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Filaments in the twist-grain-boundary smectic-A phase
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A model of filaments of the twist-grain-boundary smectic-A phase (TGBA) arising from the homeotropic
smectic-A phase and nucleating on the sample surface is proposed. The model is based on the concept of finite
blocks of parallel smectic layers forming a helical structure. The blocks are surrounded by dislocation loops.
The model describes the filament structure near the sample surface and the observed inclination of the filament
axis with respect to the easy direction of the molecular anchoring on the surface. The model is based on the
observations of filament textures of the TGBA phase in a chiral liquid crystalline compound, but can be applied
for forming of TGBA filaments in any compound. The compression modulus of the compound has been estimated
using such parameters as anchoring energy, estimated from the field necessary to transform the structure into the
homeotropic smectic-A.
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I. INTRODUCTION

Twist-grain-boundary (TGB) phases in liquid crystalline
compounds with chiral molecules are frustrated phases ex-
isting due to the competing intermolecular interactions and
strong molecular chirality, which lead both to the assembly of
molecules in layers and the formation of spiral structures. The
structures of these phases are inevitably accompanied with
defects having significant consequences on their nucleation,
textures, and then on their properties.

The twist-grain-boundary smectic-A (TGBA) phase, which
is the object of this study, is composed of blocks (slabs) of the
orthogonal smectic-A. Due to chirality they rotate about an axis
lying in the smectic layers, the pitch of rotation being typically
in the range of the visible light wavelength. The blocks (slabs)
are separated by systems of screw dislocations forming a twist
boundary analogously as in solids where crystal grains are
separated by screw dislocations [1]. The existence of TGB
phases was first predicted by de Gennes [2], theoretically
described by Renn et al. [3], and afterwards discovered by
Goodby [4]. So far there are a lot of papers reporting the
existence of TGB phases in various compounds and describing
their properties. Typically the TGB phases occur below the
blue phase or the cholesteric phase, but may appear directly
below the isotropic phase. There is also a case when the
TGBA phase appears as a reentrant phase below the smectic-A
phase [5].

The textures of TGB phases exhibit various features
depending on the sample thickness, surface [6], and geome-
tries [7]. Besides, paramorphic textures from the neighboring
phase survive in the TGB phase and in the opposite, the
features of TGB textures persist in the nonfrustrated phase.
The reason is the inevitable presence of defects in the TGB
phases, which have to be melted in the next phases. Generally,
the textures of the TGB phases are diverse and complicated. In
freestanding films, as well as in samples with homeotropic an-
choring, the filament [6] or fingerprint textures typically occur
[5–12]. Nevertheless, under the homeotropic anchoring fea-
tures similar to the fan-shaped textures known from classical
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smectic phases may also be observed in the TGB phases [6,8].
Under the planar anchoring a blurred fan-shaped texture [6],
oily streaks structure, or irregular grains can appear. In the
grain texture the color corresponds to the pitch length of the
TGB block rotating, the rotation axis being perpendicular to
the sample plane [5–8].

Here we report a model of filaments nucleating from the
homeotropic smectic-A phase. We use “filament” to mean a
linear object observed, e.g., in [4–6]. The model of filaments
is based on the experiment performed on PHB(S) compound,
in which the TGBA phase is the only mesophase and the
smectic-A phase is induced by an electric field. The article
is structured as follows. Section II presents the observed
textures of the TGBA filaments in the studied compound.
In Secs. III and IV the geometry of the TGBA filament is
described and the energy of the filament is estimated based
on the smectic-A elasticity. Together with the observed values
of filament dimensions this energy permits discussion of the
layer compressibility and estimation of the layer compression
modulus B. Finally, the filament model is used in Sec. V to
explain the observed orientation of the filament.

II. TEXTURE STUDIES

The TGBA textures are studied in different types of the
glass cells. Herein, the effect of filaments nucleation is
presented for a commercial cell, 5 μm thick, provided with
transparent ITO electrodes and with planar anchoring ensured
by rubbing a surfactant, with the easy direction along the
electrode edge. Samples are filled with a liquid crystalline
compound denoted PHB(S) [13] having the enantiotropic
TGBA phase in the temperature range from 27 ◦C to 33 ◦C.
A typical texture in a planar sample observed in crossed
polarizers on the sample cooled down from the isotropic phase
is shown in Fig. 1. This texture contains colored grains, the
color corresponding to the pitch length of the TGB helix
with the helical axis perpendicular to the sample plane. The
spectrometric measurements show the pitch length changing
from 380 nm (blue color) to 750 nm (red color) on decreasing
temperature within the interval from 32.9 ◦C to 31.8 ◦C; for
lower temperature the pitch length is out of spectral range.
An electric field of about 60 V per the sample thickness
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FIG. 1. (Color) Nucleation of the TGBA phase in PHB(S) com-
pound when cooling down the sample. (a) TGBA phase exhibits blue
color at the temperature 33 ◦C, (b) the color of TGBA phase changes
to red at the temperature 32.2 ◦C. The width of every micrograph is
about 120 μm.

changes this texture to a homogeneously dark state, showing
a uniaxial structure with the optical axis perpendicular to the
sample surface. This structure corresponds to a well-aligned
homeotropic smectic-A phase. After the field is switched off a
filament texture gradually appears [Figs. 2(a)–2(c)]. In Fig. 2
the edge of the photographs corresponds to the edge of the
electrode, being parallel to the orientation of the crossed
polarizers. From these figures one can see that the axes of
filaments make a certain angle between 45◦ and 50◦ with the
easy direction at the sample surface (electrode edge). It can be
concluded that under the field the director becomes oriented
perpendicularly to the sample surface (dark state) and then
slowly relaxes to a structure enforced by the planar surface
anchoring. The filaments thus originate from the homeotropic
state established by the field. Let us point out that the filament
texture is typical for samples with the homeotropic anchoring
or the freestanding films [5–12].

Based on the dielectric spectroscopy measurements [13],
the permittivity, ε, has been established in a broad frequency
range. We have found that at lower frequencies ε‖ is higher
than the permittivity measured on the sample without field
application, where the component along the short molecular
axis ε⊥ prevails. Positive dielectric anisotropy, ε‖ > ε⊥, is
the reason for preference of homeotropic alignment under

FIG. 2. (Color) The growth of filaments of the TGBA phase in
the homeotropic state of PHB(S) compound after switching off the
electric field, temperature 32.2 ◦C. (a) Individual filaments grow with
time in the direction making an angle between 45◦ and 50◦. with the
easy direction at the sample surface. The easy direction is parallel
to the edge of the electrode parallel with the edge of the image.
(b) The density of filaments increases with time; sometimes also
filaments perpendicular to the primary system of filaments occur.
(c) When filaments cover the whole sample, an individual filament
can coalesce making wider areas of TGBA phase. The width of every
micrograph is about 150 μm.
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the applied electric field. Thus the transformation of the
TGBA phase in the sample with the planar anchoring can
be understood as an analogy of the Frederiks transition in
nematics [13].

III. FILAMENT OF THE TGBA PHASE COMPOSED
OF FINITE SMECTIC BLOCKS

Rotation of blocks forming the TGBA phase, namely, the
fact they are finite in all dimensions, is basically responsible for
the formation of TGB filaments. The blocks with the structure
of the smectic-A phase rotate along the axis parallel to the
smectic layers, the next blocks being relatively rotated by an
angle ω = 2π lB/P , where P is the helical pitch and lB is the
dimension of the blocks along the rotation axis. Then the ratio
P/lB = N is the number of blocks over the pitch length, P .
To calculate the free energy of the TGBA phase let us choose
the coordinate system connected with unperturbed smectic-A
layers with the z axis oriented along the layer normal, and x

and y axes in the plane of the smectic layers. The chiral term
responsible for layer rotation was proposed in [14] as −D2

∂�
∂x

with D2 as a chiral constant, where �(x) describes the rotation
of the blocks around the x axis at the position x/lB with respect
to the system of unperturbed parallel smectic-A layers. This
chiral term can be associated with the elastic curvature term
of the type K

2 ( ∂�
∂x

)2 where K is the curvature elastic constant
of the smectic-A, which is isotropic in the xy plane. Then
the curvature part of the free energy density together with the
chiral term can be rewritten as K

2 ( ∂�
∂x

− qo)2 with qo = D2
K

,
qo being connected with the pitch P as qo = 2π

P
= ω

lB
. The

chirality of liquid crystal, i.e., the sign of qo, determines the
sign of ω.

In infinite blocks the smectic layers are not deformed. Then
the minimum of the free energy density leads to the equation
∂�
∂x

= qo, giving continuous rotation of the smectic layers in the
form �(x) = −ω

2 + ω
lB

x. However, the TGB structure consists
of discrete rotation of blocks; therefore the form �(x) can
be used for geometrical description of the TGB phase only
when x = klB , k ∈ (0,N ) being an integer, and N describes the
number of blocks within the pitch length, i.e., N = P/lB . The
angle �(x) is connected with the density of screw dislocations
in TGB walls between blocks.

Above we have outlined a well-known geometrical descrip-
tion of the TGB phase [14–16]. In the following, we will
describe a nucleation of the TGB phase and its geometry in
the smectic-A liquid crystal with the smectic layers parallel
to the sample surfaces. Such a situation has been observed in
the experiment described in Sec. II, when the TGBA phase
arises from the smectic-A phase induced by the electric field
(see Fig. 2). In that case the TGBA phase appears in a form
of needles (filaments) which are finite in all three dimensions.
In the nucleation of filaments both effects of chirality and the
surface anchoring preferring the planar molecular orientation
are combined.

A nucleus of a block of TGBA phase that has emerged inside
the smectic-A phase at the sample surface is schematically
shown in Fig. 3. The smectic layers in the block are inclined
by an angle � with respect to the layers in the surrounding
smectic-A phase. We suppose that layers in a block are straight
except for the sample surface, where they are warped creating a
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y

FIG. 3. Schematic representation of a block with the smectic-A
layers inclined by an angle � with respect to layers parallel to the
sample surface (thick line). The smectic layers are represented by
thin lines with molecules shown as short line segments. The full dots
show cross sections of edge dislocations, which are connected with
the sample surface by a system of screw dislocations (dot-and-dash
lines). The open arrow shows the position of a borderline of the
inclined block at the surface, the line being parallel to the x axis.
Dimensions of the block are the height h and width l determining
the characteristic length L as L = √

h2 + l2. Distance between edge
dislocations is denoted as d and the smectic layer thickness is b. The
y and z axes are indicated; the x axis is perpendicular to the plane of
figure.

surface wall of the flexion there [17] with the edge dislocations
accommodating the layer curvature near the surface. The layers
parallel to the surface terminate near the inclined block by
another system of edge dislocations separated by the distance
b/ tan � along the y axis, b being the layer spacing. In fact the
system of edge dislocations forms a boundary, which can be
called an incoherent twin wall [18,19] in analogy with twins in
solid crystals. For blocks finite along the x axis the inclination
of layers is accommodated by a twist grain boundary formed
by screw dislocations perpendicular to layers in the block
and connecting the edge dislocations with the sample surface
(dot-and-dash lines in Fig. 3). Blocks are thus surrounded by
parts of dislocation loops starting and ending on the sample
surface. The number of the dislocation loops surrounding the
block is simply h/b or it can be related to the angle �(x)
by the ratio l/(b/ tan �) [18–20], h and l being the block
height and width, respectively (Fig. 3). On the surface the
blocks are ended by a borderline (Fig. 3). The borderline also
terminates the edge dislocation wall on the sample surface.
Note that on the other side, at the distance l from the borderline
(Fig. 3), the block is connected to the system of parallel
smectic layers continuously, just by tilt deformation. Such tilt
deformation wall is analogous to the coherent twin wall [18,19]
in solid crystals. Thus the opposite sides of bocks differ from
each other.

The chirality together with the surface anchoring induces
a creation of blocks near the surface. The layers in the
neighboring blocks are relatively turned by an angle ω.
Possible situations are shown in Figs. 4–6. Figure 4(a) shows a
case when the neighboring blocks are inclined with respect to
the unperturbed layers parallel to the sample surface by angles
−ω/2 (dashed lines) and ω/2 (full lines), respectively (this
situation arises near x ≈ 0 or x ≈ P/2). The block depicted
by dashed lines is situated behind the block depicted by full
lines. Each block is surrounded by a system of dislocation
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FIG. 4. Schematic representation of two neighboring blocks
shown (a) in full (block in the front) and dashed lines (block behind)
and in perspective (b). The drawing corresponds to the positions at
x ∼ 0 and x ∼ P/2 along the filament. (a) Blocks are inclined by
an angle ω

2 and − ω

2 with respect to the parallel smectic layers and
thus mutually inclined by ω. The height, h, of both blocks is equal.
(b) Depicted smectic layers constitute an envelope of the neighbor
blocks only. For simplicity curvature deformations of layers in blocks
near the sample surface are omitted.

loops as depicted in Fig. 3. For simplicity the dislocations are
not shown in the figure. Near the sample surface the layers are
curved due to the planar surface anchoring. Schematic drawing
of the situation shown in Fig. 4(a) is presented in a simplified
way in Fig. 4(b). In Fig. 4(b) neighboring blocks are shown in
perspective represented by just one smectic layer enveloping
a block. Layer deformation near the surface is neglected.

Figure 5(a) shows two neighboring slabs with ω/2 < � <

(π − ω)/2, i.e., somewhere in the interval 0 < x < P/4. Due
to the relative inclination of smectic layers the relative heights
of slabs hf and hb could be different. The relative inclination
of smectic layers in neighboring slabs can be seen as relative
turning of dashed and full lines where the blocks overlap.
Again the block depicted by full lines is situated in the front of
the block depicted by dashed lines. In perspective, those two
blocks are schematically drawn in Fig. 5(b). Due to the block
rotation the borderlines of neighboring blocks on the sample
surface are displaced by u.

The sign of displacement u is determined by the chirality
of liquid crystal, i.e., by the sign of angle ω, which can be
seen in Fig. 5(a). Rotating of neighboring blocks in Fig. 5(a)
is right-handed. The relative displacement u of the borderline
(i.e., displacement of layers depicted by dashed lines from
layers represented by full lines on the surface) is oriented in
the left direction [see also Fig. 5(b)]. By changing rotation to
left-handed the relative displacement u of the borderline will
be oriented to the right.

u

hb

(a)

hf

(x) u lB

lB

Border
lines

hb

hf

(b) 

FIG. 5. Schematic representation of two neighboring blocks
shown (a) in full (in the front) and dashed lines (behind) and in
perspective (b). The drawing corresponds to the positions for x

between x = 0 and x = P/4. The height of the block in front,
hf , differs from the height of the block behind, hb. The relative
displacement of the borderlines of the blocks is denoted as u.

Figure 6(a) represents the neighboring blocks inclined with
respect to the layers parallel to the sample surface by angles
� = −ω

2 + π
2 (full lines) and � = ω

2 + π
2 (dashed lines),

respectively. The block drawn in dashed lines is situated behind
the block in full lines as shown in perspective in Fig. 6(b). Such
a block arrangement occurs near x ≈ P/4.

The arrangement presented in Figs. 4–6 in a row gives
a structure of a TGBA filament. This filament structure of
the length P /2 is in a simplified three-dimensional (3D)
view depicted in Fig. 7. Figure 7 shows only the smectic
layers enveloping blocks terminating on the sample surface
(ends of smectic layers of the width lB which form a
borderline). Figure 4 represents the situation at the front side
of Fig. 7. Figure 5 shows blocks between the front side
and the center of Fig. 7. Finally, Fig. 6 corresponds to the
situation in the center of Fig. 7, where neighboring blocks
are continuously reconnected with smectic layers in opposite
directions. Smectic molecules in inclined layers of blocks are
also inclined from the normal of the sample surface. Because
of the inclination of molecules in filament blocks the filament
shows an optical contrast in the polarized light with respect to
its surroundings. Note that in Fig. 7 also curvature deformation
of layers due to the surface anchoring is shown for illustration.
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FIG. 6. Schematic representation of two neighboring blocks
shown (a) in full (in the front) and dashed lines (behind) and in
perspective (b). The drawing corresponds to the position at x = P/4
along the filament. Blocks are inclined by an angle π−ω

2 with respect
to the parallel smectic layers and thus relatively inclined by ω. The
height, h, of both blocks is equal. The same blocks as in (a) are shown
in perspective in (b). Depicted smectic layers constitute an envelope
of the neighbor blocks only. For simplicity curvature deformations of
layers in blocks near the sample surface are omitted.

The local rotation axis between neighboring blocks is
parallel to the x axis but its position in the z direction above the
sample surface can differ from block to block depending on
the displacement u. Let the position za be the position of the

FIG. 7. 3D drawing of the smectic layers which terminate on the
sample surface, tracing there a borderline. Depicted smectic layers
constitute an envelope of the filament only. The presented simplified
view demonstrates, namely, a relative displacement of neighboring
blocks on the sample surface caused by chirality induced relative
block rotation. The filament segment presented has the length of P/2.
Note that blocks in the lower part of the figure, corresponding to the
interval 0 � x � P/4, are continuously reconnected with parallel
smectic layers on the left while blocks in the upper part of the
figure (P/4 � x � P/2) are continuously reconnected with parallel
smectic layers on the right.

ωza

Ω(x)Ω(x)+ω

u Border line

Border line

FIG. 8. Scheme drawing showing the position of the rotation axis
za of neighbor filament blocks related to the displacement u of block
borderlines. Enveloping smectic layers are relatively inclined by an
angle ω while neighbor blocks are inclined with respect to the sample
surface by angles �(x) and �(x) + ω, respectively. It is a simplified
situation not taking into account the layer deformation near the surface
due to the anchoring.

rotation axis of layers enveloping neighbor blocks (Fig. 8). In
the simplified case of nondeformed smectic layers the position
za of block rotation axis in the interval x ∈ (0,P/4) can
be determined as za = u sin �(x) sin[�(x) + ω]/ sin ω (see
Fig. 8). In the other parts of the interval (0,P ) za can be
expressed in a similar way. The mean value of z̄a over the
interval (0,P ) is z̄a = u

2 cot ω supposing that u does not depend
on the x coordinate. Note that the last relation is based on a
very simplified geometrical description of neighbor blocks.

IV. ENERGY OF TGBA FILAMENT

In this section we propose an approximate energy of the
TGBA filament over the period P. It will enable us to estimate
the filament dimensions in directions perpendicular to the
rotation axis x, namely the height of the kth block in the z

direction, hk , and its width, along the y direction, lk . Generally,
the elastic energies of both screw and edge dislocation walls
surrounding each block contribute to the full energy. As for the
screw dislocation in the smectic-A, recently a more detailed
solution for a screw dislocation was proposed and a nonzero
elastic self-energy was determined [21]. In the limit of an
infinite medium, the elastic self-energy given in [21] leads
to the Kléman’s term Bb4

128π3r2
o

[22], where B is the layer
compression modulus [14] and ro is the dislocation core radius.
The elastic energy of an edge dislocation per unit length can
be written as [17]

Ee = Kb2

2λro

, (1)

where λ = √
K/B with the mean Frank elastic constant K.

When comparing (1) with the Kléman’s contribution to the
screw dislocation energy, it can be found that it is of the order of
10−3 smaller compared with the energy of an edge dislocation
and thus can be neglected and only the elastic energy of an
edge dislocation walls will be considered.

The length of the edge dislocations in a wall equal to the
thickness lb of a block along the x direction is lBnk where nk
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is the number of dislocations in the edge dislocation wall. As-
suming smectic layers in blocks to be just inclined with respect
to the nondeformed layers parallel to the sample surfaces the
edge dislocations in a wall will be uniformly distributed as seen
in Fig. 3. The number of edge dislocations is nk = lk/dk and the
distance between the edge dislocations along the y direction
is dk = b/ tan �(k) with �(k) = −(ω/2) + ω k (Fig. 3 with
parameters l and d changed to lk and dk , respectively). Then
the edge dislocation wall energy can be approximated as

N∑
k=1

lBEenk, (2)

where P/lB = N . The chiral term can be written as −K ∂�
∂x

qo.
Taking ∂�

∂x
= qo this chiral term leads to a decrease of the

energy (per unit volume) −Kq2
o against the parallel unwound

layers. The energy of the chiral term over the period P is

−Kq2
o

N∑
k=1

lk hk lB, (3)

where lkhhlB characterizes a block volume.
After the electric field is switched off, the filament is

nucleated in the vicinity of the sample surface, where the
anchoring affects it. At the surface, molecules are preferen-
tially oriented along the surface easy direction. Being the axis
of the chiral rotation of molecules (i.e., the rotation of layers
in the smectic-A) along the x axis, the orientation of the easy
direction on the sample surface will be along the y axis. The
anchoring energy WA lowers the total energy by

−WA

N∑
k=1

lk lB. (4)

Then the total energy U of the filament is the sum of
expressions (2)–(4). In our model the energy U is taken in an
isotropic smectic-A liquid crystal. It does not take into account
the energy of the layer curvature near the sample surface as
we suppose the principal curvature energy is concentrated into
edge dislocation walls.

The dimensions of a filament hk and lk differ with the
position of the block along the x axis. In our simplified model
we will use mean values h̄ and l̄ defined as

h̄ = 1

N

N∑
k=1

hk, l̄ = 1

N

N∑
k=1

lk, and

S̄ = 1

N

N∑
k=1

lkhk.

Area S̄, which is the mean value of the filament cross
sections, can be expressed as h̄l̄/2, as it can be seen from
Fig. 3. Therefore, we take

∑N
k=1 lkhklb ≈ Nlb

h̄l̄
2 , and then

U ≈ lBEe

N∑
k=1

hk

dk

− Kq2
oN

h̄l̄

2
lB − WAN l̄ lB. (5)

In the first term of (5) we take the shortest distance between
edge dislocations as dk ≈ b, which gives the maximum
estimation of the edge dislocation wall energy. Taking further

ro ∼ b/2 [16] and with N = P/lB we finally obtain the energy
of the filament having the pitch length

U ≈ KP

λ
h̄ − K

2π2

P
h̄ l̄ − WAP l̄. (6)

Moreover, we can suppose that the mean values of the height
and the width of the filament are the same, h̄ ∼ l̄.

The nucleation of the filament is supported by thermal
activation, the driving force being the influence of both chiral
term and surface anchoring. The probability of the nucleation is
proportional to e−�U/kBT , where kB is the Boltzmann constant,
T the absolute temperature, and �U is the energetic barrier of
nucleation. The barrier �U is the difference of the maximum
energy of the filament nucleus with respect to the energy of
nondeformed smectic layers having zero elastic energy. The
energy barrier will be estimated using (6). Let us suppose the
nucleus in a cubic form with the edge ∼h̄. The energy Un of
this nucleus is given by (6) multiplied by (h̄/P ), which is the
factor giving the ratio of nucleus length and pitch, i.e.,

Un ≈
(

KP

λ
h̄ − K

2π2

P
h̄2 − WAP h̄

)
h̄

P
.

The energy barrier �U is obtained for the critical dimension
of the filament nucleus h̄cr ,

h̄cr = P 2

3π2

(
1

λ
− WA

K

)
, (7)

coming from the condition dUn/dh̄ = 0. Expression (7) gives
the relation between filament dimension h̄cr , ratio of the elastic
constants λ, and anchoring energy WA.

Inserting (7) into Un we obtain

�U = Un(h̄ = h̄cr ) ≈ KP 4

27π4λ3

(
1 − WAλ

K

)3

.

The anchoring energy WA can be estimated from the texture
observations under the electric field. The homogeneous dark
state is reached at about 60 V when the anchored molecules
are torn from the surface. The energy of the electric field E

in the unit volume of the sample is − εoεa

2 E2 where εa is a
dielectric anisotropy and εo is the vacuum dielectric constant,
εo = 8.854×10−12 F/m. The experiment shows εa ∼ 1 (see
Ref. [13]) and the thickness of the studied sample is about
t = 5 μm.

The electric field applied on the sample leads to elastic
deformations which become greater towards the sample
surfaces because of the surface anchoring. For thin enough
samples one can suppose the electric energy is accumulated
into the bulk elastic energy which is balanced by the surface
anchoring energy 2WA (per unit surface) on both surfaces.
For a critical field the elastic energy, which is equivalent to
εoεa

2 E2t , the reorientation of molecules at surfaces occurs and

WA ≈ εoεa

4
E2t. (8)

From relation (8) we obtain WA ∼ 1.6×10−3 J/m2. This
energy is comparable with the reported anchoring energy of
5CB nematic liquid crystal on surfaces covered by rubbed
polyvinyl alcohol film.
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The pitch P can be estimated as P ∼ 0.5 μm from the
color changes of the texture in Fig. 1. With a typical value
K ∼ 10−11 J/m [14] the energy barrier �U is just the function
of λ. When �U is proportional to the energy kBT , the
nucleation of the filament nucleus starts to be favorable and
the parameter λ can be estimated. Then the relation �U ∼
kBT with kB ∼ 1.38×10−23 J/K and T ∼ 305 K gives λ ∼
6.2×10−9 m and B ∼ 2.6×105 J/m3. However, the estimation
of λ for a typical smectic in [14] is about λ ∼ b ∼ 3×10−9 m,
which corresponds to B ∼ 106 J/m3. It means that the studied
smectic material PHB(S) is relatively soft, i.e., exhibits
higher compressibility. Higher compressibility can be also
deduced from comparison of the molecular length and layer
spacing [13]. The extended molecule of PHB(S) calculated as
3.1 nm is shorter than the measured layer spacing, which is
about 3.6 nm. This difference can be explained by a mutual
lengthwise shift of molecules within the smectic layers, which
results in a higher degree of layer compression in the studied
compound [13]. As Eq. (7) gives the relation among hcr , λ, and
WA, the dimension of the filament nucleus can be estimated
giving hcr ≈ lB ≈ 18 nm. This value of lB corresponds to the
value given in Ref. [16].

The critical dimension of the filament nucleus h̄cr can be
related to the displacement u introduced in Sec. III. Intuitively
we can expect that the mean position of the rotation axis of
enveloping layers of neighbor blocks is situated nearly in
the middle of the mean block height h̄. Therefore we take
approximately h̄cr ≈ 2z̄a and then h̄cr ≈ u cot ω. This relation
shows that both the critical dimension of the filament nucleus
and displacement u are related to the energy of dislocation
walls, chirality, and surface anchoring energy in our model.
In the case when the surface anchoring is weak the surface
does not influence the filament nucleation. Then the filament
nucleation is similar as in the sample bulk and there is no sense
in introducing u. The filament blocks rotate around the chiral
axis identical with the axis of the filament.

When the barrier �U is overcome, the parameter h̄ has the
tendency to increase, h̄ > h̄cr , and the energy U decreases.
Further decrease of U can be also obtained when the nucleus
elongates in the direction of the filament axis by a length being
a multiple of the pitch P . Experimental observations show that
the elongation of the filament nucleus is much easier along
its axis. Our model does not explain this observation but we
propose an intuitive explanation in the following. The increase
of block dimension needs the further creation of dislocation
loops probably near the surface. Edge segments of the created
dislocation loop are generally repulsed from the surface [23]
but they should move through the whole block. The edge
dislocation segment moving through the filament block is then
hindered in its motion by the so-called Peierls-Nabarro barrier
(see, e.g., [24]) when crossing smectic layers. (Overcoming
the Peierls-Nabarro barrier for dislocations in smectic-A by
the application of an electric field is discussed in [25]).
Moreover, for thin samples the other sample surface also
repulses edge dislocations, thus preventing block growth. The
filament growth in the direction perpendicular to its axis is
hindered with respect to the growth along its axis but it is not
completely excluded. The filament width l̄ can slowly increase
so neighbor filaments can touch each other and eventually
merge as seen in Figs. 2(b) and 2(c). Nevertheless, here we do

not treat the dynamics of the filament growth, so our comments
on filament propagation are just qualitative.

V. ORIENTATION OF THE FILAMENT AXIS

Textures described in Sec. II show that the filaments are
usually inclined from the easy direction of the anchoring at the
sample surface. We want to demonstrate that this inclination
is connected with the widths of blocks, lB , and displacements
u along the y axis (see Figs. 5 and 7). For demonstration
we suppose that displacement u of the borderline exists and
the mean characteristic length L of blocks in filament L =√

h2 + l2 (see Fig. 3) is the same for all blocks. The position
of the kth block along the x axis can be written as xk ≈ lBk but
we approximate limits of blocks by continuous lines in the xy

plane. Blocks in the filament rotate along the x axis by an angle
�(x). Therefore l(x) = L cos[�(x)] with �(x) = −ω

2 + ω
lB

x.
The projection of the filament blocks on the sample surface is
bounded by limits yH (x) and yD(x) (Fig. 8). These limits will
be determined separately in four intervals of the P /4 lengths
depending on which side of the filament the borderlines are
situated. We just remind the reader that blocks terminate at the
surface together with the edge dislocation wall at the borderline
as seen in Fig. 3. The displacement u which is displacement of
the positions of borderlines of neighbor blocks is supposed to
be constant. In this model we neglect the layer curvature near
the surface shown in Fig. 3. On the other side of the borderline
blocks are continuously connected to parallel smectic layers
by the so-called coherent twin wall.

Blocks have the width lB so the borderlines of blocks form a
stepped line, but for simplicity we approximate the borderline
by continuous line b(x) = u

lB
x. Limits yH (x) and yD(x)

will be determined in four intervals (0,P/4), (P/4,P/2),
(P/2, 3P/4), and (3P/4,P ). In these intervals we denote
yH (x) and yD(x) as yH i(x) and yD i(x) with subscripts i from
1 to 4. In interval (0,P/4) let us identify the borderline with
yD 1, i.e.,

yD 1(x) = b(x) + CD1, (9a)

where CD1 is a constant.
The part of the filament in this interval is schematically

shown in the lower part of Fig. 7 where blocks are connected
with parallel smectic layers on the left side. Then the limit
yH 1(x) is

yH 1(x) = b(x) + l (x) + CH1, (9b)

with CH1 constant. Both constants CD1 and CH1 can be
adjusted to zero when the borderline in (9a) passes through
the origin.

In the interval x ∈ (P/4,P/2) the limit yH 2(x) is the
borderline because blocks are connected to parallel smectic
layers to the right side (see the upper part of Fig. 7) and the
limit yD 2(x) is determined by block projections. Then limits
yH 2(x) and yD 2(x) have the forms

yH 2(x) = b(x) + CH2, (10a)

and

yD 2(x) = b (x) + l(x) + CD2, (10b)
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with constants CH2 and CD 2. Constants CH2 and CD12

are determined from the continuity conditions yH 1(P/4) =
yH 2(P/4) and yD 1(P/4) = yD 2(P/4) at x = P/4 Then
CH2 = −CD2 = L sin( ω

2 ). For evaluation of limits at x =
P/4, we used P = 2π lB/ω. Finally, we can write

yD2 = u

lB
x + L

[
cos �(x) − sin

(
ω

2

)]
and

yH2 = u

lB
x + L sin

(
ω

2

)
. (11)

For x ∈ (P/2, 3P/4) the borderline is the limit yD3, i.e.,

yD3(x) = b (x) + CD3, (12a)

and yH3 is proposed in the form

yH3 = b(x) + l(x) + CH3. (12b)

Continuity conditions yH 2(P/2) = yH 3(P/2) and yD 2

(P/2) = yD 3(P/2) at x = P/2 give constants CH3 =
−CD3 = L[sin( ω

2 ) + cos(ω
2 )]. So we have

yD3 = u

lB
x − L

[
cos

(
ω

2

)
+ sin

(
ω

2

)]
and

yH3 = u

lB
x + L

[
cos �(x) + cos

(
ω

2

)
+ sin

(
ω

2

)]
. (13)

Finally, in the interval x ∈ (3P/4,P ) the borderline is

yH4(x) = b (x) + CH4. (14a)

Then the limit yD4 is in the form

yD4(x) = b (x) + l(x) + CD4. (14b)

Conditions yH 3(3P/4) = yH 4(3P/4) and yD 3(3P/4) =
yD 4(3P/4) at x = 3P/4 give CH4 = −CD4 = L cos(ω

2 ). Then

yD4 = u

lB
x + L

[
cos �(x) − cos

(
ω

2

)]
and

yH4 = u

lB
x + L cos

(
ω

2

)
. (15)

The filament axis can be described as the mean value of the
filament limits yD and yH , i.e., y = (yD + yH )/2 in the whole
interval x ∈ (0, P ).

In Fig. 9 the projection of filament blocks on the sample
plane xy is schematically drawn together with the filament
axis, the orientation of which changes along the x axis. In our
model the filament width, (yH − yD), also changes along the
axis of block rotation as it is proportional to the projection
of L into the plane of the sample surface. The mean angle of
filament axis inclination from the easy direction of the planar
surface anchoring is determined by the derivative

dy

dx
= u

lb
− L

2

ω

lB
sin �(x), (16)

in the whole interval x ∈ (0,P ). Then the mean value of the
tangent 〈dy/dx〉 = 〈tan α〉 over the period P gives 〈tan α〉 =
1
P

∫ P

0
dy

dx
dx = u

lB
. Therefore the inclination angle α of the

filament axis with respect to the x axis is principally given by
the ratio u/lB . The inclination from the easy direction is π

2 − α

(see Fig. 9). As the sign of displacement u is determined by the

Mean filament axisy 
α

x 

yD

easy direction

yH

P/4          P/2 3P/4             P

FIG. 9. Schematic drawing of the filament seen along the normal
to the sample surface. The filament segment is shown over the length
of pitch P . Block rotations lead to the inclination of molecules from
the sample surface normal. Inclined molecules are represented by
nails, the points of which are oriented toward the observer. The length
of the nails corresponds to the projection of the inclined molecule to
the sample plane. Relative block rotations are illustrated by nails of
changing lengths in neighboring blocks. The helix axis is parallel
to the x axis. Along the helix axis the molecules rotate by 2π .
Filament blocks projection onto the xy plane is limited by yD and yH

which define the shape of the filament. Mean directions of borderlines
which limit filament segments are denoted by dot-and-dash lines. In
intervals of the length P/4 borderlines are either yD or yH . The mean
filament axis (dashed line) is inclined with respect to the x axis by
an inclination angle α. The easy direction of the surface anchoring is
parallel to the y axis.

sign of chirality, the angle α has the same property. This is the
reason why we observe just one orientation of the filament axis
with respect to the easy direction at the surface. The filaments
nucleated on the other surface have to be inclined from the x

axis by an angle −α. Therefore two sets of filaments nucleating
at both surfaces can be observed (see Fig. 2).

The observations show that the inclination of the filament
axis with respect to the easy direction is about 45◦ − 50◦,
which gives the displacement u ≈ lB . Taking the estimation
of the block width lB ≈ 18 nm [16], we obtain u ≈ 5b with
b ∼ 3.6 nm (see [13]). The introduction of displacement u is
based on geometrical considerations developed in Sec. III and
the estimated value u ≈ lB tan ω ≈ 0.23 lB is smaller than u

obtained in this section. A more exact estimation of u from
the filament nucleation would require a more detailed model
of the block shape, including block deformations due to the
surface anchoring.

VI. DISCUSSION

The presented simplified model of TGB filaments is based
on the nucleation of the TGB phase on the surface, the liquid
crystal chirality, and the surface anchoring being effective. Due
to a relative rotation of neighbor blocks their ends at the surface
are shifted by a displacement u. The displacement u determines
the position of the rotation axis of the neighbor block above the
sample surface. We approximately related the displacement
u with the critical dimension of the filament nucleus. The
existence of u explains why the mean filament axis is inclined
with respect to the easy axis of the surface anchoring.
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Let us point out that such inclination has been observed
previously [6], but has remained unexplained. Nucleation can
occur on both surfaces so observations show two sets of nearly
perpendicular surface filaments [see Fig. 2(a)].

The anchoring energy can be estimated from this value
of the electric field when the transition of the TGBA phase
to the homeotropic order with layers parallel to the glass
plates is finished; i.e., the sample is completely dark. From
the experiments this value has been established to be about
60 V. This value corresponds to the anchoring energy about
1.6×10−3 J/m2 which is comparable with the measured
anchoring energy of 5CB nematic liquid crystal on rubbed
polyvinyl alcohol film [26].

From Eq. (7) the compressibility modulus can be deter-
mined as B ∼ 2.6×105 J/m3. This value is lower compared
to the classical smectic-A phase modulus B ∼ 106 J/m3,
showing relatively higher compressibility of the studied liquid
crystal in the smectic-A phase. This fact is in accordance
with the results obtained from the smectic layer thickness
measurements showing that the layer thickness is greater
than the length of an extended molecule. Both facts can be
explained by a concept of layers composed of molecules
associated in pairs, the cores being relatively shifted with
respect to each other. Layers with mutually shifted molecules
can be compressed more easily than in smectics with the layer
thickness comparable to the molecular length.

Principally, filaments can also be created in the sample bulk.
In such a case the filament blocks of the TGBA phase behave
very similarly to bulk twins in solids. The layers in a block are
continuously connected to surrounding smectic layers along
two opposite faces (coherent twin walls). The other four side
faces are enclosed with closed dislocation loops having the
edge and screw components as it is schematically depicted
in [15]. The screw components of the dislocation loops are
located between neighboring blocks (twist grain boundaries),
while the edge dislocation components discontinuously con-
nect surrounding smectic layers (incoherent twin walls). The
axis of the block rotation is identical with the filament axis.
Naturally, the creation of a bulk filament is not assisted by
the surface anchoring. Such bulk filaments can be nucleated
on already grown primary filaments and are probably directed
obliquely to the bulk. Due to repulsion of the edge dislocations
surrounding the primary and bulk filaments the interaction
energy in the mutually perpendicular directions is minimized.

When the anchoring energy is small, the influence of the
surface on filament nucleation will be negligible. In such a
case the nucleation of the filament on the surface reminds us
of the nucleation of the filament in the bulk.

VII. CONCLUSIONS

We present a model of filaments based on the observations
of the chiral liquid crystal PHB(S) exhibiting the isotropic-
TGBA phase sequence without any intermediate cholesteric
or blue phases. Under an applied electric field the TGBA
phase is transformed to the smectic-A phase with homeotropic
structure, which is homogeneously dark in crossed polarizers,
showing thus quite perfect alignment. The model describes
gradual arising of the TGBA phase in the form of filaments
from the field induced homeotropic smectic-A phase after
the field is switched off. This process starting at the sample
surface is driven by chiral forces in combination with the planar
anchoring.

Finite blocks of TGBA structure, which compose a filament,
are separated from neighboring filament blocks by dislocation
loops having screw and edge components and starting and
finishing on the sample surface. Screw components of the
dislocation loops form twist grain boundaries between blocks
in a filament. Edge components of the dislocation loop form an
incoherent grain boundary between a block and homeotropic
smectic-A layers on one side of the block while the other
side is continuously connected to surrounding homeotropic
smectic-A layers (coherent grain boundary) as seen in
Fig. 3.

From the value of the surface anchoring, WA, estimated
from the experiment, relatively high compressibility of the
studied liquid crystalline compound can be deduced. The
model of the filament is also able to explain the observed
orientation of the filaments with respect to the easy direction
of the anchoring on the sample surface. It is worth pointing
out that the creation of similar filaments is typically observed
in other compounds during the smectic-A–TGBA phase
transition under a temperature change.

ACKNOWLEDGMENT

This work was supported by the Czech Science Foundation
(Project No. 15-02843S).

[1] W. T. Read, Dislocations in Crystals (McGraw-Hill, New York,
1953).

[2] P. G. de Gennes, Solid State Commun. 10, 753 (1972).
[3] S. R. Renn and T. C. Lubenski, Phys. Rev. A 38, 2132

(1988).
[4] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak,

and J. S. Patel, J. Am. Chem. Soc. 111, 8119 (1989).
[5] N. Podoliak, V. Novotná, M. Kašpar, V. Hamplová, M.
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[20] L. Lejček, Czech. J. Phys. 40, 1250 (1990).
[21] Fan Tian-You and Li Xian-Fang, Chin. Phys. B 23, 046102

(2014).
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