangement of the terms in the Taylor expansion (25).
In particular, the expansion (26) has been designed so that
in the continuum limit where distance between neighboring
monomers vanishes, i.e., δ → 0 in (17), it becomes, at
least naively, an expansion of the free energy in powers of
momentum about the point where momentum vanishes: For
a single scalar variable ρk with continuum limit ρk → φ(x)
the corresponding continuum limit of (26) is the derivative
expansion [34]

F (φ) =
∫ [

V (φ) + 1

2
(∂μφ)2Z(φ) + · · ·

]
. (28)

D. Effective Hamiltonian

Clearly, the free energy must remain invariant under the
local frame rotations (14) and (15); the physical properties of
the chain do not depend on the choice of framing. Accordingly,
it has been concluded [8–13] that, in the unitary gauge, to the
leading nontrivial order the free energy has the form

H = −
N−1∑
i=1

2κi+1κi +
i=N∑
i=1

{
2κ2

i + q
(
κ2

i − m2
)2 + cdκ2

i τ 2
i

}

+
i=N∑
i=1

{
1

2
cτ 2

i − aτi − bκ2
i τi

}
. (29)

This is adopted as the (effective) Hamiltonian, in the sequel.
In (29) q, m, a, b, c, d depend on the atomic level
physical properties and the chemical microstructure of the
homopolymer chain and its environment. In principle, these
parameters can be computed from this knowledge. (Note the
combination cd in the last term of second sum; this choice is
made for later convenience.)

It can be shown [8–13] that (29) is the most general,
universal and gauge, i.e., frame rotation (13) invariant Hamil-
tonian, that models a homopolymer in the limit where the
characteristic length scales of spatial deformations around the
minimum energy configuration become large in comparison
to the distance (17) between consecutive monomers. The
effective Hamiltonian (29) coincides with the naively dis-
cretized continuum Abelian Higgs model Hamiltonian with
one complex scalar field, when expressed in the unitary gauge
and the U(1) gauge transformation is identified with the frame
rotation (13); the term with parameter a is the Chern-Simons
term, commonly introduced in gauge theories to break parity.
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TABLE I. The parameters in (29) that are kept fixed during our
simulations.

q m b c d

3.5 1.5 0 10−4 10−4

In particular, (29) is unique in the sense of Kadanoff and
Wilson.

Implicit in (29) is the assumption that there are no abrupt
wrenches and buckles along the polymer chain. Only small,
gradual bends are present in the deviations around the energy
minimum configuration, which is obtained by minimizing
the Hamiltonian (29). This defines the limit of adiabatic
deformations.

In line with the Abelian Higgs model (see Ref. [35] in the
present context), the Hamiltonian (29) displays the discrete
symmetry κi → −κi . As in the case of the Abelian Higgs
model, this symmetry may become spontaneously broken by
the ground state. It should be noted that (29) is not invariant
under the local Z2 gauge symmetry (16), as it coincides with
the leading nontrivial contribution to an expansion of the
Helmholtz free energy around a fixed background. To recu-
perate the Z2 symmetry one may replace τ in Hamiltonian by
1
2 sin 2τ . Alternatively, the Hamiltonian (29) can be interpreted
as a deformation of the standard energy function of the discrete
nonlinear Schrödinger equation (DNLS) [36,37]. The first two
sums coincide with the energy of the standard DNLS equation,
in terms of the discrete Hasimoto variable of Ref. [10]. The
first (c) term in the third sum is the Proca mass that has a claim
of gauge invariance; here the Proca mass is a “regulator,” as
explained in Ref. [13]. The second (a) term is the helicity,
and the last (b) term is the conserved momentum. The last
two terms break the Z2 parity symmetry; these two terms are
responsible for helicity of the homopolymer chain.

The simulations that are described in this article have been
performed by keeping some of the parameter values fixed. In
Table I the parameter values that are kept fixed have been
listed.

The numerical values of these parameters have been chosen
in conformity with those that are commonly encountered in the
case of proteins [27,38]; for a protein, the torsion angles are
much more flexible than bond angles. The value of m in Table I
corresponds to an α-helical structure.

The parameter a, which is not fixed, is of particular interest
in the sequel. This is the parameter that breaks chirality; note
that the momentum of the DNLS hierarchy is not considered
here, i.e., b = 0 for simplicity. This term lacks a direct
interpretation in the context of the Abelian Higgs model. It
turns out that the effects of this term are largely accounted for
by the a-dependent helicity, in any case.

E. Pseudogap

In Ref. [10] the following combination of the bond and
torsion angles has been considered:

ψi = σie
iϑi ≡ tan

κi

2
eiϑi , (30)

where the phase is

ϑi = 1

2

(
i∑

k=1

τk −
N∑

k=i+1

τk

)
. (31)

The variable (30) is essentially the discrete version of the Hasi-
moto variable [10] in terms of the Frenet frame coordinates:
It is the complex variable that relates (29) into a generalized
version of the discrete nonlinear Schrödinger equation [36,37].
It is also the present version of the complex order parameter (1).
Thus the pseudogap state can be identified with a state where
the bond angles are nonvanishing and ordered,

〈κi〉 = κ0 �= 0, (32)

for some site-independent κ0, while torsion angles are essen-
tially randomly fluctuating to the effect that

〈eiϑi 〉 ≈ 0. (33)

Accordingly in the sequel the pseudogap state is detected by
monitoring both κi and τi simultaneously. It should be noted
that since the effective potential (27) is insensitive to the phase
in (30), the pseudogap state can be difficult to detect in terms
of the minima of the effective potential alone. A dynamical
computation that engages fluctuations is needed, to detect the
presence of the pseudogap.

It should be kept in mind, that a relation such as (32) is com-
monly deduced by inspection of the effective potential. In the
full theory there are always corrections, due to fluctuations. In
particular, in the full theory, at a finite temperature, (32) never
vanishes identically. The modulus of the order parameter (30)
is a positive definite quantity and thus, due to fluctuations, it
always acquires a nonvanishing value in the full theory, as also
shown in the simulations presented here.

F. Zero temperature

The zero temperature ground state of the Hamiltonian (29)
is a solution to the equations of motion,

τi = a

c

1

dκ2
i + 1

, (34)

κi+1 = 2κi − κi−1 + 2q
(
κ2

i − m2
)
κi + cdτ 2

i κi . (35)

Accordingly the minimum energy ground state of (29) is

κi = ±
√

m2 − cd

2q
τ 2
i ≈ ±m,

τi = a

2c

1

dm2 + 1
≈ a

2c
. (36)

In the sequel the parameter m has the fixed value, given in
Table I, throughout. As a consequence the ground state is
controlled by the ratio a/c, and in the sequel the phase structure
is investigated by varying the ratio a/c within the range a/c ∈
[0,4π ].

It should be noted that the configuration (36) does not
necessarily describe the minimum energy homopolymer: For
some parameter values there can be a conflict between the
values of (κi,τi) given by (36) and the forbidden volume
constraint (18). A configuration (36) which satisfies the
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forbidden volume constraint is a helix. But if the forbidden
volume constraint is not obeyed, the lowest energy ground
state configuration is the one that minimizes (29), subject to
the constraint (18).

The range of the bond angle become extended to negative
values, by the Z2 symmetry (16). The two ground states κi =
±m have the same energy. In addition of these two ground
states, there can also be local minima of (29) that have the
profile of a kink [38,39], i.e., a domain wall that interpolates
between the two ground states κi = ±m. The energy of a
kink is higher than the energy of the ground state helix (36).
Two kinks can annihilate each other, thus any pair of kinks
can be removed by continuous deformations of the chain. A
single kink can be translated, so that it becomes removed
through the ends of the chain. However, on a discrete lattice
the translation invariance is commonly broken by the Peierls-
Nabarro barrier [40–43]. Thus, in general it costs (thermal)
energy to translate a kink along the chain.

The present scenario is different from the one that
appears in the case of kinks in folded proteins [38,39].
There the parameter values in (29) are different for different
super-secondary structures, i.e., helix-loop-helix motifs. A
folded protein is described by a heteropolymer generalization
of (29), and the ground state is not a straight helix such as (36).
A short analysis of a simple heteropolymer is presented in the
sequel, in Sec. III D.

G. Attractive interaction

The constraint (18) is a purely repulsive interaction, and
in the case of a homopolymer it models forbidden volume
constraints which have a short spatial range. It could be
generalized to include an attractive component, with a short
range but one that exceeds the extent of forbidden volume
constraints. Accordingly, the following rudimental extension
of (18) to model both short-range forbidden volume constraints
and attractions is introduced:

U (r) =
{+∞ 0 < r < δ

U0{tanh(r − R0) − 1} δ < r < +∞ . (37)

Here δ is the radius of the self-avoiding condition (18). For
r < δ the forbidden volume condition (18) persists. But for
r > δ there is a short-range attractive interaction with strength
determined by the parameter U0; when the parameter U0

vanishes (37) reduces to (18). In the sequel this parameter will
be varied, jointly with the ratio a/c that characterizes helicity.

The parameter R0 which determines the range of
the attractive interaction will have the following value
R0 = 5.0 Å throughout; this choice is in line with all-atom
molecular dynamics simulations where any long-range
interactions between atoms are commonly cut off, sharply,
beyond distances around 10 Å or so.

The attractive interaction can be given a physical inter-
pretation, in terms of “hydrophobic” forces: In the case of,
e.g., a protein chain under physiological conditions, there
is an effective attractive interaction between those amino
acids which are considered “hydrophobic” [5–7]. Thus in
the presence of the attractive interaction (37) the energy
function (29) models a chain made of “hydrophobic” residues,
with “hydrophobicity” that depends on the value of U0.

It is noted that qualitatively, the present results have been
found to be quite insensitive to the details of the profile
of the potential U (r). Accordingly (37) can be considered
“universal.”

H. Monte Carlo algorithms

The protein-folding problem [44–46] is notorious for its
computational complexity. A comprehensive all-atom simula-
tion with Anton [47,48], which is by far the fastest molecular
dynamics machine available, can produce no more than a
few microseconds of a folding trajectory per day in silico,
in the case of proteins with fewer than 100 amino acids.
Since many proteins take seconds, even days, to fold into
their native state starting from an initial random conformation,
it could take thousands of years to fold such a protein with
presently available computer resources. Even in the case of
effective off-lattice models such as (29) and (18) the simulation
of a full folding trajectory is a formidable computational
challenge, even with the most powerful computers available.
Accordingly, to identify an effective computational scenario,
the performance of three different Markovian Monte Carlo
algorithms [49] have been tested. The aim has been to
identify a Monte Carlo algorithm that has the fastest rate of
convergence towards a thermal equilibrium state, in the case of
a single polymer chain. In these tests only the forbidden volume
constraint (18) has been used; the effect of the attractive
(“hydrophobic”) interaction has not been included. The three
algorithms are the following:

(1) The Heat Bath algorithm
(2) The Metropolis algorithm
(3) The Mixed algorithm.
The curvature and torsion angles are updated according

to a probability distribution that satisfies the detailed balance
condition

P ({κnew,τnew},{κold,τold}) exp[−βH ({κold,τold})]
= P ({κold,τold},{κnew,τnew}) exp[−βH ({κnew,τnew})].

Here β is the inverse Monte Carlo temperature. The equilib-
rium distribution

exp{−βH (κ,τ )} (38)

of a canonical ensemble is obtained in the limit of an infinite
number of updates. Each update consists of a “walk” through
the entire chain with a provisional revision of each value (κi,τi)
which is subject to the requirement that the forbidden volume
constraint (18) is preserved; the three algorithms differ from
each other only in the manner how the new values (κnew

i ,τ new
i )

are generated.
It should be kept in mind in the sequel that the Monte

Carlo temperature T = β−1 is not equal to the physical
temperature factor kBθ where kB is the Boltzmann constant
and the temperature θ is measured on the Kelvin scale. T

is a dimensionless quantity like energy H [see Eq. (29)]
and all parameters in it (see Table I). Instead, in the low-
temperature collapsed regime general renormalization group
arguments [50] propose that the dimensionless Monte Carlo
temperature T is connected with real physical temperature in
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the following way:

ln T = kBθ + · · · . (39)

1. Heat Bath algorithm

In the Heat Bath algorithm, new values (κnew
i ,τ new

i ) are
generated randomly, according to probability distributions

P
(
κnew

i

) = 1

Zi,κ

exp
{−βHi,κ

(
κnew

i

)}
(40)

and

P
(
τ new
i

) = 1

Zi,τ

exp
{−βHi,τ

(
τ new
i

)}
. (41)

Here Hi,κ and Hi,τ are the sum of all those terms in the
Hamiltonian (29) that contain κi and τi , respectively, with
the given index i. The Zi,κ and Zi,τ are normalization factors.
The updated values of κnew

i and τ new
i do not depend on the

previous values of κi and τi .
The probability density for κnew

i has the form

P (κi) ∼ exp
{−c1κ

4
i − c2κ

2
i − c3κi

}
, (42)

where

c1 = βq,

c2 = β

(
2 − 2qm2 + c

2
dτ 2

i − abτi

)
, (43)

c3 = β[−2(κi+1 + κi−1)].

Thus (42) is non-Gaussian. On the other hand, the probability
density P (τ new

i ) has the Gaussian profile

P (τi) ∼ exp

{
− β

(
c

2

[
dκ2

i + 1
]
τ 2
i − aτi

)}
. (44)

Rejection sampling has been used to generate random numbers
according to these probability distribution: After generating
κnew

i and τ new
i the forbidden volume condition (18) is checked,

and the update is rejected when the condition is violated.

2. Metropolis algorithm

New values of κ and τ are generated according to Gaussian
probability distributions, which is centered at the old values.
The dispersion of each Gaussian can be adjusted, to enhance
the convergence of the algorithm. The new values of κ and
τ are accepted or rejected, in the same manner as in the
conventional Metropolis algorithm. For example, in the case
of τi the probability of acceptance of a new value is

P (τi) = min{1, exp(−β�H )}, (45)

where �H is the difference of the energy between the new
and the old configurations. In addition, the self-avoidance
condition (18) is also verified at each step.

3. Mixed algorithm

The values of κnew
i are generated in the same manner as

in the Heat Bath algorithm, while for τ new
i the Metropolis

algorithm is used. The convergence of the algorithm can
be adjusted, by changing the dispersion of the Gaussian
distribution in the τ update.

4. Algorithm comparison

A priori, each of the three Monte Carlo algorithms should
converge towards the same equilibrium distribution albeit at
a different speed. Thus, when the Markovian length is not
sufficient and the equilibrium distribution is not yet reached,
the result depends on the algorithm and the number of Monte
Carlo steps. Accordingly, the three algorithms have been tested
and compared, to identify the one with the fastest convergence
rate towards a known equilibrium state; for this, the zero
temperature ground state described in Sec. II E is utilized.
In these tests, the following parameter values have been used
in the Hamiltonian (29),

a = −1.0×10−4,

c = 1.0×10−4. (46)

These values have been chosen to reproduce a monotonous
α-helical structure in a manner which is consistent with
the forbidden volume constraint (18), as the lowest energy
conformation; the choice is not unique. The simulations have
been performed with varying chain lengths, from N = 100
to N = 900. In each case, simulated annealing has been used
and the initial configuration is always a linear straight rod
with κi = τi = 0. The initial configuration is first heated to
very high-temperature values (up to Tmax = 100), where the
structure is fully thermally randomized. This is followed by a
slow cooling period, to the target temperature. The cooling
takes place with small temperature steps, with each step
equal to �T = 0.05–0.5 in logarithmic scale. After each step,
103–5×104 Monte Carlo updates are performed along the
whole chain, to ensure that it becomes thermalized to the
ambient temperature. Here the term “termalized” means that
the Marcovian chain reaches its equilibrium distribution. We
will call “thermalization length” the number of Monte Carlo
updates per one step of cooling process. The longer the chain,
the longer the thermalization. For each temperature step only
the last configuration is used for calculation of observables.
Thus during one cooling process one final (thermalized) chain
configuration is obtained for each temperature value. The
final phase diagrams have been calculated using 5000 Monte
Carlo updates per one step of cooling, equal to �T = 0.05
in logarithmic scale. One single cooling procedure takes 6
CPU-hours, producing one configuration for each temperature
value. Final statistics is compiled from 128 thermalized chain
configurations, for each set of parameter values.

In the sequel the radius of gyration (2) is utilized as
the principal observable, to characterize the geometry of the
homopolymer chain. Its value is calculated as an average
over statistically independent chain configurations, produced
during a Monte Carlo process. In Fig. 1 the value of the
radius of gyration (2) is compared, as a function of Monte
Carlo temperature for a chain with N = 100 monomers. The
results obtained using the Metropolis algorithm are found to
be very different from those obtained using the Heat Bath
and Mixed algorithms; for small dispersion �τ the Mixed
algorithm coincides with the Metropolis algorithm. But when
�τ increases, the Mixed algorithm approaches the Heat Bath
algorithm as shown in the figure.

There is no a priori reason why the results for the three
algorithms should be different: The stationary distribution is
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FIG. 1. (Color online) Dependence of Rgyr on temperature for
identical homopolymer chains simulated with different algorithms.
Here �τ is dispersion of Gaussian distribution for generation of
τnew in a mixed algorithm. In the conventional Metropolis algorithm
the dispersions are �κ = �τ = 0.01. Length of polymer chain is
N = 100, parameters of the Hamiltonian are from Table I.

the same in each of the three algorithms. But it is found that
the Metropolis algorithm converges very slowly towards the
equilibrium distribution. For this, the dependence of the result
on the length of simulation has been analyzed. In the case of
the Metropolis algorithm, the results are shown in Fig. 2, for
T = 10−13 which is the lowest Monte Carlo temperature value
that has been used in the present simulations. As shown in the
figure, Rgyr continues to increase with increasing length of
thermalization. The Metropolis algorithm approaches the Heat
Bath algorithm very slowly, as a function of the simulation
time, and even at the present, relatively long simulation times
the chain is still far from equilibrium distribution.

On the other hand, the results shown in Fig. 3 demonstrate
that in case of the mixed algorithm the radius of gyration Rgyr
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FIG. 2. (Color online) Dependence of Rgyr on the thermalization
length in the Metropolis algorithm. The number of updates, per
one step in simulated annealing process (thermalization length), is
shown along the horizontal axis. Temperature is T = 10−12, length
of polymer N = 100, and parameters of the Hamiltonian are from
Table I.
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FIG. 3. (Color online) Dependence of Rgyr on the thermalization
length in Mixed algorithm. The number of updates, per one step in
simulated annealing process (thermalization length), is shown along
the horizontal axis. Parameters of this run are the same as for Fig. 2.

approaches a fixed value with increasing of the thermalization
length. It is concluded that using the present simulation times,
the Markovian homopolymer reaches a stationary distribution.
Either the Heat Bath algorithm, or alternatively the Mixed
algorithm with sufficiently large �τ , should be used to try and
describe the thermal equilibrium configurations.

The compactness index ν, i.e., the inverse of the Hausdorff
dimension has also been inspected, using the three different
algorithms. The results for the Heat Bath algorithm are
shown in Fig. 4. Between T = 100 and T = 1000 the value
of ν is essentially temperature independent and apparently
corresponds to the SAW phase. At very low temperatures a
transition to the rigid rod state, with ν ≈ 1, is observed. This
result is in line with the general arguments that are presented in
Sec. II G, on the expected phase structure of the homopolymer
model (29) and (18).
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FIG. 4. (Color online) Compactness index ν at different temper-
atures for a homopolymer chain. Simulation performed with Heat
Bath algorithm. Parameters of Hamiltonian are from Table I.
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FIG. 5. (Color online) Dependence of Rgyr on temperature T for
a chain with 100 monomers, in the truncated model. Here n is the
number of Monte Carlo updates per one simulated annealing step in
temperature (thermalization length). The final algorithm described in
Sec. II is used.

5. The final algorithm

On the basis of the results from the test runs, the following
improved Heat Bath algorithm is employed in the sequel. The
final probability distribution is

P = 1

Z
exp

⎧⎨
⎩−β

⎡
⎣H +

∑
i<j

U (�ri − �rj )

⎤
⎦
⎫⎬
⎭. (47)

Here H is the Hamiltonian (29) and U is the potential (37).
The Metropolis algorithm is used for acceptance, but with
a proposal distribution that coincides with the Heat Bath
algorithm: The new values of κi and τi are generated using
the distributions (40) and (41). The ensuing homopolymer
configuration is then accepted, provided it satisfies both the
self-avoidance condition (18) and the Metropolis accept-reject
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FIG. 6. (Color online) Dependence of Rgyr on the length of
polymer chain N for different thermalization lengths with T = 1,
in the truncated model. The final algorithm is used.
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FIG. 7. (Color online) Dependence of compactness index ν on
thermalization length when T = 1, in the truncated model.

condition that utilizes the residual energy

EU =
∑
i<j

U (�ri − �rj ). (48)

The acceptance criterion is

exp(−β�EU ) > λ, (49)

where λ is a random number which is uniformly distributed
between 0 and 1, and �EU is the change in EU under the
update of κi and τi .

Finally, the algorithm has been calibrated by considering the
limit of a truncated Hamiltonian, where the Hamiltonian H is
removed and only the attractive potential (37) together with the
forbidden volume constraint (18) are retained. The numerical
value of U0 determines solely the scale of the Monte Carlo
temperature T , in the present simulations the value U0 = 15
is used. The results are shown in Fig. 5. A smooth transition is
observed in the radius of gyration, from larger values at high
temperatures to smaller values at low temperatures.

Figure 6 shows how Rgyr depends on the length of polymer
chain N and fitted to the leading order contribution in (3).
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FIG. 8. (Color online) Dependence of Rgyr on temperature for a
chain with 50 monomers. Parameters of the Hamiltonian from Table I.
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FIG. 9. (Color online) Dependence of Rgyr on the length of chain
for high-temperature T = 101.7 and with U0 = 0.01. Parameters of
the Hamiltonian from Table I.

The results demonstrate how the equilibrium distribution is
reached with a sufficiently long thermalization length, even
in the region of low temperatures where the convergence is
at its lowest. In particular it is found that the value of the
compactness index ν converges towards the mean field value
1/3 of the collapsed phase, as shown in Fig. 7; the difference
between the space filling ν = 1/3 and the numerically deduced
ν ≈ 0.36 is attributed to the finite size corrections in (3); the
available computer power does not enable an identification of
the amplitudes R1, . . . or the critical exponents δ1, . . . in (3).

III. RESULTS

The present variant of the Heat Bath algorithm has been
used in extensive numerical simulations to investigate the
phase structure of the homopolymer model (29) and (37). The
results are summarized in Figs. 8–12.
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FIG. 10. (Color online) Dependence of Rgyr on the length of
chain for low-temperature T = 10−6 and various thermalization
lengths, and with U0 = 0.01. Parameters of the Hamiltonian from
Table I.
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FIG. 11. (Color online) Dependence of compactness index ν on
thermalization length. Temperature is equal to T = 10−6 and U0 =
0.01. Parameters of the Hamiltonian from Table I.

A. Effect of parameters

1. Parameter U0

Figures 8–10 describe the properties of the radius of gyra-
tion for three representative values of the strength parameter
U0 in (37):

U0 =
⎧⎨
⎩

10−4

10−2

10−1
. (50)

For the other parameters the values (46) are used. For each
value of U0, three different characteristic regimes are observed.
In the high-temperature limit the homopolymer is found in the
SAW phase; this is confirmed in Fig. 9. When the temperature
decreases, the homopolymer enters a regime of decreasing
Rgyr . Finally, there is the low-temperature regime where the
radius of gyration Rgyr has a small value; see Fig. 10. The
compactness index ν shows that when the thermalization
increases the value of ν converges towards the values close
to ν ≈ 0.39 which is indicative of the mean field value 1/3.
This is shown in Fig. 11. Again, the difference between the
mean field value ν = 1/3 and the measured value ν ≈ 0.36 is
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FIG. 12. (Color online) Dependence of Rgyr on temperature. The
chain has 100 monomers, and parameters (a,c,U0) are given in (51).
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FIG. 13. (Color online) Distribution of (κi,τi) in the high-temperature SAW phase. Simulation parameters are the same as for Fig. 8

(U0 = 0.01), temperature is T = 100.

allocated to finite size corrections in (3); the available computer
power is not sufficient to deduce the detailed form of these
corrections.

It is concluded that when the scale for U0 exceeds that of a

and c the low-temperature state is a collapsed configuration.

2. Parameters a and c

According to (36) the classical ground state profile of τi

remains intact when the parameters a and c are changed in
such a manner that the ratio a/c is constant. To study the
effect of such a change in a and c at finite temperature, in
particular how it conspires with the parameter U0, simulations
have first been performed with

a = c = 10−2 and U0 = 10−4 (51)

with the values (46) for the remaining parameters. Thus, unlike
in the previous simulations now the characteristic scale of
the attractive interaction is smaller than that of the torsion
angle-dependent terms in the Hamiltonian.

The results for the radius of gyration are presented in
Fig. 12. At high temperatures the chain is again in the SAW
phase. Then, as temperature decreases, there is a transition to a
regime akin to the intermediate regime shown in Fig. 8. Finally,
there is a low-temperature regime where the chain fluctuates
around the classical solution (36). The scale of transition to
the low-temperature regime is controlled by parameters a and
c in Hamiltonian.

It is concluded that when the scale U0 of the short-range
attractive interaction is smaller than the scale of the parameters
a and c, the low-temperature limit is described by helical
structures.

B. Analysis of different phase regimes

The bond and torsion angles form the complete set of local
order parameters to probe the phase structure (4), in the case
of the present homopolymer model. These order parameters
have the following characteristics, in the different regimes that
have been analyzed in Figs. 8–12; the results are summarized
in Figs. 13–16.

In the very high-temperature SAW phase, both the bond
angle and the torsion angle are subject to large fluctuations;
the simulation results are shown in Fig. 13. For the bond angles,
the values are distributed in the range 0 � 〈|κ|〉 � κmax ∼ 2.2.
The upper limit reflects the forbidden volume constraint (18).
As temperature increases, the values of κ become increasingly
evenly distributed over this range so that in the T → ∞ limit
the distribution is fully uniform; Fig. 13 shows the bond and
torsion angle distribution at a generic but high-temperature
value. It is apparent from this figure that both angles are
disordered.

It is concluded that the SAW phase is a disordered phase.
Next, we observe the intermediate regime takes place

between temperature values within the range 10−3 < T < 101

as can be seen in Figs. 8 and 12. In this intermediate region the
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FIG. 14. (Color online) Distribution of (κi,τi) in the intermediate transition regime: an example of pseudogap state (see description in
Sec. II E. Simulation parameters are the same as for Fig. 8 (U0 = 0.01), temperature is T = 1.
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FIG. 15. (Color online) Distribution of (κi,τi) in the collapsed phase. The distribution of τi is asymmetric, corresponding to broken chirality.
Simulation parameters are the same as for Fig. 8 (U0 = 0.01), temperature is T = 10−7.

values of the bond angle are found to become ordered. This
is shown in Fig. 14: The values of κi are thermally fluctuating
at around |κ| ≈ 1.5. The values of the torsion angle remain
largely disordered. The intermediate region is identified as a
pseudogap state, as described in the Introduction.

Finally, there are two different low-temperature phases: The
collapsed phase shown in Fig. 8 where the attractive short-
distance interaction dominates and the helical rodlike phase
shown in Fig, 12 where the attractive short-distance interaction
becomes weak.

The distribution of bond and torsion angles in the collapsed
phase are displayed in Fig. 15. The bond angle is highly
ordered around the classical value (36), but the torsion angle
remains disordered. However, there is an apparent spontaneous
symmetry breaking that has taken place; the double-well
structure seen in the τ distribution of Fig. 14 has been removed,
in a way that resembles the familiar spontaneous symmetry
breaking in a Z2 symmetric potential well.

In the helical rodlike phase, both the bond and torsion
angles become peaked around the classical values (36). The
configurations are akin straight helical rods; a little like, e.g.,
collagen when biologically active. The κ distribution reflects
the discrete Z2 gauge symmetry. But the Z2 symmetry in the
τ distribution observed in Fig. 14 is fully broken.

The transition between the collapsed phase and the helical
rodlike phase entails a transition where the torsion angles
become ordered. Due to the very low-temperature values
involved, the fluctuations are strongly suppressed and a

simulation becomes tedious. It is conjectured that, when
the temperature is kept in the low-temperature regime, an
initial helical rodlike structure but with parameter values
corresponding to the collapsed phase is in a glassy phase. Vice
versa, an initial collapsed configuration with parameter values
in the helical rodlike phase will eventually become subject to
cold denaturation.

C. Phase diagram

The homopolymer phase is found to depend on three
relevant scales:

(1) First, there is the extrinsic temperature scale where the
values of κi become ordered. This scale can also be controlled
intrinsically, by the parameter q in (29), but the details have
not been addressed here.

(2) Then there is temperature scale where the values of τi

become ordered. This scale can be controlled intrinsically, by
the parameter ratio a/c in (29).

(3) Finally, the effects of the scale U0 for the short-range
attractive interactions have been investigated. This parameter
determines an intrinsic scale that controls the transition
temperature alternatively to the collapsed phase or to the
helical rodlike phase.

Thus, by changing the relations between the three scales
the phase diagram of the homopolymer can be identified; the
phase diagram is constructed here in terms of (T ,a,U0). All
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FIG. 16. (Color online) Distribution of (κi,τi) in the helical rodlike phase. Simulation parameters are the same as for Fig. 12, temperature
is T = 10−7.
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FIG. 17. (Color online) The phase diagram on the (U0,T ,a)
space. It was obtained for the polymer length N = 100 using our
final algorithm. All parameters in the Hamiltonian except a are fixed
according to Table I.

the remaining parameters are fixed and given by the values in
Table I.

Figure 17 shows the three-dimensional phase diagram in the
(T ,a,U0) space. Figures 18–21 show various cross sections,
taken at selected values of U0; i.e., these figures show the phase
diagram in Fig. 17 on the (a,T ) plane, with different values of
U0.

Figure 18 shows the phase diagram, for a quite large
value of U0 (strong coupling) At high temperatures there
is the SAW phase. When temperature decreases there is
the pseudogap state, which becomes the collapsed phase
at low temperatures. Between the pseudogap state and the
low-temperature collapsed phase there is a θ regime, or rather
a θ point as it is observed only over a very narrow temperature
range.

(1) Figure 19 displays the phase diagram, when the value
of U0 is lowered but still relatively large (intermediate but not
weak coupling). At high temperatures there is again the SAW
phase, followed by the pseudoogap state as the temperature
decreases. At low temperatures the pseudogap state becomes
converted either to the collapsed phase or to the straight rod

FIG. 18. (Color online) A cross section of the phase diagram in
Fig. 17 at U0 = 10−3.

FIG. 19. (Color online) A cross section of the phase diagram in
Fig. 17 at U0 = 10−4.8.

phase, depending on the value of the helicity parameter a. In
addition, there is a range of values of a, when a intermediate
similar to the θ regime is observed between the pseudogap state
and the straight rod phase. This is the η regime. It is notable,
that there is a possibility of a four-critical point involving the
pseudogap state, the η regime, and the collapsed and straight
rod phases.

(2) Figure 20 shows the phase diagram, as the value of
U0 becomes further decreased (intermediate but not strong
coupling). The collapsed state has entire disappeared and
replaced by the straight rod phase at very low temperatures.
The η regime displays a periodic structure in the parameter a.
There appears to be a tricritical point involving the pseudogap
state, the η regime, and the straight rod phase.

(3) Finally, in Fig. 21 the weak coupling U0 phase diagram
is displayed. The overall topology of the phase diagram is
similar to the one in Fig. 18, but with the straight rod phase as
the low-temperature phase instead of the collapsed phase.

Figure 22 shows the phase diagram on the (U0,T ) plane,
with helicity fixed. It is notable that there might be a five-
criticality involving the η and θ regimes, the pseudogap
state and the collapsed and straight rod phases. However, the
detailed investigation of this region of the phase diagram is
beyond the capacity of the computer power which is presently
available to us.

In summary, it is remarkable how the phase diagram
(Figs. 17–21) is periodic in the helicity parameter a (when c is
fixed). Moreover, there is a rapid transition between the helical

η

FIG. 20. (Color online) A cross section of the phase diagram in
Fig. 17 at U0 = 10−5.1.
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η

FIG. 21. (Color online) A cross section of the phase diagram in
Fig. 17 at U0 = 10−6.

phase where the compactness index ν = 1 and the collapsed
phase where ν ≈ 1/3 at low temperatures, as shown in Fig. 19.
There is a pseudogap state that appears as a transition regime,
akin to the conventional θ regime, between the collapsed and
the SAW phases. For the transition regime between SAW and
helical phases shown in Fig. 20 there is a pseudogap state
that should essentially coincide in its properties with the θ

regime pseudogap state. But due to computational limitations
the present analysis is not sufficient to confirm this. There
is an apparent four-critical, even five-critical point as shown
in Figs. 19 and 22, but the detailed analysis of this region in
the phase diagram needs to be performed using more extensive
simulations, which is postponed to a future project. However, it
is observed that the potential presence of a four-critical point
in a theoretical context very similar to the present one (i.e.,
Abelian Higgs model) has been reported in Ref. [31].

D. Heteropolymer and proteins

Finally, it is inquired how the present results could be
extended to heteropolymers, to draw conclusions on the
potential phase structure of proteins. For this, the effect of
perturbations that break the homogeneity of the homopolymer
model have been investigated as follows: A collapse has been
found to take place when the parameter U0 that characterizes
the strength of self-interaction is larger than the parameters
a and c that characterize the torsion angle-dependent terms.
Thus, a short segment is introduced along the chain, where U0

is less than a and c. Accordingly, a simulation is performed
where a heteropolymer is constructed so that for a short

θ

FIG. 22. (Color online) The phase diagram on the (U0,T ) plane,
with a = 10−4.
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FIG. 23. (Color online) Dependence of Rgyr on temperature for
a heteropolymer chain with 150 monomers. Thermalization length n

is number of updates per one step of simulated annealing. Parameters
of the Hamiltonian and attraction potential are described in Sec. III D.

subchain of 12 monomers, the values of the parameters a

and c is increased from a = c = 10−6 to a = c = 10−2, while
U0 = 10−4 along the entire chain.

Results of simulations are presented in Figs. 23 and 24,
for a chain with 150 monomers. The dependence of Rgyr on
temperature is shown in Fig. 23; the phase diagram is very
similar to eight. For example, at low temperatures it is found
that the compactness index is close to the mean field value
ν = 1/3 of the collapsed phase. However, the geometry of a
configuration in the collapsed phase is different: As shown in
Fig. 25 a helical structure appears only in that subchain where
the parameter values a and c have been increased.

IV. SUMMARY

The phase structure of chiral homopolymers under varying
ambient temperature values have been investigated theoreti-
cally, in terms of a universal infrared limit energy function
in combination with forbidden volume constraints (self-
avoidance) and a short-range attractive interaction between
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FIG. 24. (Color online) Dependence of Rgyr on the length of
polymer chain for low-temperature T = 10−7.5. Simulation param-
eters are the same as for Fig. 23.
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FIG. 25. (Color online) (Left) Homopolymer does not display
helices in the ground state. (Right) Addition of a subchain that
breaks homogeneity, gives rise to a helix in the subchain region.
Homopolymer configuration was obtained in simulation under the
parameters inside the collapsed region of the phase diagram (see
Fig. 17). In case of heteropolymer the simulation parameters are the
same as for Fig. 23, dimensionless temperature T (see Sec. II H) is
equal to 10−7.5.

residues. As such, the model should provide a realistic
description even in the case of heteropolymers that display
an approximatively repeating monomer pattern, provided the
scale of the repeat can be considered small in comparison to
the chain length. A biologically important example is given
by collagen, the most prevalent protein in a human body, in
which case the short-range attractive interaction models weak
hydrophobicity of the amino acids.

It is found that the phase diagram displays a high level of
complexity, in terms of the parameters that control the helicity,
and the strength of the attractive interaction. In particular,
the low-energy phase is either like a linear one-dimensional
straight rod, or a space-filling collapsed configuration. At
intermediate temperatures, there is a state which can be
identified as an example of the pseudogap state, and there are
also intermediates that are more like the conventional θ regime.
It is possible that these regimes merge, in the thermodynamical
limit, at least for some range of parameter values. However, the
possibility of the existence of four-critical, even five-critical
points in the phase diagram is also proposed, but cannot be
confirmed with presently available computer power.

The extension of the present approach to investigate
properties of proteins and other heteropolymers remains a
challenge to future research.
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