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Effect of nanoparticle chain formation on dielectric anisotropy of nematic composites
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A general theory of the dielectric constant of nematic liquid crystal mixtures is presented including the
particular case of nematics doped with polar nanoparticles. The results are used to estimate the contribution of
chains of polar nanoparticles to the static dielectric anisotropy and birefringence of the nematic composite taking
into account contributions from chains of different lengths. The dependence of the dielectric anisotropy on the
dipolar interaction strength is considered in detail and it is shown that formation of polar chains of nanoparticles
enables one to explain a significant increase of the dielectric constant of the composite as observed experimentally.
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I. INTRODUCTION

There has been significant recent interest in novel liquid
crystal (LC) nanocomposites, i.e., LCs doped with metal,
dielectric, or semiconductor nanoparticles (NPs) of scales
of 2–10 nm (i.e., close to the size of typical mesogenic
molecules). It has been shown that doping of a nematic LC
with even a small NP volume concentration can affect almost
all important nematic phase properties, e.g., decrease the
threshold and switching voltages as well as switching times of
LC displays (see, for example, Refs. [1–5]). Suspensions of
different NPs in various nematic LCs have been investigated by
many authors. In particular, nematics doped with ferroelectric
NPs enhance dielectric and optical anisotropy, increase the
electro-optic response [6,7], and improve the photorefrac-
tive properties of LC composites [8]. Nematic suspensions
of paramagnetic and ferromagnetic particles are promising
candidates for magnetically tunable structures, and doping
of ferroelectric LCs with metal and silica NPs can improve
spontaneous polarization and dielectric permittivity, as well as
decrease the switching times [9,10]. Metal NPs have been also
used to widen the temperature range of LC blue phases [11],
which are important for applications, and enhance random
lasing in the dye-doped LC medium [12].

It has also been shown experimentally (see, for example,
Refs. [9,13]) that the dielectric anisotropy of nematic LCs
doped with strongly polar (ferroelectric) NPs is dramatically
increased. Indeed, a very small molar fraction of ferroelectric
NPs (of the order of 10−3) accounts for a contribution
to the relative dielectric anisotropy of the order of 5–6,
i.e., comparable with the anisotropy of the nematic host.
Preliminary estimates indicate that the increase is too strong to
be explained without taking into account possible aggregation
of NPs and formation of polar chains. There exists some
experimental evidence that quantum dots may also form
long chains in nematic LCs [14] even though such NPs are
nonpolar. Aggregates of NPs, in general, and polar chains, in
particular, would be expected to modify all major properties
of nematic nanocomposites, including their dielectric and
optical properties. Nematic LCs with polar chains should
also be very sensitive to external electric fields which may
be used for alignment and switching at very low applied
voltage.

Aggregation of NPs in the nematic phase may occur if
the interparticle interaction potential is not strong enough
to induce demixing but is still much stronger than the in-
teraction between mesogenic molecules. Strongly anisotropic
interaction between NPs, including, in particular, the dipole-
dipole one, will lead to the formation of polar chains. It has
been shown [13] that the equilibrium chain length strongly
depends on the contact interaction potential normalized by the
temperature. Long chains of NPs may occur only if the contact
interaction is of the order of 10kBT [15] which is satisfied,
for example, for ferroelectric NPs [9,13]. Such long polar
chains should make a significant contribution to the dielectric
anisotropy of nematic composites.

The theory of LCs doped with NPs is still at a rudimentary
stage. Lopatina and Selinger [10] showed phenomenolog-
ically that dipole-dipole interactions between ferroelectric
NPs can significantly increase the isotropic-nematic (I-N)
phase transition temperature. Gorkunov and Osipov [16] used
molecular theory to make a detailed analysis of the effect of
both anisotropic and isotropic NPs on the properties of the
I-N transition. The theory developed in Ref. [16] has been
later used to describe the effect of external electric field on
nematic nanocomposites [17]. A molecular theory of nematic
LCs doped with spherical NPs has also been developed in
Ref. [18]. Very recently, a detailed theory of the phase
separation effects in nematic LCs doped with isotropic NPs has
been presented by the authors [19]. In this paper, we develop a
general theory of the dielectric and optical properties of polar
nematic mixtures and estimate the contribution of polar NPs
and chains of NPs to the nanocomposite dielectric anisotropy
and birefringence.

The paper is arranged as follows. In Sec. II, a general
molecular-statistical theory of the dielectric susceptibility
of many component nematic mixtures is presented taking
into consideration separately the high- and low-frequency
limits. In Sec. III, a contribution of chains of strongly polar
ferroelectric NPs to the dielectric anisotropy of the composite
nematic phase is calculated taking into account statistics of
chains of various length. The numerical and analytical results
are presented to illustrate the dependence of the dielectric
anisotropy on the concentration of NPs and on the strength
of their dipole-dipole interaction. Theoretical results are then
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used to explain the existing experimental data. Finally, Sec. IV
contains a discussion.

II. GENERAL THEORY OF THE DIELECTRIC
SUSCEPTIBILITY OF MANY COMPONENT NEMATICS

A. Microscopic polarization and the electric field

The microscopic polarization PM of a many component LC
consists of the contributions from all the fluctuating molecular
and particle dipoles:

PM (r,t) =
∑
i,α

pi,αδ(r − ri), (1)

where pi,α is the total dipole of the ith molecule or particle of
the component α located at the point ri . In the general case,
the dipole pi,α is the sum of the permanent molecular dipole
p0

i,α and the dipole pin
i,α induced by the local electric field.

The microscopic polarization is related to the microscopic
electric field EM by the following well known equation:

curl curlEM + 1

c2

∂2EM

∂t2
= − 1

c2

∂2PM

∂t2
. (2)

The general solution of Eq. (2) can be expressed in the operator
form [20]

EM = E0 +
∫

F̂ (r − r′,ω)PM (r,ω)dr′, (3)

where E0 is an external (homogeneous) electric field and the
operator kernel F̂ (r − r′,ω) reads as [20]

F̂ (R,ω) = 4π

3
δ(R)

−
[(

1 + iωR

c
− ω2R2

3c2

)
(Î − 3u ⊗ u) − 2ω2R2

3c2

]

× eiωR/cR−3, (4)

where u = R/R.
One notes that in practice the distance R = r − r′ is limited

by the correlation radius ξ which is always smaller then the
wavelength of light λ. Thus, ωR/c � 1 and then the kernel
F̂ (R,ω) is reduced to the simple form of the dipole-dipole
propagator:

F̂ (R,ω) = 4π

3
δ(R) + (3u ⊗ u − Î )R−3. (5)

B. High-frequency permittivity of a nematic composite

At sufficiently high (optical) frequencies, the polarization is
mainly determined by induced dipoles created by the electric
field. Orientational fluctuations of permanent dipoles make a
minor contribution because the characteristic times of such
fluctuations are much larger than the inverse optical frequency
[21]. Then, the molecular dipole in Eq. (1) can be expressed
approximately as

pi,α = β̂α(θi,ω)EM (ri ,ω), (6)

where β̂α(θi,ω) is the polarizability of the molecule i of
the component α, the variable θi describes the molecule
orientation, and the field EM (ri ,ω) acting on the molecule

i, is a sum of the external field E0(ri ,ω) and the electric field
created by the dipoles induced in all other molecules:

EM (ri ,ω) = E0(ri ,ω) +
∑
j,α

F̂ (ri − rj ,ω)pj,α. (7)

These equations can be used to obtain the closed equation for
the microscopic field:

EM (r,ω) = E0 −
∫

Ĥ (r − r′,ω)γ̂ (ω)EM (r′,ω)dr′, (8)

where

γ̂ (ω) =
∑

α

∫
β̂α(θ,ω)ρα(θ,r)dθ (9)

is a microscopic polarizability, and ρα is the microscopic
number density of the molecules of type α:

ρα(θ,r) =
∑

i

δ(r − ri)δ(θ − θi). (10)

Here, the operator kernel Ĥ = F̂ when |r − r′| > D and Ĥ =
0 when |r − r′| < D, where D is the molecular diameter.

The macroscopic polarization P in the media is the
statistical average of the microscopic polarization P = 〈PM〉,
where 〈. . .〉 denotes the ensemble average. The polarization
can also be expressed as P = χ̂E, where E = 〈EM〉 is the
macroscopic electric field and χ̂ is the dielectric susceptibility
tensor of the medium.

Writing Eq. (8) in the operator form as EM = E0 − Ĥγ̂ EM ,
one can readily express the microscopic field by the external
electric field E0:

EM = (1 + Ĥγ̂ )−1E0, (11)

which determines the microscopic polarization as

PM = γ̂ (1 + Ĥγ̂ )−1E0 (12)

and yields the average polarization

P = 〈γ̂ (1 + Ĥγ̂ )−1〉E0. (13)

A relationship between the external field E0 and the
average field E can be obtained using Eqs. (3), (5), and (12).
Substituting Eq. (5) into Eq. (3), one obtains

EM = E0 − 4π

3
PM −

∫
Ĥ (r − r′,ω)PM (r,ω)dr′. (14)

Expressing PM in terms of E0 [using Eq. (12)] in the third term
in Eq. (14) and combining the two terms proportional to E0,
one obtains

EM + 4π

3
PM = (1 + Ĥγ̂ )−1E0, (15)

where we have taken into account that Î − Ĥγ̂ (1 + Ĥγ̂ )−1 =
(1 + Ĥγ̂ )−1.

Upon averaging, Eq. (15) yields

E0 = 〈(1 + Ĥγ̂ )−1〉−1

(
E + 4π

3
P
)

. (16)

Finally, substituting Eq. (16) into Eq. (13), one obtains the
following relationship between the average polarization and
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the average electric field in the nematic medium:

P = 〈γ̂ (1 + Ĥγ̂ )−1〉〈(1 + Ĥγ̂ )−1〉−1

(
E + 4π

3
P
)

, (17)

which yields for the permittivity tensor

(ε̂ − 1)(ε̂ + 2)−1 = 4π

3
α̂, (18)

where

α̂ = 〈γ̂ (1 + Ĥγ̂ )−1〉〈(1 + Ĥγ̂ )−1〉−1. (19)

Thus, the general equation for the high-frequency per-
mittivity of the nematic doped with NPs has the form of
the generalized Clausius-Mossotti equation in which the
average polarizability of a single molecule is replaced by the
effective renormalized polarizability that depends both on in-
termolecular interactions and correlations and on interactions
and correlations between NPs and neighboring mesogenic
molecules. One notes also that Eq. (18) is a generalization
of the corresponding equation for isotropic fluids.

In Eq. (19), the fluctuating quantity is the weighted
microscopic polarizability γ̂ which depends on the orientation
and position of both mesogenic molecules and the NPs. The
renormalized polarizability α̂ can be expanded in powers of
the polarizability fluctuation �γ = γ − 〈γ 〉 where 〈γ 〉 is the
average polarizability:

α̂ = 〈γ 〉 − 〈�γ K̂�γ 〉 + . . . , (20)

where K̂ = (1 + Ĥ〈γ̂ 〉)−1Ĥ.
Taking into account that γ̂ is a weighted sum of polarizabil-

ities of all components of the mixture (including mesogenic
molecules, NPs, and chains of NPs of different length) given
by Eq. (9), one obtains

α̂ =
∑

α

〈β̂α〉ρα −
∑
α,β

λ̂α,βραρβ + . . . , (21)

where 〈β̂α〉 is the average polarizability of the component α

and

λ̂α,β =
∫

gα,β(R,θ,θ ′)β̂α(θ )K̂(R,ω)β̂β(θ ′)dR dθ dθ ′. (22)

Here, gα,β(R,θ,θ ′) are the pair correlation functions between
the molecules of the components α and β, and K̂(R,ω) is the
kernel of the operator K̂. The higher order terms in Eqs. (20)
and (21) depend on higher order correlation functions.

Relatively simple explicit expressions for the permittivity
can be obtained in the molecular field approximation, when
one neglects the correlation corrections λ̂α,β . In this case,
Eq. (18) can be written in the following form, assuming that
the composite nematic phase contains mesogenic molecules,
NPs, and chains of NPs of various lengths n:

(ε̂ − 1)(ε̂ + 2)−1 = 4π

3

(
〈β̂m〉ρm + 〈β̂np〉ρnp +

∞∑
n=2

〈β̂n〉ρn

)
,

(23)

where 〈β̂m〉, 〈β̂np〉, and 〈β̂n〉 are the average polarizabilities
of mesogenic molecules, NPs, and chains of NPs of length
n, respectively, and ρm, ρnp, and ρn are the corresponding
number densities.

In a uniaxial nematic composite, all the components are
distributed uniaxially around the same nematic director vector
n. Introducing the long axes of the molecules am and the
unit vectors of the chain directions an, one can write their
momentary polarizabilities as β̂α = βα⊥Î + �βαaα ⊗ aα , ex-
press the averages 〈aα ⊗ aα〉 = Î (1 − Sα)/3 + Sαn ⊗ n using
the corresponding scalar nematic order parameters Sα , and
obtain the averaged polarizability tensors as

〈β̂α〉 = β̄αÎ + Sα�βαn ⊗ n, (24)

where the isotropic polarizabilities read as β̄α = βα⊥ +
�βα(1 − Sα)/3.

Now, assuming that moderate anisotropies �βα give rise to
a relatively small anisotropy of the composite permittivity �ε,
one expands Eq. (23) and writes

�ε = 4π

9
(ε⊥ + 2)2

(
�βmρmSm +

∞∑
n=2

〈�βn〉ρn

)
, (25)

while the isotropic part of the composite permittivity satisfies
the generalized Clausius-Mossotti relation

ε⊥ − 1

ε⊥ + 2
= 4π

3

(
βm⊥ρm + βnpρnp +

∞∑
n=2

βn⊥ρn

)
, (26)

which includes also the contribution from the isotropic
nonaggregated NPs.

One notes that Eqs. (25) and (26) are not expected to be
quantitatively precise because the neglected correlation cor-
rections may be significant. At the same time, these equations
can be used to estimate the dependence of the refractive
indices of the nematic composite on the concentration of
NPs, their aggregation, and ordering provided that the effective
polarizability of a NP in the nematic solvent is known.

C. Low-frequency dielectric constant of a strongly polar
nematic composite

Low-frequency dielectric constant of the nematic phase
composed of strongly polar molecules is mainly determined by
the orientational fluctuations of permanent molecular dipoles
while the molecular polarizability gives a much smaller
contribution. Indeed, the static dielectric constant of a strongly
polar nematic can be of the order of 100 while a typical
contribution from the molecular polarizability is of the order
of 3 [21]. In this case, the macroscopic polarization can be
expressed as a sum of averaged molecular dipoles of all
components α of the mixture in the unit volume:

P =
∑

α

ρα〈μα〉, (27)

where μα is the permanent molecule or particle dipole of the
component α.

In the static case, the average dipole can be expressed as

〈μα〉 =
∫

μαfα(θ )dθ, (28)

where fα(θ ) is the one-particle distribution function which
can be written in the following form in the mean-field
approximation:

fα(θ ) = Z−1 exp
[−βUMF,α(θ ) − (μα · E)

]
. (29)

032501-3



M. A. OSIPOV AND M. V. GORKUNOV PHYSICAL REVIEW E 92, 032501 (2015)

Here, UMF,α(θ ) is the mean-field potential for the component
α, θ specifies the orientation of the particle or molecule, β =
1/kBT , and E is the external electric field.

The mean-field potential can be written in the form

UMF,α(θ1) =
∑

β

∫
Vα,β (θ1,θ2)fβ(θ2)dθ2, (30)

where Vα,β (θ1,θ2) is the pair interaction potential between the
components α and β.

Let us now assume that both mesogenic molecules and NPs
are uniaxial and their permanent dipoles are parallel to the
corresponding long axes. This is also valid for rigid chains of
spherical dipolar NPs. In this case, the pair interaction potential
V depends on the unit vectors a1 and a2 in the direction of
the long axes of the molecules “1” and “2”, respectively, and
on the intermolecular vector r12, i.e., V (1,2) = V (a1,r12,a2).
The pair potential can now be written as a sum of the nonpolar
and the polar parts V (1,2) = Vnp(1,2) + Vdd (1,2), where the
nonpolar potential Vnp(1,2) is an even function of a1 and a2 and
where the polar potential Vdd (1,2) is the electrostatic dipole-
dipole interaction potential which can be expressed as

Vdd (1,2) = μ1 · F̂ (r12) · μ2, (31)

where the dipole-dipole propagator can be written in the form
[see Eqs. (4) and (5)]

F̂ (r12) = 4π

3
δ(r12) + �(r12 − D)(Î − 3u ⊗ u)r−3

12 , (32)

where u = r12/r12 and where �(r12 − D) is a step function
which is equal to unity if r12 > D and vanishes otherwise.
One notes that the first term in Eq. (32) takes into account
a singularity of the dipole-dipole potential at the origin (see
a detailed discussion of the averaging of the dipole-dipole
potential in Refs. [15,22]).

Substituting Eq. (32) into Eqs. (31) and (30) and taking
into account that the second term in Eq. (32) vanishes after
integration over all u, one obtains the final expression for the
mean-field potential:

UMF,α(θ ) = U (0)
α (θ ) + 4π

3
(μα · P). (33)

Finally, this mean-field potential can be substituted into
the orientational distribution function (29) and expanding it
in powers of the small electric field E and field-induced
polarization P one obtains

fα(θ ) ≈ f (0)
α

(
1 + 4π

3

μα · P
kBT

− μα · E
kBT

)
, (34)

where the nonpolar distribution function f (0)
α is determined by

the nonpolar part U (0)
α (θ ) of the mean-field potential, that is,

f0,α = Z−1
0 exp [−βU (0)

α (θ )].
Substituting Eq. (34) into Eqs. (28) and (27), one obtains

the following linear equation for the macroscopic polarization
P:

Pi =
∑

α

ρα

kBT
〈μα,iμα,j 〉0

(
4π

3
Pj + Ej

)
, (35)

where the averaging 〈μα,iμα,j 〉0 is performed with the non-
polar orientational distribution function f (0)

α . As a result, one

obtains the following expression for the dielectric polarizabil-
ity tensor χ̂ :

χ̂ = χ̂0

1 − 4π
3 χ̂0

, (36)

where

χ̂0 =
∑

α

ρα

kBT
〈μα ⊗ μα〉0. (37)

Taking into account that the dipole μα is parallel to the long
axis a of the corresponding molecule, one obtains

χ̂0 =
∑

α

ραμ2
α

kBT
〈a ⊗ a〉0

=
∑

α

ραμ2
α

kBT
[Sα(n ⊗ n − Î /3) + Î /3]. (38)

Here, Sα is the nematic order parameter of the compound α in
the mixture.

III. CONTRIBUTION OF NANOPARTICLE CHAINS
TO THE DIELECTRIC ANISOTROPY OF A

NEMATIC COMPOSITE

One notes that the dielectric properties of the composite
essentially depend on the densities ρm of NP chains of length
m. The latter can be evaluated using the existing theory of
chain formation in the system of polar spheres presented, for
example, in Ref. [15]. According to this theory, the distribution
of chain lengths is expressed as

φm = vρm = em(U0+ν)e−U0 , (39)

where φm is the volume fraction of chains of length m, v is the
NP volume, and U0 is the contact energy determined by the
dipole-dipole interaction between NPs:

U0 = ln

(
πσ 3e2λ

18vλ3

)
. (40)

Here, λ = μ2/kBT σ 3 has to be sufficiently larger than unity,
σ is the NP diameter, and the NP volume v has been introduced
for dimensional correctness.

In Eq. (39), ν is the Lagrange multiplier (chemical potential)
which is determined from the conservation rule for NPs:

ρ =
∞∑

m=1

mρm, (41)

where ρ is the molar fraction of all NPs which typically is
controlled in experiments.

Substituting Eq. (39) into Eq. (41) and performing the
summation, one obtains

ρ = v−1 eν

(1 − eU0+ν)2
. (42)

Accordingly,

1 − eU0+ν = −1 + √
1 + 4η

2η
, (43)

where η = vρeU0 . Thus, the value of the chemical potential ν

is mainly determined by the order of η.
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Finally, one can readily obtain the following expression for
the number density of chains of length m:

ρm = v−1e−U0

(
1 − −1 + √

1 + 4η

2η

)m

. (44)

In principle, the order parameters Sm are different for different
m but this difference is not huge. Thus, for a crude estimate,
we can assume that Sm = S where S is the order parameter of
the host nematic.

A. High-frequency dielectric anisotropy

Generally, the NP contribution to the composite permittivity
(25) and (26) is twofold: both aggregated and nonaggregated
NPs affect ε⊥ while only those NPs which are aggregated into
chains contribute to �ε.

To sum over chains of different lengths in Eq. (25), one
needs to know the quantity 〈�βn〉 which can be evaluated
as the average dielectric anisotropy of a chain of n spheres
(with the permittivity εnp) immersed into a medium with
the permittivity ε⊥. Although the exact solution of such
problems can be performed only numerically, upon assuming
a few realistic approximations one can obtain useful analytical
estimates [23]. Thus, taking into account the strongest dipole
interactions between NPs and restricting to the nearest-
neighbor contributions (already the next-nearest ones are at
least eight times smaller) and introducing the single NP
dielectric polarizability β1 = 1/8 σ 3(εnp − ε⊥)/(εnp + 2ε⊥)
one can express the dipole moment of an lth NP in the chain
of the total length m as

pl = β1E + β1T̂l,l−1pl−1 + β1T̂l,l+1pl+1, (45)

where

T̂l,l±1 = (3ul,l±1 ⊗ ul,l±1 − 1) σ−3 (46)

is the nonsingular part of the dipole-dipole propagator, ul,l±1

are the unit vectors between the centers of the adjacent
NPs, and the following natural condition is satisfied T̂1,0 =
T̂m,m+1 = 0 at the chain ends.

As shown in the following, the effect of chain formation on
high-frequency permittivity is rather moderate, and one can
solve the system (45) by iterations. While in the zeroth order
(neglecting the NP interactions) one obtains merely pl = β1E
and the chain remains dielectrically isotropic, the next iteration
yields

pl = β1(1 + β1T̂l,l−1 + β1T̂l,l+1)E. (47)

Since the average chain direction is controlled by the overall
composite nematic director n, the averaged nearest-neighbor
propagator reads as

〈T̂l,l±1〉 = S(3n ⊗ n − 1) σ−3, (48)

where we have again assumed that all the scalar nematic order
parameters in the composite are equal.

Evaluating the average chain dipole moment as 〈Pm〉 =∑m
l=1〈pl〉, one obtains the following expression for the overall

average chain polarizability tensor:

〈β̂m〉 = mβ1Î + 2

σ 3
(m − 1)β2

1S(3n ⊗ n − 1). (49)

3 4 5 6 7 8 9 10

10-2

10-1

100

0.001

0.01

∗ = 0.1

NP dipole interaction strength,

FIG. 1. (Color online) The effect of chain formation on the
birefringence of the nematic composite: dependencies of the factor
δη given by Eq. (54) on the NP coupling strength for the NP density
ρ∗ = 0.1, 0.01, and 0.001 as indicated on the lines.

The anisotropy of this polarizability is given by

〈�βm〉 = 6

σ 3
(m − 1)β2

1S. (50)

Accordingly, the chain contribution to the composite
permittivity anisotropy (25) is given by

�εch = π

24

[
(ε⊥ + 2)(εnp − ε⊥)

εnp + 2ε⊥

]2

Sσ 3
∞∑

m=2

(m − 1)ρm. (51)

Substituting the number densities (44) and using the summa-
tion rule

∞∑
m=2

(m − 1)xm = x2

(1 − x)2
, (52)

one can express the dielectric anisotropy in terms of the
dimensionless NP density ρ∗ = ρσ 3 and the parameter λ:

�εch = π

24

[
(ε⊥ + 2)(εnp − ε⊥)

εnp + 2ε⊥

]2

Sρ∗δη, (53)

where the function

δη = 2 + 1

η
− 4η

(
√

1 + 4η − 1)2
(54)

effectively describes the dependence on the NP chain forma-
tion as η is also expressed in terms of the nondimensional
parameters as η = πρ∗e2λ/(18λ3).

Representative profiles of the factor δη as functions of the
NP coupling strength, which controls the chain formation, are
presented in Fig. 1. One notes that for weaker coupling this
factor is very small, as most of the NPs remain single here and
do not contribute to the anisotropy. For stronger coupling, the
average chain length increases which leads to a pronounced
increase of the anisotropy. The saturation at δα ≈ 1 for strongly
interacting NPs means that in this limit practically all NPs
belong to long chains and contribute equally to the anisotropy.
Evidently, for higher total NP concentrations this saturation
occurs at smaller λ.

The chain contribution to the composite birefringence as
a function of the NP concentration is illustrated by Fig. 2
for different values of the dipole-dipole interaction strength.
One notes that it is practically a linear function when the NP
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FIG. 2. (Color online) The effect of chain formation on the
birefringence of the composite: dependencies of the factor ρ∗δη in
Eq. (53) on the NP concentration for the coupling strength λ varying
from 2 to 10 as indicated on the lines.

coupling is strong enough, i.e., when all the NPs are aggregated
in long chains.

Generally, the high-frequency anisotropy is weak as the
factor δα < 1 is multiplied in Eq. (53) by a number of other
small factors. Thus, for the dielectric NPs with εnp of the same
sign and order of magnitude as ε⊥, the factors in the square
brackets are of the order of unity, while S < 1 and ρ∗ � 1. On
the other hand, the variation of δα by three orders of magnitude
for low ρ∗ = 0.001 in Fig. 1 suggests that this anisotropy can
be employed as a sensitive tool for quantitative assessment of
the NP chain formation in nematic composites.

B. Low-frequency dielectric anisotropy

Let us consider the nematic composite in which the
permanent dipoles of NPs are sufficiently large and larger than
those of the mesogenic molecules. Then, the main contribution
to the low-frequency dielectric constant of the nanocomposite
stems from the NPs and their chains and can be written using
Eq. (38) as

ε̂ ≈ 1 + 4πχ̂0

= 1 + 4π
∑
m=1

ρmμ2
m

kBT
[Sm(n ⊗ n − Î /3) + Î /3], (55)

where μm is the total dipole of the chain of length m, ρm

is the number density of chains of length m, and Sm is the
corresponding nematic order parameter.

One may assume that for short rigid chains of polar NPs,
the total dipole μm = mμ, where μ is the permanent dipole of
a single NP. This assumption is obviously not valid for long
flexible chains. However, the concentration of such chains is
exponentially small and we will see in the following that for
realistic values of the NP dipole only short chains (m = 1–4)
make a significant contribution to the dielectric constant of the
composite. In this approximation, Eq. (55) yields the dielectric
susceptibility anisotropy

�χ = μ2

kBT

∑
m=1

m2ρmSm. (56)

Neglecting the effect of weak external electric field on the
chain formation statistics, one can substitute here the number
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FIG. 3. (Color online) Anisotropy of the low-frequency compos-
ite dielectric susceptibility as a function of NP coupling strength
for NP densities ρ∗ = 0.001 (a) and ρ∗ = 0.01 (b). Solid lines 1–6
depict results of partial summation in Eq. (56) neglecting chains
with m higher than 1–6 correspondingly. Solid line 7 represents the
dependence (58), and the dashed line shows the anisotropy in the
absence of chain formation.

densities (44), set for simplicity Sm = S, and perform the
summation over chains of all lengths using the summation
rule

∞∑
m=1

m2xm = x(1 + x)

(1 − x)3
. (57)

Then the low-frequency dielectric anisotropy (56) can be
expressed explicitly in terms of ρ∗ and λ:

�χ = 4ρ∗λS
4η2 + 5η + 1 − (3η + 1)

√
1 + 4η(−1 + √

1 + 4η
)3 . (58)

In Fig. 3, the dielectric anisotropy given by Eq. (58) is
presented for different NP molar fractions as a function of the
parameter λ which describes the strength of the dipole-dipole
interaction between NPs. For comparison, we also present
the corresponding variation �χ̃ = λSρ∗ of the dielectric
anisotropy of the composite without any chains, as well as the
results of the partial summation in Eq. (56) which show the
relative scale of contributions from chains of different lengths.
One can see that the chain formation can modify the dielectric
properties by orders of magnitude when the NP interaction
(determined by the permanent dipole) is sufficiently strong.
At the same time, for weak interaction, the effect of chains
is practically negligible and the NPs respond to the electric
field independently. For moderate interactions, there exists
a noticeable area of λ, where the formation of short chains
(dimers and trimers) contributes to �χ considerably, while
the effect of longer chains is practically absent.

One can readily see in Fig. 3 that a contribution from
monomers and dimers (similar to that from monomers and
n-mers for n = 3,4,5) first increases with the increasing
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FIG. 4. (Color online) Anisotropy of the low-frequency compos-
ite dielectric susceptibility as a function of the NP concentration for
the NP interaction strength λ varying from 2 to 10 as indicated on the
lines.

dipolar strength λ, then reaches a maximum, and finally begins
to decrease. The decreasing stage corresponds to the range of
λ which corresponds to the formation of longer chains which
make a predominant contribution to the dielectric anisotropy.
In this range, the contribution from dimers, trimers, etc.,
decreases due to a decrease of the corresponding number
densities. The increasing stage corresponds to the range of
smaller λ where the corresponding short chains make a
predominant contribution.

Finally, the variation of the dielectric anisotropy as a
function of the NP concentration for different values of
the dipole-dipole interaction strength is presented in Fig. 4.
Evidently, the increase of the NP concentration by an order of
magnitude results in the increase of the dielectric anisotropy
by several orders of magnitude depending on the value of
the parameter λ. Thus, one can readily see [compare also
with Figs. 3(a) and 3(b)] that the experimentally observed
increase of the dielectric constant [9,13] at very low NP number
density ρ = 10−2–10−3 can be explained by the effect of
chain formation only if the dipole-dipole interaction strength
is sufficiently high, which is the case for ferroelectric NPs with
large spontaneous polarization.

IV. DISCUSSION

In this paper, we have presented a general statistical
theory of the dielectric susceptibility of nematic liquid crystal
mixtures, including nematics doped with polar NPs, which
in principle enables one to take into account intermolecular
and interparticle correlations. At this stage, a general theory
can only be developed for the limiting cases of high and low
frequencies. The general theory has been used to obtain an

approximate explicit expression for the sum of contributions
from NP chains of all lengths to the birefringence and
to the anisotropy of the static dielectric constant and to
study the dependence of the dielectric anisotropy on the NP
concentration and the dipole-dipole interaction strength which
is mainly determined by the value of the NP permanent dipole.

Strongly polar NPs are expected to form chains or, at least,
dimers and trimers, which can make a significant contribution
to the dielectric constant of the nematic composite. In fact,
a contribution from chains of strongly polar NPs can be
orders of magnitude larger than that of single NPs. In the
case of ferroelectric NPs with large spontaneous polarization
[9,13,18,24], the dipole-dipole interaction at the contact
distance between NPs is large enough and this enables one
to explain why doping of a nematic LC with a very low
concentration of NPs (with number density of the order of
10−3) may result in a substantial increase of the dielectric
anisotropy comparable to the anisotropy of the nematic host
itself [9,13]. In the case of moderate dipole-dipole interaction
between NPs, the dielectric anisotropy is mainly determined by
short chains including dimers, trimers, etc., which still make a
much larger contribution than individual NPs. The dependence
of the dielectric anisotropy on the concentration of NPs has
also been evaluated numerically.

The general theory developed in this paper has also been
used to evaluate a contribution of long chains to the bire-
fringence of the composite nematic phase. The birefringence
has been evaluated as a function of the NP concentration
and the dipole-dipole interaction strength. As shown in Sec.
III, the behavior of the birefringence at low nondimensional
molar fraction of NPs (e.g., at ρ∗ = 0.001) can be used for
a quantitative assessment of the chain formation in nematic
composites.

Finally, one notes that the formation of dimers of magnetic
dipolar spherical NPs in an isotropic fluid at extremely low
concentration of NPs accounts for the experimentally observed
birefringence induced by the external magnetic field [25].
In such a fluid, the macroscopic magnetic anisotropy is
determined by the orientational ordering of dimers of magnetic
NPs induced by the external field, and theoretical estimates of
dimer concentration can be used to explain the experimentally
observed dependence of the birefringence on the external
magnetic field [25].
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