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Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

S. P. Palto,* M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto
Shubnikov Institute of Crystallography, RAS, Leninsky prospekt 59, 119333 Moscow, Russia

(Received 8 May 2015; revised manuscript received 2 July 2015; published 14 September 2015)

Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to
the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization
properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection
are studied in detail. In our experiments we have achieved an electric field strength several times higher than the
theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that
despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping
its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high
field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities
of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed
effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring
is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix
unwinding in the electric field should be reconsidered.
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I. INTRODUCTION

A spontaneous helical distribution of the director field
is a unique property of chiral liquid crystals (CLCs) [1,2].
It is well known that there is a forbidden spectral zone
(stopband) for light propagating along the axis of the helix
with pitch P in the spectral range n‖P � λ � n⊥P (n‖ and
n⊥ are the principal refractive indices respectively parallel and
perpendicular to the liquid crystal director). In the spectral
range of the stopband the propagation of circularly polarized
light of the same handedness as that of the helix is forbidden
[2,3], and it experiences Bragg reflection from the CLC layer.
Light having the orthogonal circular polarization propagates
through the layer with no reflection. It is also important that
for light propagating along the helix axis there is the only
a selective reflection band within the whole spectral range,
which corresponds to the first Bragg order (m = 1). Below
we refer to this band as the primary selective reflection band,
and the corresponding spectral range as the primary photonic
band. Higher-order reflection bands in the spectral ranges
(n‖P )/m � λ � (n⊥P )/m, where m belongs to the set of
natural numbers greater than 1, are forbidden [2,4]. However,
under the condition that helical distribution of the LC director
is distorted (e.g., under external magnetic or electric field
perpendicular to the helix axis), the higher-order selective
reflection bands become allowed.

Induction of high-order selective reflection bands was
studied most thoroughly in theoretical works [5–8]. We
consider works [7,8], which predict “triplet” structure of
field-induced spectral bands, as most important. According to
[7,8], three sub-bands in each band of order m are characterized
by different light polarization properties: in the middle sub-
band all the polarizations are reflected, while the two side
sub-bands correspond to reflection of mutually orthogonal
linearly polarized light. For a long time these theoretical
predictions had not been confirmed experimentally. All that
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was reported in a number of publications [9–12] was related to
observations of weak and not structured bands of the second
order. However, recently the predictions of [7,8] have been
confirmed experimentally [13], owing to an approach utilizing
pulsed electric fields.

One should note that the above-mentioned theoretical
studies were performed within the theoretical concept of
the continuous helix unwinding in an electric field and the
existence of the critical field Ec, above which the cholesteric
helix is fully unwound. Therefore, for example, the primary
selective reflection band was predicted to monotonically shift
toward longer wavelengths due to field-induced increase of
the helix pitch P [14–18]. Upon achieving the field Ec the
full helix unwinding and disappearance of selective reflection
were expected. Also it should be noticed that the theoretical
concept of continuous unwinding [15] was developed for an
infinite helix. However, it is known that in real systems, where
the CLC layer is confined and there is LC surface interaction
with substrates, the continuous unwinding of a helix can be
forbidden [19–21]. For example, under temperature variations,
when the natural pitch P0 changes, the equilibrium pitch
P in the layer can vary only in discrete steps–due to the
energy barrier of the surface anchoring [19,20]. Moreover,
at symmetrical boundary conditions the temperature-induced
transitions are allowed only between the helix configurations
distinguished by integer numbers of full helix turns [20].
However, in the case of temperature variations a bulk torque
contribution caused by an elastic term associated with the
natural twisting number (q0) is changed monotonically, and
the continuous helix unwinding is still available. For example,
in [22] the possibility of suppressing the jumplike unwinding
due to the change of twisting number q0 is demonstrated
at boundary conditions with strongly asymmetric anchor-
ing strength. The pitch transitions at asymmetric boundary
conditions with strong and weak anchoring are also studied
under mechanical strain in the work [23] showing that at the
weak anchoring surface the twist angle can be varied either
discontinuously or by slipping depending on an LC layer
thickness.
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The case of the helix unwinding in an electric field has
a principal difference from that caused by changing the q0

number. The appearance of an electric field torque that can
result in continuous unwinding anchoring is not evident even
in the case of absence of surface anchoring, especially if one
deals with a quadratic-in-field interaction. Nevertheless, there
are publications where the continuous helix unwinding in an
electric field is reported. For example, in the experimental
study [24] both nonuniform and uniform helix unwinding are
claimed depending on the gradients of the electric field applied.
The authors studied LC cells of different thicknesses with
different interdigitated electrode periodicity and came to the
conclusion that the inhomogeneous unwinding is associated
with strong gradients of the electric field. They also have found
a good agreement between theoretical and experimental de-
pendences of the helical pitch versus electric field magnitude.
Although the authors of [24] consider the unwinding process at
small field gradients as uniform, we are skeptical regarding this
conclusion, because all the experimental spectra shown in the
paper are characteristic for inhomogeneous (nonmonodomain)
texture.

To our mind, although a CLC helix is metastable in an
electric field (the unwound state has a minimum free energy
at fields above Ec), due to the quadratic-in-field interaction
there is no electric force (torque) that can shift (rotate) the
molecules aligned along the field vector in order to change the
initial (field-off) pitch of the helix. Thus, thermal fluctuations,
defects in the CLC and at alignment surfaces, seem to be the
only reasons pushing the helix to the thermodynamically stable
unwound state. Our experimental and numerical results, which
are shown below, strongly support this point of view.

This paper is organized as follows. First we describe
the design of experimental cells, properties of liquid crystal
materials, and the experimental technique for pulsed electric
field driving. Then we discuss the experimental transmittance
spectra measured for different light polarizations. In the last
section we present the results of numerical simulations and
explain experimental data in terms of scattering coefficient
concept [4].

II. EXPERIMENTAL METHODS

The scheme of the experimental cell is shown in Fig. 1.
The pulsed electric field E in the CLC layer is created by a
pulse modulated sinusoidal voltage of a frequency of 24 kHz.
The pulse duration τ = 2 ms, and its repeating frequency
f = 10 Hz. The voltage is applied to two planar aluminum
electrodes (1) located at the inner surface of glass substrates
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FIG. 1. Scheme of experimental LC cell: (1) aluminum elec-
trodes; (2, 3) glass substrates; (4) CLC layer; (5) Teflon gaskets;
(6) polyimide films.

(2). Vacuum deposited aluminum electrodes of a thickness of
100 nm are nontransparent in the visible and near-infrared
spectral range. The distance between the electrodes (l =
116 μm) is significantly larger compared to the CLC layer
thickness (d = 12 μm), which ensures sufficient homogeneity
of the planar electric field. The thickness of the CLC layer
(4) is defined by a gap between the two substrates, which
is controlled by Teflon gaskets (5). The uniform orientation
of CLC molecules in planes of the substrates, as well as the
helix axis perpendicular to the substrates, is ensured by rubbed
50-nm thick polyimide films (6). The LC cell is assembled
in such a way that the rubbing directions at the top and
bottom surfaces are mutually opposite and parallel to the slit
between the electrodes. Optical quality of the LC alignment
is controlled by observations of the LC texture between two
crossed polarizers.

The transmittance spectra are detected using an AvaSpec
2048 optic fiber spectrometer in the external trigger mode
synchronously with the field pulses. Spectra measurement
setup is based on a Polam 113 microscope (LOMO, Russia)
with built-in incandescent lamp (20 W) as the light source. A
ninefold magnification lens is used. Light propagated through
the LC layer is focused with the microscope lens to the
optical fiber of the spectrometer. A Glan prism is used to
get linearly polarized incoming light. The glass optics of the
microscope and the properties of the photosensitive matrix of
the spectrometer limit measurements i to the spectral range
from 400 to 1050 nm. Spectra are acquired during time
intervals of the electric field pulses (2 ms) with a delay
of 0.5 ms to the pulse front edge. This delay is required
for getting equilibrium distribution of the LC director. We
use home-made virtual instrument software that allows a
multifunction arbitrary waveform generator and oscilloscope.
A broadband amplifier based on a high-voltage operational
amplifier (Apex PA85) is used to amplify the voltage up to
100 V. For further increase of the voltage amplitude up to
600 V a pulse transformer is applied.

Spectral studies are performed for two liquid crystal
materials with helix pitch P = 590 and 1075 nm. CLC
mixtures are produced by doping LC material E7 (Merck)
with left-handed optically active compound α-bis(2-chloro-
4-methylpentyl)biphenyl-4,4′-dicarboxylate in the amount of
14.1 and 7.2 wt % respectively. The resulted mixtures exhibit
phase transition from chiral nematic to isotropic phase at 44 ◦C
and 50 ◦C for 590 and 1075 nm pitch, respectively. Principal
refractive indices of CLC at wavelength λ = 589 nm are:
n‖ = 1.713 and n⊥ = 1.530 (P = 590 nm); n‖ = 1.726 and
n⊥ = 1.532 (P = 1075 nm). Refractive indices are measured
with an Abbé refractometer (Atago 1T, Japan) at temperature
T = 24 ◦C. Spectral measurements are performed at T =
24 ◦C as well. In order to clarify some features of selective
reflection the spectral measurements are also done for E7
mixtures with the right-handed optically active compound
1,4:3,6-dianhydro-D-sorbitol-2,5-bis(4-hexyloxybenzoate).

Transmittance spectra are measured relative to the air,
i.e. the baseline is recorded without the sample. Since the
beam aperture is slightly greater than the gap l between fully
nontransparent (reflective) electrodes, partial reflection from
the electrodes leads to the measured transmittance (relative
to the air) in the spectral region of total transparency of the
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CLC layer of about 70% instead of 91% (the value 91%
follows from the sum of reflection coming from four interfaces:
air-glass, glass-CLC, CLC-glass, and glass-air; which is about
9%). Because of the latter, all spectral curves presented in this
work are normalized to the transmittance value of 91% at a
wavelength of 700 nm (at this wavelength there is no selective
reflection from the CLC layer, and its transmittance is limited
only by reflection from the glass-substrate boundaries). This
normalization facilitates comparison of curves and gives an
indication of the absolute values of the selective reflectance of
the CLC layers.

III. EXPERIMENTAL RESULTS

A. Unpolarized light

Transmittance spectra of a CLC layer with helix pitch
P = 590 nm are presented in Fig. 2(a). In the absence of
electric field (U = 0 V) there is the primary photonic band
with a transmittance of 50% in a range of 900−1000 nm.
This transmittance relates to total selective reflectance of
left-handed circularly polarized light. The photonic band is
centered at λ = 955 nm. When an electric field E ∼= 1.7 V/μm
is applied, very small additional transmittance reduction
takes place in the middle of the primary photonic band
(curve 2). This transmittance reduction significantly increases
with further field growth (curve 4). Thus, the spectral splitting
of the primary selective reflection band occurs. It should be
noted that the field producing the pronounced splitting is above
the critical field [4]:

Ec = π2

P

√
K2

ε0
(
ε‖ − ε⊥

) , (1)

where K2 is the twist elastic coefficient, ε0
∼= 8.85 ×

10−12 F/m (in this work we use the SI system of units). Given
the following parameters for the E7 LC material: ε‖ − ε⊥ ∼=
14.4, K2

∼= 5.5 pN [25], and P ∼= 590 nm, according to Eq. (1)
one can estimate the critical field value as Ec

∼= 3.5 V/μm.
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FIG. 2. (Color online) Transmittance spectra of CLC (a) with
helix pitch 590 nm (primary and second-order photonic bands) and
(b) with helix pitch 1075 nm (photonic bands of second, third, and
fourth order) in unpolarized light at different electric field strengths:
1, 0 V/μm; 2, 1.7 V/μm; 3, 2.6 V/μm; 4, 5.2 V/μm.

At field E = 5.2 V/μm, which is considerably higher than
Ec, the transmittance is as low as 30%, i.e., about 70% of light
is reflected. It is of utmost importance that the spectral position
of the primary photonic band is not changed even at that high
field. Thus no helix unwinding takes place.

Let us consider the effects in the spectral range of the field-
induced second-order photonic band. We estimate a threshold
electric field, at which a barely visible second-order-induced
photonic band appears, at a level of 1.5 V/μm. At field
E = 2.6 V/μm a narrow band with a minimum transmittance
at λ = 491 nm is very pronounced, Fig. 2(a). Taking into
account spectral dispersion of the refractive indices, this band
corresponds to the second-order Bragg reflection. At fields
above the critical field (3.5 V/μm) the spectral band of the
induced reflection is broadened, and spectral splitting into
three sub-bands appears. This splitting is in good agreement
with theoretical works [7,8], which predict triplet structure
of the induced selective reflection bands. The minimum
transmittance in the central sub-band decreases, achieving a
value of 10% at E = 5.2 V/μm. Since there are no signs of
light scattering with increasing field (absence of scattering
is confirmed by the transmittance remaining unchanged in
a transparency region of 650−750 nm), we conclude that the
field-induced reflection at a wavelength of 491 nm is up to 86%
which is important for practical applications of this effect.

Unpolarized transmittance spectra of the CLC layer with
pitch P = 1075 nm (with field-induced bands of the sec-
ond, third, and fourth order being in a spectral range of
400−1000 nm) are given in Fig. 2(b). It is important to note
that the double increase of the helix pitch leads, according to
(1), to the double decrease of the critical field. We estimate the
critical field for the given sample as Ec

∼= 1.8 V/μm. Thus,
a field of 5.2 V/μm achieved in the experiments corresponds
to almost triple the critical field. Unfortunately, the primary
selective reflection band at the given helix pitch is out of the
recorded spectral region, and we are restricted to an analysis
of the induced bands.

It follows from the given spectra that if the field is relatively
low then the field-induced reflectance bands are represented
by single bands. However, as the field increases all the induced
bands show the pronounced triplet structure. The higher the
order the more evident the splitting. Even the second-order
band in a range of 800–950 nm has well-resolved triplet
structure. The cause of more pronounced triplet splitting in
the case of increased pitch (P = 1075 nm vs 590 nm) is higher
helix deformation at the same electric field.

B. Linearly polarized light (e ‖ E and e ⊥ E)

The transmittance spectra of the CLC layer with helix
pitch P = 590 nm for linearly polarized light (the electric
field vector e is parallel to the external electric field vector E)
are given in Fig. 3(a). When E = 0, the selective reflectance
within the primary photonic band is not constant, and increases
at the long-wavelength edge of the band. The increase of
the electric field leads to further increasing the reflectance
at the long-wavelength edge, as well as to the reflectance
decrease at the short-wavelength edge. At E = 5.2 V/μm the
transmittance at the long-wavelength band edge is about 20%,
i.e., taking into account 5% reflectance from the internal and
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FIG. 3. (Color online) Transmittance spectra of CLC layer with
a helix pitch of 590 nm (first- and second-order photonic bands) for
(a) e ‖ E and (b) e ⊥ E at different electric field strengths: 1, 0 V/μm;
2, 1.7 V/μm; 3, 2.6 V/μm; 4, 5.2 V/μm.

external surfaces of the substrate, about 75% of the light is
reflected by the CLC layer. Qualitatively, unless one considers
the helix unwinding, such changes of the transmittance of the
polarized light are in a good agreement with theoretical work
[5], which studies the influence of the magnetic field on optical
transmittance of CLCs. In contrast to the case of unpolarized
light [Fig. 2(a)], where the reflection peak in the center of the
primary band (λ = 955 nm) becomes well pronounced with
increasing electric field, the central peak is barely seen because
of higher reflectance at the long-wavelength band edge. For
the orthogonal polarization (e ⊥ E) the spectral behavior at
the edges of the photonic band is inverted, Fig. 3(b). Now,
with the field increase the reflectance increases toward the
short-wavelength band edge (λ ∼ 910 nm).

One can observe the induction and splitting of the second-
order reflection band in Fig. 3(a). Appearance of a narrow
second-order reflection band with a minimum transmittance
at λ = 490 nm (curves 2 and 3) is at a field of 1.7 V/μm.
With further increasing the electric field the second-order band
splits into two sub-bands. It is important to point out that the
doublet component at wavelength λ = 490 nm corresponds to
the central sub-band of the triplet in the case of the unpolarized
light [Fig. 2(a)]. This component appears in both cases: e ‖ E,
and e ⊥ E. If e ‖ E then the second component of the doublet
is shifted to the longer wavelengths [λ = 500 nm, Fig. 3(a)],
otherwise (e ⊥ E) the shift is toward the shorter wavelengths
[λ = 480 nm, Fig. 3(b)]. At high electric fields the reflectance
in the second-order-induced bands is higher than that in the
primary band. At E = 5.2 V/μm the reflectance in the central
sub-band of the second order exceeds 90%.

For CLCs with helix pitch P = 1075 nm one can observe
similar effects in the induced bands of the third and fourth
order, Fig. 4. Owing to the higher degree of helix deformation,
the field-induced band splitting is more pronounced. For both
the orthogonal polarizations the central sub-bands of the
second, third, and fourth orders are at 878, 590, and 453
nm respectively. Again, the spectral position of the second
component of the doublet depends on the polarization: it is
located at longer wavelengths, if e ‖ E, and at the shorter
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FIG. 4. (Color online) Transmittance spectra of CLC layer with
helix pitch 1075 nm (photonic bands of the second, third, and fourth
order) for (a) e ‖ E and (b) e ⊥ E at different electric field strengths:
1, 0 V/μm; 2, 1.7 V/μm; 3, 2.6 V/μm; 4, 5.2 V/μm.

wavelengths for the orthogonal polarization (e ⊥ E). The
spectral position of all the sub-bands coincides within an error
of measurement with the spectral position of the sub-bands
observed in unpolarized light.

C. Linearly polarized light (+45◦ and −45◦ angle
between e and E).

Figure 5(a) shows the transmittance spectra of CLC layer
with helix pitch P = 590 nm for the vector e at an angle
ϕ = +45 with respect to the y axis. Our coordinate system
is chosen so that the y axis is parallel to the cell substrate
surfaces and is along the slit between the electrodes, the z axis
is along the propagation of the light beam, and the x axis
is along the electric field; clockwise rotation around z axis,
when the observer looks along z, corresponds to positive
sign of angle ϕ. When E = 0, the transmittance spectrum is
similar to that for unpolarized light, Fig. 2(a). With increasing
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FIG. 5. (Color online) Transmittance spectra of CLC layer with
helix pitch 590 nm (first- and second-order photonic bands) for (a)
ϕ = +45◦ and (b) ϕ = −45◦ at different electric field strengths: 1,
0 V/μm; 2, 1.7 V/μm; 3, 2.6 V/μm; 4, 5.2 V/μm.
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electric field the reflectance in the center of the primary band
(λ = 955 nm) increases, and the band gradually becomes bell
shaped. At low fields the second-order-induced photonic band
(λ = 485 nm) is not split. At high fields (similarly to the
case of unpolarized light) it splits into three sub-bands having
transmittance minima at 480, 490, and 499 nm. The value of
transmittance in the central sub-band at field E = 5.2 V/μm
is reduced down to 12%. Thus, the reflectance is as high as
88% which is even higher than the reflectance in the center of
the primary photonic band.

Transmittance spectra of CLC layers with helix pitch
P = 590 nm in polarized light at ϕ = −45 are shown in
Fig. 5(b). Here the reflectance in the primary photonic band
decreases with increasing electric field, and this is the principal
difference from the case ϕ = +45. At high electric fields
the primary band exhibits a pronounced triplet structure with
transmittance minima in the center and at the edges of the
photonic band. We have observed experimentally that there
is an inverse effect for right-handed CLCs: for ϕ = −45 the
reflectance considerably increases as the field increases, and
for ϕ = +45 the reflectance decreases and the primary band
splits into the triplet.

IV. NUMERICAL SIMULATIONS AND ANALYSIS
OF THE RESULTS

The experimental data presented above can be reproduced
with high accuracy by numerical methods based on solution of
the equations of LC continuum theory, as well as Maxwell’s
equations in the optical region. Our purpose is not only to
explain the experimentally observed spectral dependences, but
also to reveal the role of the surface anchoring in the observed
stability of the helix pitch independently of the strength of the
electric field.

For the simulations we use software based on the principles
and algorithms described in [26,27]. The software is made
by one of the authors (SPP) for solving a wide set of
electro-optical problems in nematic and ferroelectric LCs
[one- (1D) and three-dimensional LC designs on account
of hydrodynamic backflow effects, flexoelectricity, arbitrary
boundary conditions, and electric and dielectric properties of
the alignment layers, complicate patterned electrode systems
and others]. Optical calculations are based on the Berreman
4 × 4 matrix approach [28] with an algorithm described in
[26]. It is worth mentioning that the software has been being
intensively used in the Liquid Crystal Laboratory at IC RAS
for more than 15 years, and it has been found to be quite
reliable in predicting performance of real LC systems.

The purposes of the current work allow simplifications, so
it is not necessary to discuss all the equations the software is
based on. In our particular case we deal with 1D static problem
(LC alignment is to be homogeneous in the xy plane, the hydro-
dynamic backflow coupling effects are neglected, so the solved
set of equations is reduced to the following Euler-Lagrange
equations in order to determine the static spatial distribution
of the CLC director field n(z) = (nx(z),ny(z),nz(z)):

−∂(F + g)

∂ni

+ d

dz

(
∂(F + g)

∂n′
i

)
= 0, i ∈ {x,y,z}, (2)

where n′
i = ∂ni/∂z, g = 1

2η(1 − ∑
1 n2

i ), η is the Lagrange
multiplier that is due to the unit length of the vector n, and F

is the free energy density in bulk of the LC, which in case of
our geometry is reduced as

F = 1

2
K2(n · rot n + q0)2 − (εE) · E

2
. (3)

In Eq. (3) the first term describes the density of the elastic
energy of the twist deformation of the CLC with wave number
q0 defining the natural helix pitch P0 = 2π/q0, and the second
term is the contribution of the electric field energy on account
of operation at a fixed voltage on the electrodes [in our case
the field is along the x axis, E = (Ex,0,0)]. The components
of the dielectric permittivity tensor ε are related to the director
components as follows:

εij (z) = ε⊥δij + (ε|| − ε⊥)ni(z)nj (z), (4)

where δij is the Kronecker delta.
Equations (2) are solved together with the equations at the

layer boundaries:

−∂F

∂n′ ± ∂W

∂n
= 0, (5)

where W is the potential of the surface anchoring energy (the
signs “+” and “−” correspond to opposite surfaces), which
in the local coordinate system x ′y ′z′ related to the easy axis
R ‖ y ′ at the surface of the substrate is

W = 1
2Wan

2
x ′ + 1

2Wzn
2
z′ , (6)

where Wa and Wz are the amplitudes of the azimuthal and
zenithal anchoring energy. The signs “+” and “−” in (5) are
respectively for the first and the second surface of the CLC
layers. Equation (6) corresponds to the well-known Rapini-
Popoular (RP) model of the surface anchoring potential. In the
used software the RP model is implemented for an arbitrary
orientation of the local x ′y ′z′ frame defining the tilt angle of the
easy axes as described in [27]. In our particular case the local
coordinate system coincides with the laboratory one, since
the y ′ axis is oriented along R ‖ y, and the x ′ axis coincides
with x.

The simulations for different values of the anchoring energy
have not revealed its significant effect on the transmittance
spectra. It should also be mentioned that even though the RP
model is the simplest one, it remains adequate for our primary
task to see what is happening when the anchoring strength is
approaching a zero value. Unfortunately, we are not capable
of making the simulations at exactly zero anchoring energy,
because in this case the extrapolation anchoring length, which
is involved into the set of equations, becomes infinite. Thus,
we perform calculations for very high but finite values of the
extrapolation anchoring length to ensure that the numerical
solution remains stable.

We have found that in fields significantly higher than the
critical field Ec, the helix pitch remains unchanged even at
negligible anchoring energy. We consider this result as rather
important. We believe that zeroing the anchoring energy and
allowing free rotation of the director at the layer boundaries
results in behavior when a confined helix is equivalent to an
infinite helix, for which continuous unwinding is predicted
[15] as the field approaches Ec. However, in our simulations,
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FIG. 6. (Color online) Simulated distribution of the director field
in the CLC layer (the parameters correspond to the experimental
sample with a pitch of 1.075 μm) (a) in the absence of the electric field
and (b) at Ex = 5.2 V/μm; simulation is performed for negligible
LC surface anchoring (Wa = Wz = 10−9 J/m2). At the right side
the schematic representation of the non-disturbed and field-distorted
helix is shown.

as well as in the experiments, we do not observe any
unwinding. Instead, a strong deformation of the helix occurs.
It is confirmed with the calculations in Fig. 6 showing the
CLC director distribution across the layer for extremely weak
anchoring energy (W = Wa = Wz = 10−9 J/m2), when the
typical extrapolation anchoring length (K2/W ∼= 5500 μm)
significantly exceeds not only the helix pitch, but also the LC
layer thickness. In this case the director is not influenced by the
boundaries, and its rotation at the surface is controlled solely
by the elastic torque depending on elasticity modulus K2 and
wave number q0 (this torque is controlled in the experiment
by a chiral additive). As follows from the data in Fig. 6(a),
in the absence of the electric field the director at the surfaces
is along easy axes parallel to the y axis. We have adjusted
the CLC layer thickness to be exactly equal to 11 pitches
with P0 = 1.075 μm, in order to provide an equilibrium pitch
P equal to P0. Thus, in the absence of electric field, there
is no surface torque regardless of the anchoring magnitude.
At the electric field applied, if the anchoring is weak then
the director is oriented almost along the electric field at
the surfaces. However, even at extremely high electric fields
[Fig. 6(b)] and negligible anchoring, despite the possibility of
free “sliding” of the director at the surfaces, the director at
the layer boundaries is not strictly along the field (nx < 1 at
z = 0 and z = 11.825 μm). The latter is associated with the
presence of torque due to the q0 wave number causing the
spontaneous formation of the helical structure. In the bulk of
the layer, in planes where the director is strictly perpendicular
to the field (nx = 0, ny = 1), the director is fixed regardless
of the electric field strength. This leads to the fact that in very
strong fields the nx component distribution becomes close to
the rectangular function, Fig. 6(b). The most important result
is that there is no sign of helix unwinding even in the absence
of the anchoring.

Optical transmittance spectra simulated for different values
of the electric field strength are shown in Fig. 7. The
parameters used for the simulations correspond to those of
the experimental sample, except the anchoring is negligible.
Therefore, the spectral curves in Fig. 7 can directly be
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FIG. 7. (Color online) Transmittance spectra of the CLC layer
in unpolarized light simulated for different electric field strengths.
The CLC parameters correspond to the experimental sample [see
Fig. 2(b)]. The CLC layer thickness equals 11 pitches with P0 =
1075 nm (d = 11.875 μm). Curves: (1) Ex = 0; (2) Ex = 1.7 V/μm;
(3) Ex = 5.2 V/μm. Simulations performed for negligible surface
anchoring Wa = Wz = 10−9 J/m2.

compared to the experimental spectra [Fig. 2(b)], and they
match very well.

The simulations reproduce in detail the appearance of high-
order reflection bands in the electric field and its triplet splitting
in accordance with the experiment. Nevertheless, we believe
that for better understanding of the physical nature of the effect
one could involve an approach based on scattering amplitude
analysis [4]:

α = f · ε(q) · i, (7)

where i and f are the unit vectors describing polarization of the
incident and scattered waves with corresponding wave vectors
k0 and k1; q = k0 − k1 is the scattering wave vector, and ε(q)
is the Fourier transform of the dielectric permittivity tensor.

According to the experiment, the CLC helix does not
unwind, but deforms in the xy plane perpendicular to the
helix axis. Therefore the spatial distribution of the LC director
components n(z) = (nx(z),ny(z),0) can be presented as a
Fourier series:

nx(z) =
∑
m

Am cos[q0(2m − 1)z]; ny(z) = [
1 − n2

x(z)
]1/2

,

(8)
where m is the set of natural numbers.

The director nx component in Eq. (8) is presented by the
sum of odd harmonics with amplitudes Am depending on the
field strength. However, as shown above, in intensive electric
fields, significantly exceeding Ec, the distribution of nx(z)
approaches a rectangular function. In this case the harmonic
amplitudes are just those for the rectangular wave form:

Am = 4

π (2m − 1)
. (9)

The spatial distribution of the components of the CLC direc-
tor field explicitly determines the corresponding distribution
of the dielectric permittivity tensor components (4), and the
Fourier transform for the tensor components is

εij (q) =
∫

z

εij (z) exp(iqz)dz. (10)
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In order to understand the appearance of the field-induced
selective reflection bands, one can consider the simplest case
of the series (8) restricted by the third harmonic, which is

implemented in relatively weak fields (Fig. 7, curve 2). In this
case, for example, εxx(q) according to Eqs. (4) and (10) can
be expressed as [21]

εxx(q) = (ε|| − ε⊥)
∫

z

[A1 cos(q0z) + A3 cos(3q0z)]2 exp(iqz)dz,

= εa

[
A2

1

4
+ A1A3

2

] ∫
z

{exp[(i(q + 2q0)z] + exp[−i(q − 2q0)z]}dz + εa

A1A3

2

∫
z

{exp[i(q + 4q0)z]

+ exp[−i(4q0 − q)z]}dz + εa

A2
3

4

∫
z

{exp[i(q + 6q0)z] + exp[−i(6q0 − q)z]}dz. (11)

As follows from Eq. (11), the scattering coefficient is
nonzero if q = ±2q0, q = ±4q0, and q = ±6q0. Here the
only case having physical meaning is q = 2q0, q = 4q0 and
q = 6q0. The case q = 2q0 corresponds to first-order Bragg
reflection when k0 = −k1 = q0.

It can be easily seen from Eq. (11) that the integrals
corresponding to the second and third order are nonzero only
under the condition of the third harmonic of the director
field distribution being nonzero. Thus, the presence of only
first-order Bragg reflection in the case of the undisturbed helix
follows from the harmonical (sinusoidal) distribution of the
director components.

According to (11), the number of reflection orders is
determined by the number of nonzero amplitudes in the
Fourier expansion of the dielectric tensor, and herein we
want to point out an interesting relation between the nonzero
Fourier components of the dielectric tensor and the Fourier
components of the distorted director field distribution, which is
specific for the quadratic-in-field interaction in nematic CLCs.
As follows from Eq. (11), the presence of the second-order
Bragg reflection can be interpreted as a result of coupling
between the first and third harmonics in the director field
distribution [the second term in Eq. (11) is proportional
to A1A3]. Taking into account all the harmonics (9) one
can realize that the appearance of even harmonics in optics
[Eq. (11)] is due to coupling between odd harmonics in the
LC director distribution. The induction of only odd harmonics
in the distribution of the nx component of the LC director is
due to the purely quadratic type of interaction between the
electric field and nematic CLCs. In the case of ferroelectric
LCs the linear-in-field interaction results in both odd and
even harmonics appearance in the Fourier spectrum of the
nx director distribution, and, in this sense, the nature of even
optical harmonics would be different from that in nematic
CLCs. It is also worth mentioning that in the case of the
ferroelectrics our preliminary simulations show the possibility
of continuous helix unwinding.

The fine spectral splitting within individual bands of mth-
order Bragg reflection was explained in [7,8] in terms of
the eigenmodes excited inside a distorted CLC. Herein we
would like to involve a more simplified explanation of the
fine splitting in terms of the photon optics [29]. To our mind,
this approach provides another view on the physics and basic
features of the splitting without complicated math.

Let a CLC be subjected to an extremely high electric
field, so in the majority of the CLC volume the director

is oriented along the electric field vector. In this case we
can model a strongly deformed helix as a homogeneous
anisotropic medium (matrix) with an inserted periodic stack
of very thin anisotropic layers (walls) having the same
principal refractive indices (n‖, n⊥; note that the refractive
indices are designated by the same symbols as the director
components, but the nonitalic font is used) as the matrix,
but the orientation of the local optical axes (the local
optical axis coincides with ε‖—the principal axis of the
local dielectric tensor) in these walls is continuously varied
from that corresponding to the matrix to a perpendicular one,
Fig. 8.

In terms of the normal (eigen) modes one can consider the
four waves polarized along the x and y axes and propagating
in forward and backward directions. In terms of the photon
optics we are speaking of photons, which can be of arbitrary
polarization—the photons that belong to the x-polarized mode

FIG. 8. (Color online) A scheme illustrating the spectral splitting
of the field-induced second-order photonic band. One pitch of CLC
helix deformed by an electric field applied along the x axis is
shown inside the solid box. The dashed box confines free space.
The standing waves which are due to the interference of forward
and Bragg-reflected backward waves with wave vectors k = ±4p/P

inside the CLC medium are drawn at the box edges, and they have
different wavelengths nxP/2 and nyP/2 respectively for x- and y-
polarized light in the free space.
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can be treated as superpositions of the photons polarized in
two arbitrary orthogonal directions. Since we deal with plane
waves propagating in the +z and −z directions, the momentum
k of the photons is well defined at each z position for an
arbitrary plane parallel to the xy plane (the xy position of
the photons in these planes, of course, is undefined due to
the indefiniteness principle). However, due to inhomogenity
of the CLC medium in the z direction the magnitude of
the momentum of the photons defining their phase velocity
depends on z. For the last reason we speak of some effective
value of the phase velocity averaged over z positions for a
chosen polarization. We associate this average phase velocity
with an effective value of the refractive index neff . The photons
polarized along the x axis belong to the mode with waves
propagating with c/nx phase velocity (c is the speed of the
light in free space, and nx is an effective refractive index for the
x-polarized photons; nx

∼= n‖ when the optical anisotropy is
small and the walls are extremely thin compared to the distance
between them), whereas for the photons in the orthogonal
mode the wave phase velocity is c/ny

∼= c/n⊥. Thus the Bragg
reflection frequencies of these photons and corresponding free
space wavelengths are different, which results in different
spectral position (spectral splitting) of these two modes,
Fig. 8.

Unpolarized light can be treated as a sequence of inde-
pendent photons with mutually orthogonal polarizations. To
describe a response to the unpolarized light it is enough
to consider two independent responses for two arbitrary but
mutually orthogonal polarizations that result in zero values
of the three components of the Stokes vector defining the
light polarization state. In terms of the photon optics the
choice of the two orthogonal directions can be arbitrary,
but the probability of finding a photon polarized in a given
direction is proportional to the intensity of the optical field
in that direction. The statistical averaging of the velocity
over independent photons under the assumption of equal
number of photons in each of the orthogonal x and y modes
gives a simple result (1/nx + 1/ny)c/2 ∼= (1/n‖ + 1/n⊥)c/2.
Thus, one can define the effective refractive index for the
unpolarized light as neff

∼= 2n‖n⊥/(n‖ + n⊥). The averaging
procedure performed is still approximate, because we have
assumed equal probability to find a photon in each of the
two orthogonal states inside of the anisotropic medium. As
mentioned above, the probability to find the photon in a mode
depends on the optical field intensity. While in the free space
the optical field intensities and, as a result, the probabilities
are equal indeed, in the case of an anisotropic medium
the assumption is reasonable only if the optical anisotropy
is sufficiently small: (δn/n)2 � 1, where n = (n‖ + n⊥)/2,
δn = (n‖ − n⊥)/2. On account of the last condition neff =
2n‖n⊥/(n‖ + n⊥) = n[1 − (δn/n)2] ∼= (n‖ + n⊥)/2. Thus, in
the case of unpolarized light at strong CLC deformation one
can separate three characteristic frequencies for mth-order
Bragg reflected photons: (i) mc/(P n‖), (ii) mc/(P n⊥), and (iii)
2mc/[P (n‖ + n⊥)]. The photon frequency 2mc/[P (n‖ + n⊥)]
corresponds to the middle of the mth-order photonic band,
and it also corresponds to the photons which are polarized
in directions different from the x and y axes (on average
at ±45◦ with respect to the x and y axes inside the layer).
While the light scattering and Bragg reflection of the x- and

y-polarized photons are ensured by the largest amplitude of the
spatial modulation of the refractive index along the z axis, the
reflected light intensity at the middle frequency is significant
only if the orientation of the local optical axis is variable
inside the walls. Only in this case can the momentum of a
photon polarized, say, at 45◦ with respect to the x axis be
changed by walls, and the Bragg reflection is possible. For
example, if the walls are characterized by a dielectric tensor
with principal axes exactly perpendicular to that of the matrix
then the spatial distribution of the refractive index for the
photons polarized at 45◦ is not modulated (constant), and they
are not scattered by the walls. Thus, in this case instead of
the three sub-bands only the two sub-bands at frequencies
mc/(P n‖) and mc/(P n⊥) must be observed for the unpolarized
light. Therefore, it is the variable distribution of the LC director
inside the walls that is responsible for the spectral splitting
into the triplet but doublet in the case of unpolarized light
and the doublet splitting in the case of linearly polarized
light.

V. CONCLUSION

To summarize, we have presented a detailed experimen-
tal study of the spectral and light polarization properties
of field-induced selective reflection bands in chiral liquid
crystals. By using pulsed electric driving and increasing
the helix pitch, we have achieved an applied electric field
that significantly exceeds the helix unwinding critical field
without any sign of the helix unwinding. As a result, we
have observed intense field-induced selective reflection bands
up to fourth Bragg reflection order with very pronounced
triple spectral splitting. We have experimentally confirmed
the basic theoretical predictions for high-order band splitting
and their polarization properties. We have also revealed
additional features of the electric field influence on Bragg
reflection in the primary photonic band. The experimental
results have been confirmed by numerical simulations within
continuum theory for liquid crystals and explained in terms of
scattering coefficient approach. We would like to emphasize
that according to our numerical simulations, even if the surface
anchoring energy is negligible, there is still no helix unwinding
at fields higher than the critical one. Thus, the transition
from the in-field metastable state to the thermodynamically
favorable unwound state is possible through defect formation
only. In this regard, the classical concept of continuous helix
unwinding that was made for an infinite helix should be
reconsidered.

The described spectral-polarizing effects with controllable
and high reflectance are characterized by submillisecond
switching times. Thus, they are of practical interest for using
in liquid crystal information display technology and in laser
devices, where control of reflectance in a given spectral range
is required.
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