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Orientational ordering of confined hard rods: The effect of shape anisotropy on surface ordering
and capillary nematization
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We examine the ordering properties of rectangular hard rods with length L and diameter D at a single planar wall
and between two parallel hard walls using the second virial density-functional theory. The theory is implemented
in the three-state Zwanzig approximation, where only three mutually perpendicular directions are allowed for
the orientations of hard rods. The effect of varying shape anisotropy is examined at L/D = 10,15, and 20. In
contact with a single hard wall, the density profiles show planar ordering, damped oscillatory behavior, and a
wall-induced surface ordering transition below the coexisting isotropic density of a bulk isotropic-nematic (I -N )
phase transition. Upon approaching the coexisting isotropic density, the thickness of the nematic film diverges
logarithmically, i.e., the nematic wetting is complete for any shape anisotropy. In the case of confinement between
two parallel hard walls, it is found that the continuous surface ordering transition depends strongly on the distance
between confining walls H for H < L, while it depends weakly on H for H > L. The minimal density at which
a surface ordering transition can be realized is located at around H ∼ 2D for all studied shape anisotropies due
to the strong interference effect between the two hard walls. The first-order I -N phase transition of the bulk
system becomes a surface ordered isotropic IB to capillary nematic NB phase transition in the slit pore. This
first-order IB -NB transition weakens with decreasing pore width and terminates in a critical point for all studied
shape anisotropies.
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I. INTRODUCTION

Onsager presented a theoretical verification that anisotropic
hard-body interactions are sufficient for the formation of the
nematic phase when the density is sufficiently large [1]. His
theoretical description was encouraged by the experimental
observations of isotropic-nematic (I -N ) phase separation in
systems of ribbonlike vanadium pentoxide [2] and rodlike
tobacco mosaic virus particles [3]. Later such a transition was
also discovered in other suspensions with different particle
shapes, for instance, boardlike goethite particles [4]. In the
Onsager theory the Taylor expansion of the Helmholtz excess-
free-energy functional is truncated at the second order and
becomes exact for very long hard rods at low concentration.
The theory predicts correctly the bulk I -N transition to be of
first order [5].

Due to the existence of a much richer phase behavior in
confined liquid crystals, the surface effects are very interesting
in practical applications. For example, the walls can give rise
to different anchoring phenomena and result in various phase
behaviors such as a shift in the phase transition with respect
to that of the bulk phase [6,7]. In general, when a liquid is
located in contact with another phase, such as a solid surface,
the substrate gives rise to substantial changes in the structure
and the phase behavior of the liquid [8,9]. This is because
of the strong competition between particle-particle (intrinsic
interactions) and particle-substrate (extrinsic interactions)
interactions [10]. This is especially true for mesophase forming
systems, where the solid surface may change the isotropic or
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nematic fluid structure from uniaxial to biaxial. It is predicted
that the wall-induced uniaxial-biaxial (U -B) phase transition
is continuous for confined long hard rods [11,12]. However,
even the first-order U -B transition can be also found in the
system of semiflexible polymers with hard-core interactions
[13].

Over the past decade many experimental [14,15] and
theoretical [11–17] works have supported the progress in the
field of biaxial nematic phases (first prediction by Freiser
[18]). The formation of a biaxial nematic film with the director
parallel to the wall has been noted in colloidal hard-rod fluids
near a single wall and confined between two hard walls using
both theory and simulation [11,12,19]. The film wets the
surface completely as the density approaches the density of
the bulk I -N transition [11,12,20]. Complete wetting requires
the wall-isotropic surface tension to be the sum of the wall-
nematic and I -N surface tensions. This will be discussed in
Sec. III. It has been also shown that the first-order capillary
nematization arising from confining walls, where the I -N
phase transition occurs at the lower chemical potential with
respect to the bulk value [21], terminates in a capillary critical
point with a narrowing of the width of the pore. The above
results can be summarized as follows: (i) The wall induces
a surface transition from uniaxial to biaxial symmetry, (ii)
the nematic film wets completely the wall-isotropic fluid
interface, and (iii) the critical wall separation at which capillary
nematization terminates is about twice the length of the
rod [11]. Note that similar behavior has been also seen in
the system of two-dimensional hard rods in some geometric
confinements [22].

In this paper we concentrate theoretically on the effects of
shape anisotropy of rectangular hard rods with aspect ratios
L/D of 10, 15, and 20 on the I -N interfacial tension of the I -N
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interface, on the surface ordering and nematic wetting against a
single hard wall, and on the capillary nematization and surface
ordering between two parallel hard walls. In Sec. II we briefly
present the Onsager theory within the Zwanzig approximation
[23] where only three mutually perpendicular directions are
allowed. Even though this model is simple, it captures the basic
physics of the systems and also makes the numerical analysis
substantially easier [11]. In Sec. III we present our numerical
results and discussion. A summary is given in Sec. IV. We
show a method for the location of the U -B transition in the
Appendix.

II. THEORY

We study the ordering properties of rectangular hard rods
with length L and diameter D in the presence of confining
hard walls using the second virial theory (or Onsager theory)
and the so-called three-state Zwanzig approximations for the
particles’ orientations. In the Zwanzig approximation, the
particles’ principle axes are allowed to point along one of
the Cartesian axes (x, y, and z) as shown in Fig. 1, i.e., the
system corresponds to a ternary mixture of hard bodies without
rotational freedom. In this three-state model the grand potential
of the system on the level of Onsager theory can be written as

β� =
∑

i=x,y,z

∫
d(1)ρi(1) ln ρi(1) − ρi(1)

− 1

2

∑
i,j=x,y,z

∫
d(1)ρi(1)

∫
d(2)ρj (2)f ij

M (1,2)

+
∑

i=x,y,z

∫
d(1)ρi(1)

[
βV i

ext(1) − βμ
]
, (1)

where β = 1/kBT , ρi is the local density of component i

[long principle axes of particles are parallel to the i axis
(i = x,y,z)], f

ij

M is the Mayer function between components
i and j , V i

ext is the external potential for component i, and μ

is the chemical potential. The integrations are performed in
positions, i.e., (i) = d�ri , where �ri = (xi,yi,zi) is the position
vector (i = 1,2). Since the normal of the confining wall
is parallel to the z axis (V i

ext is z dependent) and we
are only interested in orientational ordering transitions, the
local-density components ρi (i = x,y,z) depend only on the
perpendicular distance z from the wall. Using the fact that f

ij

M

FIG. 1. (Color online) Schematic representation of the rectangu-
lar hard rods confined in a slit pore. Particles are allowed to orient
along the x, y, and z axes (Zwanzig approximation). Here H is the
wall-to-wall separation and L and D are the length and the diameter
of hard rods, respectively.

is equal to −1 for overlapping particles and zero otherwise,
we can integrate out the in-plane variables (x and y) in Eq. (1),
i.e., the grand potential simplifies to

β�/A =
∑

i=x,y,z

∫
dzρi(z) ln ρi(z) − ρi(z)

+ 1

2

∑
i,j=x,y,z

∫
dz1ρi(z1)

∫
dz2ρj (z2)Aij

exc(z12)

+
∑

i=x,y,z

∫
dz1ρi(z1)

[
βV i

ext(z1) − βμ
]
, (2)

where A is the surface of the confining walls, A
ij
exc(z) =

− ∫
dx

∫
dy f

ij

M is the excluded area between two hard parti-
cles with orientations i and j (i,j = x,y,z), and z12 = z1 − z2

is the vertical distance between two rods, respectively. For
rectangular hard rods with length L and cross section lengths
D, the excluded areas can be determined analytically and are
given by

Axx
exc(z) = Ayy

exc(z) = 4DL for − D < z < D,

Azz
exc(z) = 4D2 for − L < z < L,

Axy
exc(z) = Ayx

exc(z) = (L + D)2 for − D < z < D,

Axz
exc(z) = Azx

exc(z) = Ayz
exc(z) = Azy

exc(z) = 2D(L + D) for

− L + D

2
< z <

L + D

2
. (3)

Note that the above excluded areas are symmetric, i.e., Aij
exc =

A
ji
exc, and zero if the z distance between the two particles is

outside the indicated intervals. The external potential of the
system confined between two parallel walls is purely hard and
defined for parallel and perpendicular particle orientations to
the walls as follows:

βV i
ext(z) =

{
∞, z < D/2, z > H − D/2

0, D/2 < z < H − D/2 (i = x,y),

βV z
ext(z) =

{
∞, z < L/2, z > H − L/2

0, L/2 < z < H − L/2,
(4)

where H is the distance between the two parallel walls. In
the case of single wall, since the wall is located at z = 0, the
external potential is infinite only for distances below D/2 and
L/2 in the above expressions, respectively. The equilibrium
local densities are obtained from the functional minimization
of the grand potential with respect to the local densities,
i.e., δβ�/A

δρk (z) = 0. The resulting three integral equations can be
written concisely as

ρi(z) = exp

⎧⎨
⎩−

∑
j=x,y,z

∫
dz1ρj (z1)Aij

exc(z − z1)

⎫⎬
⎭

× exp
{ − βV i

ext(z)
}

exp{βμ} (i = x,y,z). (5)

It can be seen that Eq. (5) corresponds to three self-
consistent and coupled equations for the local densities ρx , ρy ,
and ρz at a given chemical potential (μ). We have solved Eq. (5)
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by the standard iteration method and used the trapezoidal
quadrature for the calculations of the integrals. Although the
x and y orientations are equivalent, we have chosen such trial
distribution functions for the local densities, which may result
in solutions such that ρx � ρy . In the bulk phase, where the
external potential term is missing, the above coupled equations
become much simpler, because the local densities lose their
positional dependence. From Eq. (5) one can derive that

ρi = exp

⎡
⎣−

∑
j=x,y,z

ρjV
ij

exc

⎤
⎦ exp[βμ] (j = x,y,z), (6)

where V
ij

exc = ∫
dz A

ij
exc(z) is the excluded volume between

two rods. In this case only parallel and perpendicular orien-
tations can be distinguished, i.e., V

‖
exc = V ii

exc = 8LD2 (i =
x,y,z) and V ⊥

exc = V
ij

exc = 2D (L + D)2 (i =�= j ). In bulk one
of the solutions of Eq. (6) is isotropic, i.e., ρx = ρy = ρz,
while the other solution is nematic, where ρx > ρy = ρz. In
the confined situation three different solutions can be obtained,
one is isotropic, while the other two are orientationally ordered
phases. To characterize the type and the degree of ordering
we use three different orientational order parameters. One
of them is the orientation average of the second Legendre
polynomial if the director is chosen to be along the x axis, i.e.,
Sx = 〈P2〉�n=(1,0,0), while the other order parameters �xy and
�yz measure the degree of biaxiality between two in-plane
orientations (x and y) and between one in-plane and one out-
of-plane orientation (y and z). In our approach the formulas
for these order parameters are

Sx = ρx − ρy/2 − ρz/2

ρ
, (7)

�xy = ρx − ρy

ρ
, (8)

and

�yz = ρy − ρz

ρ
, (9)

where ρ = ρx + ρy + ρz is the total local density. In the bulk
isotropic phase all these order parameters are zero, while
0 < Sx < 1 and one of the biaxial order parameters is zero
(either �xy = 0 or �yz = 0) in the bulk nematic phase. In the
case of confined systems the local densities are not constant
and the confining walls induce planar ordering in the vicinity
of the walls even for arbitrary small chemical potentials.
Therefore, the isotropic phase of confined systems has the
property that Sx � 0 and only one biaxial order parameter is
nonzero (�yz > 0 and �xy = 0), which corresponds to the
case when ρx = ρy > ρz. The other phase is also isotropic to
some extent, but surface ordering takes place in the vicinity
of the walls, i.e., the phase is biaxial at the walls. In this
case the local densities are nonequal in the vicinity of walls
(ρx > ρy > ρz), but ρx = ρy � ρz happens far from the walls.
This corresponds to Sx > 0 and �xy,�yz > 0 close to the
walls, while �xy = 0 far from the walls. The nematic phase
is biaxial at the walls, i.e., Sx > 0 and �xy,�yz > 0, but
it becomes differently uniaxial far from the walls due to
ρx > ρy = ρz (�xy > 0 and �yz = 0) if the pore is very

wide. We present the local-density and order-parameter curves
of different structures in the next section. Since both first-
and second-order phase transitions may occur in confined
systems, we undertake a bifurcation analysis between uniaxial
and biaxial phases and determine the coexisting densities of
different phases. In our case the bifurcation analysis, which
is presented in the Appendix, gives the phase boundary of
the surface ordering phase transition since this transition is of
second order. The properties of the first-order phase transitions
in both the bulk and confined cases, which take place between
isotropic and nematic phases, are determined by searching the
intersection between two different solutions of Eq. (5) in the
β�/A-βμ plane.

The calculated equilibrium density profiles can be also
used to determine the interfacial surface tensions (γWI, γWN,
and γIN). These profiles are inserted into Eq. (2) to get the
equilibrium value of the grand potential �0 of the system.
All surface tensions have been calculated using the general
definition of the surface tension as the surface excess grand
potential per unit area

γ = �0 + pV

A
, (10)

where p is the pressure and V is the volume of the system.
In the figures dimensionless number densities ρ∗ = ρD3,
pore width h∗ = H/D, and vertical position z∗ = z/D are
utilized.

III. RESULTS AND DISCUSSION

Prior to the study of the structure and phase behavior of the
confined hard-rod fluid we have calculated the homogeneous
bulk I -N phase boundary, as shown in Fig. 2, by searching for
the intersection between two different solutions of Eq. (6)
in β�/A-βμ plane. Figure 2 shows that the I -N phase

FIG. 2. Isotropic-nematic phase boundary of hard rods in bulk.
Coexisting isotropic I and nematic N densities are shown as a
function of aspect ratio L/D. The inset depicts the nematic order
parameter Sx of the coexisting nematic phase. Here ρ∗ is the reduced
number density (ρ∗ = N

V
D3).
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FIG. 3. (Color online) Density profiles and order parameters of the hard rod fluid in contact with a single hard wall that is located at
z∗ = 0. The aspect ratio L/D is chosen to be 10. (a) and (b) Obtained at βμ = −2.8, where the phase is isotropic and the bulk component
densities (dotted line) are equal to 4.584 × 10−3. (c) and (d) The case βμ = −2.7. This phase is biaxial isotropic and the corresponding bulk
component densities (dotted line) are 4.712 × 10−3. (e) and (f) The reduced chemical potential is −2.2, where the bulk component densities
are 5.368 × 10−3.

transition is weakly first order and the coexisting densities
decrease with increasing shape anisotropy. In the inset of
Fig. 2 one can see that the orientational order parameter of
the coexisting nematic phase increases with increasing L/D.

Apart from the shift in the coexisting densities, these results
are in good agreement with the theoretical and simulation
results obtained for freely rotating hard rods. This means that
the three-state Zwanzig approximation represents correctly the
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orientational freedom of the particles. Using Fig. 2, one can
see the reference values for our confined results in the interval
10 < L/D < 20.

In Fig. 3 we exhibit density profiles and the corresponding
order parameters of the particles with L/D = 10 in contact
with a single hard wall for three different chemical potentials
where the hard planar wall is located at z∗ = 0. The presented
density profiles show a sharp and high first peak with a
large contact value of ρ∗

x for all chemical potentials, i.e.,
there is strong adsorption at the wall. In addition to this the
density profiles exhibit damped oscillatory behavior near the
planar wall, while they converge to the bulk density values
far from the wall. Near the surface ρ∗

z is always smaller
than ρ∗

b /3, while ρ∗
x is always higher at any distance for

all chemical potentials shown. This shows that the ordering
is planar at the wall. The phase is isotropic with planar
order at βμ = −2.8, as can be seen from Figs. 3(a) and
3(b), where ρ∗

x is equal to ρ∗
y , i.e., surface induced biaxiality

is not present (�xy = 0). Sufficiently far from the wall all
densities approach the bulk density (ρ∗

b /3 = 4.584 × 10−3).
As the chemical potential is increased biaxial order starts to
exist as the number of particles parallel to the x axis increases
more than the number of particles parallel to the y axis. In
Figs. 3(c) and 3(d), ρ∗

x �= ρ∗
y and �xy and �yz are nonzero

spontaneously near the wall, so the phase is biaxial. These
figures show surface ordering and formation of a nematic film.
In Fig. 3(e), where the chemical potential is chosen to be close
to βμb

IN ≈ −2.1327, a substantial increase in the value of ρ∗
x

can be seen with respect to ρ∗
y and ρ∗

z . This indicates that the
thickness of the nematic layer can be grown by increasing
the chemical potential. This fact is also clear from the order
parameters presented in Fig. 3(f). There is a very weak negative
oscillation in �yz where ρ∗

y < ρ∗
z in Fig. 3(f) right after z∗ = 5

that becomes slightly positive before decaying quickly to
zero (ρ∗

y = ρ∗
z ). Furthermore, �yz becomes smaller for larger

chemical potentials, which means that the values of ρ∗
z and

ρ∗
y are getting closer to each other. At very large distances

all densities become identical, i.e., the phase is isotropic far
from the wall. The wall-induced U -B transition occurs at
βμ = −2.7550, which is below the chemical potential of the
bulk I -N transition (βμb

IN). Upon getting close to βμb
IN, the

thickness of the nematic film diverges logarithmically. It is
important to note that the nematic wetting is complete for
any shape anisotropy as it is proved by the results for surface
tensions. In summary, Fig. 3 shows that how the second-order
biaxial surface ordering transition evolves with increasing
chemical potential.

For some aspect ratios, the surface tensions have been
calculated using Eq. (10) by choosing very large distance
between the wall and the bulk fluid and between coexisting
isotropic and nematic phases (∼ 1000D). In the case of wall-
isotropic surface tension calculations, we have performed an
extrapolation γIW(μb

IN) = limμ→μb
IN
γIW(μ) because the thick-

ness of the nematic film diverges at βμ = βμb
IN. The resulting

surface tensions are fitted by R2 larger than 0.98 to a power
law γ ∗(x) = axb, where x = L/D. Figure 4 presents the
dimensionless wall-isotropic (γ ∗

WI = βγWID
2), wall-nematic

(γ ∗
WN = βγWND2), and I -N (γ ∗

IN = βγIND2) surface tensions
as a function of L/D, which are given by the following fitting

FIG. 4. (Color online) Fitted surface tensions γWI, γWN, and γIN

of the hard-wall–isotropic, hard-wall–nematic, and I -N fluid inter-
faces, respectively. The calculated surface tensions (solid squares) are
fitted by the power law γ (x) = axb (solid lines), where x = L/D. The
surface tensions are dimensionless quantities, i.e., γ ∗

WI = βγWID
2,

γ ∗
WN = βγWND2, and γ ∗

IN = βγIND2.

parameters:

a = 1.203 344 132 6, b = −1.780 189 480 1;

a = 1.484 769 749 4, b = −1.908 806 448 1;

a = 0.008 151 231 2, b = −0.696 668 512 4

for γ ∗
WI, γ ∗

WN, and γ ∗
IN, respectively. Note that our fitting is not

valid for infinitely long rods. Our results prove that the nematic
wetting of the wall-isotropic fluid interface is complete by a
nematic film, where the nematic director of the film is oriented
parallel to the wall (x axis in our calculation). Applying the
above parameters, one can find that γIN is equal to γWI − γWN.
Therefore, the contact angle must be zero, which is apparent
from Young’s equation γIN cos θ = γWI − γWN. One can also
show that the excess adsorption diverges logarithmically
at βμ = βμb

IN, which is a feature of complete wetting of
classical fluids interacting with short-range forces [24]. Similar
behavior is reported in the Monte Carlo simulation study of
hard spherocylinders [19]. It is also consistent with the profiles
displayed in Fig. 3, which show an increase in the thickness
of the film with increasing chemical potential. As discussed
before, the wetting transition is second order.

The density profiles and order parameters of the confined
fluid by two planar hard walls are based on the numerical
solution of the Euler-Lagrange equation [Eq. (5) combined
with Eq. (4)]. The results are presented in Fig. 5 for L/D =
10 at three different chemical potentials. In connection with
single-hard-wall density profiles (Fig. 3), here it is also obvious
that uniaxial phase changes to biaxial and most of the particles
align parallel to the x axis by increasing the chemical potential.
Therefore, a biaxial nematic layer forms in the whole range of
the pore. Here both walls act in the same way and support the
formation of the nematic film with oscillatory density profiles.
At some separations both walls strengthen the biaxial order
(they are in-phase), but they can weaken it at other separations
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FIG. 5. (Color online) Density profiles and order parameters of confined hard rods (L/D = 10) between two hard walls at reduced wall
separation h∗ = H/D = 35. (a) and (b) Obtained at βμ = −3.48, where the phase is isotropic. (c) and (d) The case βμ = −2.51, where the
phase is biaxial near the walls (ρ∗

x �= ρ∗
y ) but isotropic in the middle of the pore. (e) and (f) The reduced chemical potential is −2, where the

phase is biaxial nematic.

(they are out of phase). Therefore, the appearance of the biaxial
order in the vicinity of the walls is the result of the interference
of the two walls. As can be seen from Figs. 5(a) and 5(b), the
phase is isotropic at βμ = −3.48 where ρ∗

x and ρ∗
y are equal

even close to the walls and hence �xy = 0 while �yz �= 0
and Sx �= 0 except in the middle of the pore. The phase is
biaxial isotropic (or more precisely weakly nematic) for βμ =
−2.51 due to ρ∗

x and ρ∗
y being different near the surfaces but

032503-6



ORIENTATIONAL ORDERING OF CONFINED HARD RODS: . . . PHYSICAL REVIEW E 92, 032503 (2015)

FIG. 6. (Color online) Phase diagram of confined hard rods in the density–wall-to-wall separation plane. The IB -NB (thick lines) and U -B
(thin lines) phase transition curves are shown. The values of the aspect ratios are (a) L/D = 10, (b) L/D = 15, and (c) L/D = 20. The
resulting phase diagrams are shown together in different units in (d).

equal in the middle of the pore [Fig. 5(c)]. In this phase,
apart from the central region, �xy �= 0 but �yz and Sx are
nonzero everywhere [Fig. 5(d)]. Moreover, Sx shows a very
weak nematic ordering in the middle of the pore. The phase in
Fig. 5(e) is nematic biaxial (βμ = −2.00) since ρ∗

x > ρ∗
y and

most of the particles are aligned in the direction of the x axis.
The nematic film persists throughout the central region. In
this phase, the order parameters �xy and Sx have large values
whereas �yz is very small due to the small difference between
ρ∗

y and ρ∗
z [Fig. 5(f)].

Based on the numerical solution of Eq. (5), we have
found both biaxial isotropic and biaxial nematic solutions
at some values of the chemical potential, which indicates
that first-order phase transitions occur in the slitlike pore.
The resulting first-order phase transitions between biaxial
isotropic and nematic phases (IB-NB) and the surface ordering
transitions (U -B) are presented in a common phase diagram
for different particles’ shapes (L/D = 10,15, and 20) in Fig. 6.
In this figure the average density in the slit pore ρ∗

av =
1
H

∫ H

0 ρ∗(z)dz is shown as a function of the reduced pore width
(h∗ = H/D). The U -B transition is always second order like
the one-wall case for any shape anisotropy and oscillates with
varying pore width for short pore widths. This means that

this transition strongly depends on the wall-to-wall distance
if h∗ < L/D. For more elongated particles, the heights of
the waves get smaller and the transition occurs at smaller
densities. When h∗ > L/D, the U -B line becomes smoothly
varying and approaches the single-wall limit of the surface
ordering transition. This is due to the fact the walls are too far
from each other and the interference weakens between them.
The first-order I -N transition of the bulk system becomes
a surface ordered IB-NB phase transition in the slit pore.
This first-order IB-NB transition weakens with decreasing pore
width and terminates at a critical (capillary) point h∗

c for all
studied shape anisotropies similar to the studies for infinitely
long hard rods [11,12] and finite rods [19]. As a result, the
two coexisting biaxial phases become fully indistinguishable
as h∗ → h∗+

c . The NB and IB phases are less and less biaxial
far from the walls if H goes to infinity. The IB-NB coexistence
densities in the pores are smaller in comparison with their bulk
I -N densities (see Fig. 2) because the planar walls promote
the formation of nematic ordering. These coexisting densities
of the confined system approach the bulk I -N coexisting
densities with increasing pore width. The critical points for
particles with L/D = 10 and 15 are located at h∗

c = 32.1605
and 43.1630, respectively. A similar result has been reported

032503-7



R. ALIABADI, M. MORADI, AND S. VARGA PHYSICAL REVIEW E 92, 032503 (2015)

FIG. 7. Critical pore width Hc/L as a function of D/L. The
stars correspond to our numerical results, while the closed circle is
the result of van Roij et al. for D/L → 0 [11]. The fitted equation
(solid line) is given by Hc/L = 2.08 (1 + axb), where x = D/L,
a = 4.248 57, and b = 0.890 38.

for a fluid of hard spherocylinders with a length-to-diameter
ratio of 15 by a simulation study [19]. The critical point
for particles with L/D = 20 is close to h∗

c ≈ 54 (we have
not managed to determine it more accurately). Using L as a
unit of distance and ρavL

2D as a dimensionless density, the
transition densities of the L/D = 10,15, and 20 cases become
of the same order of magnitude and the phase diagrams can be
shown together in the ρavL

2D-H/L plane [see Fig. 6(d)]. The
main advantage of this representation is that it is possible
to make a connection with the well-known Onsager limit
(L/D → ∞). One can see that the U -B surface ordering
transition becomes less oscillatory and it is shifted in the
direction of the limiting value of ρavL

2D ≈ 1.031, which is
obtained for the L/D → ∞ case [11,12]. It can also be seen
that the critical pore width of the IB−NB transition gets closer
to the limiting value of Hc/L = 2.08 with increasing aspect
ratio. Figure 7 shows the relationship between the calculated
IB−NB critical points and D/L. To see the correction of
the finite aspect ratio, we make the following fit for the
critical pore width: Hc/L = 2.08 (1 + axb), where x = D/L.
This formula reproduces the L/D → ∞ case exactly, where
Hc/L = 2.08. One can see that our fitting formula with
the values a = 4.248 75 and b = 0.890 38 reproduces quite
accurately the numerical results. The reason why an even
more than 50% difference emerges between the Hc/L of the
L/D = 10 and L/D → ∞ cases is that the terms Aii

exc are not
negligible and become more dominant at lower aspect ratios.

IV. CONCLUSION

In this work we have studied the influence of shape
anisotropy of rectangular hard rods on the structural properties
and phase behavior of isotropic and nematic phases in the
presence of confinement using Onsager’s well-known second
virial theory with three-state restriction for the orientations
of hard rods (the Zwanzig approximation). Fluids of hard

rods with shape anisotropies of L/D = 10,15, and 20 have
been considered in contact with a single planar hard wall
and in confinement where the rods are constrained to stay
between two parallel hard walls. In the first part of the study we
calculated bulk coexisting I -N densities as a function of L/D.
It was found that the Zwanzig approximation, which is widely
used for both bulk [25] and confined systems [26], does not
change qualitatively the results for the I -N coexisting densities
and order parameters, i.e., it shows decreasing transition
densities and increasing order parameters with increasing
L/D, in agreement with the theoretical results obtained for
freely rotating hard rods. In the case of a single hard wall,
we have found that the uniaxial phase changes to the biaxial
one near the wall as the chemical potential is increased. Wall-
induced planar surface ordering and the formation of a biaxial
nematic film parallel to the wall have been observed for all
shape anisotropies. The planar ordering is thermodynamically
more favorable than the homeotropic ordering, where the
nematic director is perpendicular to the wall. The thickness
of the nematic film diverges logarithmically, as is expected for
systems interacting with short-range forces. The three surface
tensions calculated were fitted well by asymptotic functions.
They show a zero contact angle, which means that the nematic
layer wets the wall-isotropic interface completely for any
shape anisotropy.

In the second part of this study we considered the fluid
of hard rods confined between two parallel hard walls. It
was found that the increasing chemical potential stabilizes the
biaxial nematic film that persists throughout the pore. There
is a continuous surface ordering transition from uniaxial to
biaxial symmetry with smoothly varying transition density that
is below the bulk I -N coexistence densities for h∗ > L/D,
while the surface ordering transition density oscillates and
depends strongly on the wall-to-wall separation for h∗ < L/D.
The weak and the strong h∗ dependence of the surface
ordering transition density is due to the weak and strong
interference of the two wall-induced orderings. We have found
a first-order capillary IB nematization transition that terminates
at a critical pore width h∗

c for any shape anisotropy. Our
study reveals the difference between the ordering properties
of hard rods in narrow and wide pores. Only a surface
ordering transition takes place in narrow pores because the
system is reminiscent of quasi-two-dimensional systems of
hard rods, where the ordering transition is continuous [27].
In wider pores both surface ordering transitions and capillary
nematization are present due to the strong adsorption at the
walls and the competition between packing and orientational
entropies. These transitions occur even at infinite pore width
(h∗ → ∞), where the walls do not effect the I -N properties,
i.e., the coexisting densities of the IB and NB phases become
identical to those of the bulk I -N transition. In comparison
with previous theoretical results [11,12], our study shows that
the Onsager theory is able to result in richer local structures
for the confined isotropic and nematic phases and to describe
the oscillatory behavior of the surface ordering transition if
all terms of the excluded-volume interactions are incorporated
into the calculations.

As an extension of our present work we plan to study
the ordering properties of board-shaped hard rods, where the
cross-section lengths are different (D1 < D2 < L). This would
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allow us to study the phase behavior of confined goethite
nanorods, which has proven to be the first colloidal system
showing biaxial nematic ordering [28–31]. Along this line, the
effects of shape polydispersity and the external magnetic field
on the stability of biaxial nematic phase have already been the
subject of recent theoretical and experimental studies [32,33].

APPENDIX: BIFURCATION ANALYSIS OF THE SURFACE
ORDERING TRANSITION

The simplest method of finding the second-order transition
point between disordered and ordered phases at the surfaces
is to decrease the chemical potential with fine steps. At high
chemical potentials we obtain ordered solutions with �xy �= 0
and �yz �= 0 close to the walls, while �xy becomes zero at the
transition point. Instead of decreasing the chemical potential
and looking at the value of �xy when it becomes zero, we
present here an elegant method for the location of the surface
ordering transition.

In the isotropic phase of confined hard particles the in-
plane local densities are identical while the out-of-plane one
is different [ρx(z) = ρy(z) �= ρz(z)]. Assuming that the biaxial
order evolves continuously from the isotropic one, we apply
the following ansatz for the biaxial order:

ρ̂x(z) = ρx(z)[1 + ε(z)],

ρ̂y(z) = ρy(z)[1 − ε(z)], (A1)

ρ̂z(z) = ρz(z),

where ε(z) is an unknown biaxial perturbation. Note that ρx(z),
ρy(z) = ρx(z), and ρz(z) are the isotropic solution of Eq. (5).

Since Eq. (A1) also satisfies Eq. (5), we get that the biaxial
perturbation obeys the equation

1 + ε(z) = exp

{
−

∫ min(H−D/2,z+D)

max(D/2,z−D)
dz′ε(z′)ρx(z′)Axx

exc

+
∫ min(H−D/2,z+D)

max(D/2,z−D)
dz′ε(z′)ρx(z′)Axy

exc

}
, (A2)

where Axx
exc = 4LD and A

xy
exc = (L + D)2. After linearization

of the exponential function exp(x) ≈ 1 + x and the rearrange-
ment of Eq. (A2) we get that

∫ min(H−D/2,z+D)

max(D/2,z−D)
dz′ε(z′)

{
δ(z − z′) + [

Axx
exc − Axy

exc

]
ρx(z′)

}
= 0, (A3)

where δ(z) is the Dirac delta function. Formally Eq. (A3) can
be satisfied with ε(z) �= 0 if the determinant of the argument
vanishes, i.e.,

det
∣∣δ(z − z′) + [

Axx
exc − Axy

exc

]
ρx(z′)

∣∣ = 0. (A4)

In practice, we have produced a matrix using the discretized
values of the local density of the isotropic solution of Eq. (5)
and we have searched for that chemical potential at which the
local density satisfies both Eqs. (A4) and (6). Results from
Eq. (A4) and the method of decreasing chemical potential
agree perfectly. The main advantage of our method is that we
do not have to determine the biaxial perturbation ε(z).
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