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Unification of classical nucleation theories via a unified Itô-Stratonovich stochastic equation
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1050 Brussels, Belgium

(Received 14 May 2015; published 22 September 2015)

Classical nucleation theory (CNT) is the most widely used framework to describe the early stage of first-order
phase transitions. Unfortunately, the different points of view adopted to derive it yield different kinetic equations
for the probability density function, e.g., Zeldovich-Frenkel or Becker-Döring-Tunitskii equations. Starting from
a phenomenological stochastic differential equation, a unified equation is obtained in this work. In other words,
CNT expressions are recovered by selecting one or another stochastic calculus. Moreover, it is shown that the
unified CNT thus obtained produces the same Fokker-Planck equation as that from a recent update of CNT [J.
F. Lutsko and M. A. Durán-Olivencia, J. Chem. Phys. 138, 244908 (2013)] when mass transport is governed
by diffusion. Finally, we derive a general induction-time expression along with specific approximations of it
to be used under different scenarios, in particular, when the mass-transport mechanism is governed by direct
impingement, volume diffusion, surface diffusion, or interface transfer.

DOI: 10.1103/PhysRevE.92.032407 PACS number(s): 64.60.Q−, 64.60.an, 64.70.Ja

I. INTRODUCTION

Over the past century the classical approach to nucleation
has reported an excellent ability to catch the essential rules
underlying noise-induced phase transitions. The set of ideas
that constitute this framework was developed over more than
half a century. This development started with Gibbs’s work
[1–3] on near-equilibrium phase transitions. Several years
later, Volmer and Weber [4,5] introduced kinetic aspects
improving the purely thermodynamical picture given by Gibbs.
This was further developed from a more atomistic point of view
by Farkas [6], who developed Szilard’s ideas, and by Becker
and Döring [7], Tunitskii [8], Frenkel [9,10], and Zeldovich
[11] within the context of liquid-vapor transitions. Finally,
Turnbull and Fisher [12] extended such a formalism with
the aim of describing solid nucleation first from liquid and
then from solid phases. Besides being intuitively appealing,
classical nucleation theory (CNT) has shown an overwhelming
robustness. Not only is it able to generate a satisfactory
estimation for the nucleation rate equation, which is good
for practical purposes [13,14], but it also provides a natural
mechanism for cluster formation, which turns out being more
real than initially expected [15]. In more recent years, a mas-
sive number of studies have renovated, if not improved, CNT
based on either phenomenological or fundamental grounds
[7–11,16–33]. The primary goal of this paper is to describe
a systematic method to derive the Fokker-Planck equation for
the probability to find clusters of a given size within the general
setting of CNT. This results in a surprising generalization of
the usual form of the stationary distribution compared to what
is usually assumed in the classical theory: Rather than a simple
Boltzmann distribution depending on the work of formation of
a cluster, there is a state-dependent prefactor that depends on
the chosen stochastic calculus. For the particular choice of the
Stratonovich calculus, the resulting expression reproduces the
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one recently derived from a more elaborate formalism based
on fluctuating hydrodynamics [29,32]. Thus, one of the main
contributions of this work is to provide a simpler route to
that result based solely on CNT. From that, another important
contribution results from the derivation of a general induction-
time expression accompanied by specific approximations for
it to be used in a variety of scenarios. Special attention is paid
to those where the mass-transport mechanism is governed by
direct impingement, volume diffusion, surface diffusion, or
interface transfer. To do this we follow the scheme outlined
below.

In Sec. II a stochastic differential equation (SDE) is
proposed to model the time-evolution equation for the cluster
size under a general stochastic calculus that is parametrized
by α so that α = 0, 1

2 , and 1 corresponds to Itô, Stratonovich,
and backward Itô conventions [34,35], respectively. The state-
dependent components of the postulated SDE are derived
from a phenomenological point of view, following the CNT
reasoning. The Fokker-Planck equation connected to such a
SDE is then introduced in Sec. III, the similarities to the
Zeldovich-Frenkel equation now being apparent, except for
an additional term that affects the effective energy barrier. The
effects of such a term are qualitatively explained in the same
section. While the Zeldovich-Frenkel equation is recovered
under backward Itô convention, the one derived by Lutsko
[29,32] is obtained under Stratonovich calculus. The study
of the Itô convention unveils the necessary condition for the
different Fokker-Planck equations (FPEs) to converge. Section
IV is devoted to the derivation of a generalized expression for
the mean first-passage time as well as different approximations
for the most common experimental conditions. Our results are
summarized in Sec. V.

II. THEORY

Nucleation is a quite complex process that certainly requires
a huge number of relevant variables (order parameters) to
be fully described. However, as we commented in Sec. I,
CNT is based on a manageable description of the process
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that considers a single order parameter, namely, the size of the
emerging embryo (cluster) of the new phase within the old
one. This is commonly assumed to be spherical and to have
the same physical properties as those of the final stable state
[13,14]. This apparently crude simplification is nevertheless
more than efficient when it comes to predicting the functional
dependence of the nucleation rate on the thermodynamic
quantities involved [13,14]. That is why our study starts with
a proposed SDE for the time evolution of the cluster size.
There are two reasons we are motivated to propose such an
equation. First, it is known that nucleation is a thermally
activated process involving the escape from a metastable state
via overcoming an energy barrier [13,14,36]. Thus, if the
nucleation process is governed by a single order parameter it
should undergo, at least to a good approximation, a Langevin
equation as proposed by Kramers [37]. Second, recent studies
[29,32,33] have shown a formal derivation of such SDEs
when the mass transport is governed by diffusion. A general
Langevin equation is assumed and their drift and diffusion
terms will be deduced from phenomenological arguments and
inspired by the ideas underlying CNT.

Stochastic dynamics

Let us consider a system that is set in a metastable state and
direct our attention to an arbitrary spherical cluster of those
randomly growing and shrinking. Let X be the size of such
a cluster, accounting for the number of molecules inside it.
Following Kramers’ reasoning for thermally activated escape
processes [37], we propose the model equation

dX(t) = η−1(X,t)F (X,t)dt +
√

2kBT η−1(X,t) � dB(t),
(1)

where η is an effective viscosity, F is the effective force acting
on X, T is the temperature, kB is the Boltzmann constant,
and dB(t) is a Wiener process. Intrinsic to this equation is the
consideration of X as a continuous variable, an approach first
introduced by Zeldovich [11,13,38–41]. Based on the work of
Ree et al. [42], it was shown (see, e.g., Sec. 9.1 of Ref. [13])
that clusters of more than a few molecules can be fairly well
described within the framework of the continuous approach
and so will we consider it a sufficient paradigm. The star
product was introduced to note that we are using a general
stochastic calculus (hereafter called α calculus) defined by
means of the definition of the stochastic integral [43–46]

Iα[R(x,t)] =
∫ t

t0

dB(t ′)R(x(t ′),t ′)

:=ms limn→∞
n−1∑
i=0

R(x(t∗i ),t∗i )�Bi, (2)

where R(x,t) is a left-continuous function, i.e., a function
that is continuous from the left at all the points where it is
defined, the symbol := means definition, ms lim represents
the mean square limit, i.e., a second moment convergence,
t∗i = (1 − α)ti + αti+1, and �Bi = B(ti+1) − B(ti). It can be
shown [43–46] that by choosing α = 0, 1

2 or 1, one recovers the
Itô, Stratonovich, or backward Itô definition. At the moment
we will focus our effort on obtaining a good estimation of

the drift term and later we will discuss the consequences of
selecting one or another value of α.

As previously mentioned, our aim is providing an alterna-
tive route of derivation of CNT starting from the cluster-growth
law. Based on CNT, we know that the effective force F

is related to the work of cluster formation W through its
derivative

F (X,t) = −∂W (X,t)

∂X
≡ −W ′(X,t). (3)

The work of cluster formation is usually expressed as the
increment of free energy experienced by the system due to the
emergence of a cluster of size X. Depending on the system
under consideration, that work is specified in terms of either
the Gibbs �G or Helmholtz �F free energy or the grand
(Landau) potential ��. In spite of making the derivation as
general as possible, we do not specify a given thermodynamic
potential since knowing the functional dependence of F on W

is more than sufficient.
The derivation of an expression for η requires nonetheless

a slightly longer discussion. According to CNT, the effective
time a cluster will spend losing a molecule is given by the
inverse of the difference between monomer attachment f and
detachment g frequencies

τ← = 1

g(X,t) − f (X,t)
. (4)

Within the nucleation regime, clusters experience a stronger
force to shrink than to grow due to their metastable nature.
This results in a higher detachment rate than the corresponding
attachment frequency (see Chap. 10 of Ref. [13]) with τ← �
1 s, typically of order 10−7–10−12 s as discussed by Kashchiev
(Figs. 10.2, 10.4, and 10.6 of Ref. [13]).

On the other hand, from the definition of the Kramers-
Moyal coefficients [34]

D(n)(x,t) = 1

n!
lim
τ→0

1

τ
〈[X(t + τ ) − x]n〉

∣∣∣∣
X(t)=x

, (5)

it was argued [44,46] that the first Kramers-Moyal coefficient
related to Eq. (1) is given by

D(1)(X,t) = a(X,t) + α
∂b(X,t)

∂X
b(X,t)

= − 1

βη(X,t)

(
βW ′(X,t) + α

∂

∂X
ln η(X,t)

)
,

(6)

with a(X,t) = η−1(X,t)F (X,t) and b(X,t) =√
2kBT η−1(X,t) the drift and diffusion forces, respectively,

and β = 1/kBT . Now we can use the fact that the time τ←
is expected to be small compared to the typical time scale
associated with a significant change of 〈X(t)〉 so that the limit
in Eq. (5) can be approximated by evaluation at τ = τ← for
which 〈X(t + τ←) − X(t)〉 = −1, giving

D(1)(X,t) =
〈
dX

dt

〉
∼ f (X,t) − g(X,t), (7)

which agrees with the cluster-growth law derived in CNT [14]〈
dX

dt

〉
CNT

= f (X,t) − g(X,t). (8)
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As we know from CNT, whereas the analytical expression of
f (X,t) can be derived from collision theory [13,14], finding
the frequency g(X,t) is not a trivial task. This is so because
monomer detachment depends on parameters characterizing
the cluster that may differ appreciably from those of the bulk
new phase. To get rid off this problematic quantity we follow
the same reasoning as in CNT.

Let us assume that f (X,t) is a well determined quantity.
We can evaluate the difference f (X,t) − g(X,t) in terms of
f (X,t), making use of the detailed balance equation

f (X − 1,t)P̃ (X − 1,t) = g(X,t)P̃ (X,t), (9)

with P̃ (X,t) being the quasiequilibrium probability density
function [17]

P̃ (X,t) = P0(t)σ (X,α; t)e−βW (X,t), (10)

where P0(t) is an instantaneous normalization constant and σ

is some function of X, α, and t . To accomplish our goal, we fol-
low Kashchiev [17] and approximate f (X − 1,t)P̃ (X − 1,t)
by the truncated Taylor expansion about point X,

f (X − 1,t)P̃ (X − 1,t)

∼ f (X,t)P̃ (X,t) − ∂

∂X
f (X,t)P̃ (X,t), (11)

and hence

f (X,t) − g(X,t) ∼ f (X,t)
∂

∂X
ln f (X,t)P̃ (X,t). (12)

Substituting Eq. (10) into (12) we get

f (X,t) − g(X,t) = − f (X,t)
W ′(X,t)

kBT

+ f (X,t)
∂

∂X
ln[σ (X,α; t)f (X,t)],

(13)

where we replaced ∼by =, assuming that these approximations
are accurate enough for all practical purposes. Finally, by
substituting Eq. (13) into (7) and equating to Eq. (6) we
eventually get

η−1(X,t) = βf (X,t),
(14)

σ (X,α; t) = f α−1(X,t).

Having Eqs. (3) and (14), the Langevin equation proposed at
the very beginning (1) can be finally rewritten

dX(t) = −f (X,t)
∂βW (X,t)

∂X
dt +

√
2f (X,t) � dB(t). (15)

This stochastic equation is equivalent to that derived by Lutsko
[29,32] from fluctuating hydrodynamics for a single-order
parameter, when we set α = 1

2 (i.e., Stratonovich calculus).
Moreover, as it will be checked in Sec. III, this equation is
statistically equivalent to the Zeldovich-Frenkel equation for
α = 1 (i.e., backward Itô calculus), given that it produces the
same time-evolution equation for the probability density func-
tion. It is thus interesting to see how the hypotheses underlying
Zeldovich’s derivation are equivalent to choosing a specific
stochastic calculus. Now the equilibrium with the thermal
bath is always ensured regardless of the value of α, unlike
the common belief that only the backward Itô convention is

capable of guaranteeing equilibrium [45]. Actually, such a
belief is reached after considering the equilibrium regime as
equivalent to a Boltzmann distribution law. Nevertheless, from
previous studies we know that this is not true for nucleation,
where the equilibrium distribution derived from a fluctuating-
hydrodynamic framework shows a state-dependent prefactor
[29,32]. That is why we free the derivation herein presented
of that restriction, assuming instead a local-equilibrium law
(10) with a general state-dependent prefactor. This results in
a general equilibrium distribution function [using Eqs. (10)
and (14)], which yields a state-independent pre-exponential
factor for α = 1, as expected. Noteworthy in such a case is
that the resulting theory cannot be covariant, as will be shown
in Sec. III B.

Nevertheless, Eq. (15) differs from that produced by
Tunitskii’s equation [8,47]

dX(t) = [f (X,t) − g(X,t)]dt +
√

f (X,t) + g(X,t)dB(t),
(16)

which is interpreted under Itô’s convention, i.e., α = 0. In
order to know under what circumstances both equations are
equivalents, we follow the same reasoning as that which led
us to Eq. (14), and so we arrive at

f (X,t) − g(X,t) = − W ′(X,t)η−1(X,t), (17)

f (X,t) + g(X,t) = 2kBT η−1(X,t). (18)

Then

g(X,t)

f (X,t)
= 1 + 1

1 − W ′(X,t)/2kBT

W ′(X,t)

kBT
. (19)

To get the usual approximation of g(X,t) given in CNT [e.g.,
Eq. (10.90) of Ref. [13]], i.e.,

g(X,t) = f (X,t) exp

(
∂βW (X,t)

∂X

)
, (20)

we need

∂βW (X,t)

∂X
� 1, (21)

given that in this limit one gets

g(X,t)

f (X,t)
∼1 + ∂βW (X,t)

X
+ 1

2

(
∂βW (X,t)

∂X

)2

∼ exp

(
∂βW (X,t)

∂X

)
. (22)

That way, our proposed model will recover the Tunitskii equa-
tion under Itô’s convention for slowly varying energy barriers,
which indeed agrees with the hypotheses underlying CNT.

Thus far, we have derived heuristically a model (15) that
seems to be in accord even with more rigorous and modern
theories. In what follows we will study the dynamics of
the probability distribution function (PDF) associated with
Eq. (15) in order to discuss in terms of CNT. This will
make it possible to get some important quantities such as the
stationary distribution function (for undersaturated systems)
or the nucleation (or induction) time.
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III. FOKKER-PLANCK EQUATION

The time-evolution equation of the PDF P (X,t) of the
random variable X will be given by the Fokker-Planck equation
[43–45]

∂P (X,t)

∂t
= −∂J(X,t)

∂X
, (23)

where

J(X,t) = −
{
f (X,t)

∂

∂X
[βW (X,t) + (1 − α) ln f (X,t)]

+ f (X,t)
∂

∂X

}
P (X,t) (24)

= −
(

f (X,t)
∂β�(X,t)

∂X
+ f (X,t)

∂

∂X

)
P (X,t), (25)

with

β�(X,t) = βW (X,t) + (1 − α) ln f (X,t). (26)

Now the similarities between this FPE and that obtained
in CNT are apparent. Furthermore, the Zeldovich-Frenkel
equation is recovered when the backward Itô convention is
adopted. Surprisingly, this naive model also recovers the FPE
given in more recent rederivations of CNT [29,32] when the
Stratonovich calculus is considered.

A. Short-time propagators: Critical clusters
with growing habits

Now we evaluate the impact of the extra logarithmic term.
Since 0 � α � 1, it is evident that it entails an increase in the
energy barrier with respect to the Zeldovich-Frenkel equation.
However, there is another interesting effect of this additional
term that has to do with the probability of a critical cluster
[defined by βW ′(X∗,t) = 0] to grow or shrink. While it is
customarily accepted that these probabilities must be the same,
this is only true under Itô’s convention, as we will show. To
this end, we will make use of short-time propagators [34].

It is known from collision theory that the analytical equation
of f (X,t) is size dependent and so is

√
2f (X,t). Hence, their

values will change from the initial to the final size during a
unitary jump in the size axis X. This change implies that the
cluster experiences different attachment rates in going from
an initial size X0 to another X. Here is where the choice of
the stochastic calculus comes into play, since each of them
corresponds to a different origin when evaluating the noise
amplitude, which yields asymmetric probability distributions
[43,44] for any α 
= 0. Considering α ∈ [0,1], the short-time
propagator [34] related to the FPE (22), and hence to the SDE
(15), is given by

pα(X,t + τ |X0,t)

= exp

(
− ατ

∂D(1)(X̃α,t)

∂X
+ α2τ

∂2D(2)(X̃α,t)

∂X2

−{X − X0 − [D(1)(X̃α,t) − 2α(∂D(2)/∂X)(X̃α,t)]τ }2

4τD(2)(X̃α,t)

)
×[2

√
πτD(2)(X̃α,t)]−1, (27)

FIG. 1. (Color online) This figure is inspired by Fig. 4 of [44].
(a) Schematic representation of the dependence of the monomer
attachment frequency on the cluster size. (b)–(d) Qualitative effect of
the logarithmic term on the short-time propagators, in particular when
the initial condition is the critical cluster. It can be readily observed
how the symmetry of growing or shrinking is broken for all α 
= 0.

where

D(1)(X̃α,t) = − f (X̃α,t)βW ′(X̃α,t) + αf ′(X̃α,t),

D(2)(X̃α,t) = f (X̃α,t),

X̃α = αX(t + τ ) + (1 − α)X(t)

≡ αX + (1 − α)X0.

(28)

In the particular case of X0 = X∗ we know by definition that
βW ′(X∗) = 0, i.e., the time evolution of the size for a critical
cluster is purely stochastic (15). However, as we can observe
in Fig. 1, the probability to grow only equals that to decrease
for α = 0, given that

pα=0(X,t + τ |X∗,t)

= 1

2
√

πf (X∗,t)
exp

(
− (�X∗)2

4f (X∗,t)τ

)
, (29)

where �X∗ = X − X∗. This is in line with the short-time
propagator directly derived from Tunitskii’s equation (16)
when f (X∗,t) = g(X∗,t), i.e., the probability to increase the
cluster size by one unit must be equal to the probability to
decrease by the same amount.

Nevertheless, for all α ∈ (0,1] the short-time propagator
gradually becomes an asymmetric distribution reaching the
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maximum deformation for [44] α = 1,

pα=1(X,t + τ |X∗,t)

= exp

[
τ

∂

∂x

(
f (x,t)

∂βW ′(x,t)

∂x

)∣∣∣∣
x=X

−{�X∗ + [f (X,t)βW ′(X,t) + f ′(X,t)]τ }2

4τf (X,t)

]/
2
√

πf (X,t). (30)

Given that f (X,t) is a monotonically increasing function of X

(see, e.g., Chap. 10 of Ref. [13]), it can be shown that such an
asymmetry favors the growth, instead of the shrinking. This
fact has already been reported by Brettschneider et al. [44] in a
different scenario but with similar conditions. Inspired by their
discussion, this result has been schematically represented in
Fig. 1. While this is a very interesting result that underlies the
different derivations of CNT, it is true that for very large critical
clusters X∗ � 1, the general short-time propagator becomes

pCNT(X,t + τ |X∗,t) = lim
X∗�1

pα(X,t + τ |X∗,t)

∼exp[−(�/X∗)24f (X∗,t)τ ]

2
√

πf (X∗,t)
, (31)

where we have considered the Szilard limit [6] in order to
approximate f (X,t) ∼ f (X∗,t). Thus, we see that the different
α calculi yield the same results only for very large critical
clusters, which is equivalent to saying for near-equilibrium
systems. It is worth mentioning that a recent rederivation of
CNT (DCNT) from fluctuating hydrodynamics [29,32,33] has
formally shown that the right FPE is that given for α = 1

2 ;
otherwise this will not be a covariant theory. Hence, from
the above discussion, the critical cluster will experience a
slightly higher tendency to grow, unlike what would be initially
expected from CNT.

B. Equilibrium and stationary distributions

In this section we explore the solutions of the general FPE
given by Eqs. (22) and (25). It is widely known that finding the
exact solution is a highly difficult problem, even potentially
impossible. However, as discussed by Hänggi et al. [37],
an exact solution can be obtained by assuming a stationary
system with constant flux Js , which is ensured by removing
clusters once they reach a given size X = Xmax > X∗ (see
also Refs. [13,48]). Then the steady-state distribution must
satisfy Ps(Xmax) = 0. Let us consider f (X,t) ≡ f (X) and
�(X,t) ≡ �(X). Returning to Eq. (25),

Js = −
(

f (X)
∂β�(X)

∂X
+ f (X)

∂

∂X

)
P (X), (32)

which readily produces [34]

Ps(X) = Ae−β�(X) − Jse
−β�(X)

∫ X eβ�(Y )

f (Y )
dY, (33)

with A being a normalization constant. When the boundary
condition on Ps(Xmax) = 0 is imposed, Eq. (33) becomes

Ps(X) = Jse
−β�(X)

∫ Xmax

X

eβ�(Y )

f (Y )
dY. (34)

We note that for some change of variable X → Y (X), the
stationary probability should fulfill

P̃s(Y ) = Ps(X)

(
dX

dY

)
, (35)

which imposes the following condition on f (X):

f̃ (Y ) = f (X(Y ))
(

dX

dY

)1/(α−1)

. (36)

Therefore, as we can check, the classical Zeldovich-Frenkel
equation cannot be covariant [32] given the singularity occur-
ring for α = 1. For all other values, whether the theory presents
general covariance or not is conditioned by the definition of the
attachment frequency. Thus far, the only derivation satisfying
such a requirement has been DCNT within the context of
diffusion-controlled mass transport [32]. As results from such
a study, the effects related to the noncovariant character of
CNT are subdominant.

If we consider an initial equilibrium (undersaturated) state,
the stationary PDF becomes the equilibrium distribution by
identifying it with a zero flux regime. Then, imposing Js = 0
in Eq. (33), we arrive at

Peq(X) = Af (α−1)(X)e−βW (X) = Ae−β�(X). (37)

The results introduced in this section will be important for
the derivation of the induction times, characterized by the
mean first-passage time (MFPT). A detailed discussion on the
estimation of the MFPT is introduced in Sec. IV.

C. Semiadiabatic limit

Real experiments could involve time-dependent coeffi-
cients. Following Weidlich and Haag [49], we will assume
that such a dependence of both f and � on time is controlled
via a certain control function κ(t). Under this assumption we
get

D(1)(X,κ(t)) = − f (X,κ(t))
∂βW (X,κ(t))

∂X

+ α
∂f (X,κ(t))

∂X
,

D(2)(X,κ(t)) = f (X,κ(t)). (38)

As is evident, if κ is time independent we recover the previous
results. In most cases, the control function will be either
the average density of the metastable state κ(t) = ρav(t) or
the temperature of the system κ(t) = T (t). In those cases
in which κ(t) is a slowly varying function of time, with
respect to a typical time scale, one expects that the stationary
solution follows adiabatically the motion of κ(t), i.e., the
system reaches a stationary state almost instantaneously. This
hypothesis is also known as semiadiabatic limit [49]. The time
scale that characterizes this limit can be interpreted as the
relaxation time toward the initial metastable state, as pointed
out by Talkner and Łuczka [50]. Under these circumstances,
the zeroth-order approximation for the quasistationary PDF is

Pqs(X; t) ∼A(t)e−β�(X,κ(t))

− Jse
−β�(X,κ(t))

∫ X eβ�(Y,κ(t))

f (Y,κ(t))
dY (39)
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and so the quasiequilibrium PDF for undersaturated condi-
tions, for which the flux necessarily vanishes (Js = 0), is

Pqe(X; t) ∼A(t)e−β�(X,κ(t)). (40)

The semiadiabatic approach is quite useful in order to make
a first approximation of the MFPT under nonstationary
conditions. Nonetheless, for a more accurate approximation
of induction times the path-integral formalism developed by
Getfert and Reimann [51] should be considered.

IV. ESTIMATION OF INDUCTION TIMES
AND NUCLEATION RATES

In this section an approximation for the MFPT and so for the
nucleation rate will be provided for most typical mechanisms
governing mass transport, i.e., the attachment rate. To do
that, we first get an approximation of the MFPT and then
particularize it by using the most used expressions for f (X) in
the literature [13]. The reason why we focus on obtaining an
approximation for the MFPT (hereafter denoted by τ ) is that
this quantity is closely linked to the nucleation rate J . Indeed,
within the range of applicability of CNT one expects [e.g.,
Sec. 10.6 and Eq. (72) of Ref. [52]]

Jα ∼ ρavτ
−1
α , (41)

where the subscript α has been introduced to highlight the fact
that it will depend on the α calculus selected. That way, τ can be
understood as the mean time required for nucleation to occur.
For this purpose we follow Risken [34] to get an approximation
of τ . To begin we consider stationary conditions, i.e., f

and W , time independent. From the results thus obtained, a
naive approximation for time-dependent conditions is readily
produced by considering the semiadiabatic limit. It is easy to
show that Eq. (32) can be rewritten as

Js = − f (X)e−β�(X) ∂

∂X
[eβ�(X)P (X)]

= − e−βϕ(X) ∂

∂X
[eβ�(X)P (X)], (42)

with

ϕ(X) = W (X) − αkBT ln[f (X)]. (43)

If the barrier is relatively high, Js is expected to be very small.
Hence, we can integrate Eq. (42) from the minimum X = Xmin

to the maximum X = Xmax size allowed for a cluster

Js

∫ Xmax

Xmin

eβϕ(s)ds = P (Xmin,t)e
β�(Xmin)

(
1 − P (Xmax)

P (Xmin)
eβ��

)
∼ P (Xmin)eβ�(Xmin). (44)

Under these conditions, as Js is assumed to be very small we
can use Eq. (33) to approximate P (Xmin) ∼ Ae−β�(Xmin) and
P (X) ∼ Ae−β�(X). That way, the distribution function near
Xmin will be approximately given by (see Ref. [34])

P (X) ∼ P (Xmin)e−β(�(X)−�(Xmin)). (45)

Then we can get the expression for the MFTP [34]

τ (α) ∼ P (Xmin,t)eβ�(Xmin)
∫ Xmax

Xmin
e−β�(s)ds

P (Xmin,t)eβ�(Xmin)/
∫ Xmax

Xmin
eβϕ(s)ds

∼
∫ Xmax

Xmin

e−β�(s)ds

∫ Xmax

Xmin

eβϕ(s)ds. (46)

The usual procedure [34] is to expand both exponents around
Xmin = 0 and X∗, respectively, but in this problem such a
method cannot be used since f (X) goes to zero as X → 0
[13,14]. Nonetheless, the main contribution to the first integral
stems from the region around Xmin. Thus, in the case of
three-dimensional (3D) nucleation the free-energy term will
be governed by the surface term [13] and hence the exponent
involving β� can be truncated to a good approximation as

β�̃3D(X) = β(�X2/3 + (1 − α)kBT ln[f (X)]), (47)

where � would be a measure of the surface tension [13,14].
In contrast, for 2D nucleation, the work of cluster formation
near Xmin is governed by the line-tension term

β�̃2D(X) = β(�X1/2 + (1 − α)kBT ln[f (X)]), (48)

with � being here the scaled line tension. Hence, we get∫ Xmax

Xmin

e−β�(s)ds ∼
∫ ∞

0
e−β�̃(s)ds, (49)

whose exact results are collected in Table I. Note that these
results involve the Euler Gamma function �(n). In addition,∫ Xmax

Xmin

eβϕ(s)ds ∼
∫ ∞

0
eβ(ϕ(X∗)−(1/2)|ϕ(X∗)|(s−X∗)2)ds

∼1

2
χeβϕ(X∗), (50)

with

1

λ
=

√
β|ϕ′′(X∗)|

2π
=

√
|α[δkBT /ν(X∗)2] + W ′′(X∗)|

2πkBT
, (51)

χ = λ

(
1 + erf

[√
π

λ
X∗

])
. (52)

The prefactor λ−1 turns into the well-known Zeldovich factor
[13] zd when one selects α = 0, i.e., Itô calculus. In fact,
χ−1 could be considered as a generalization of the Zeldovich
factor since it plays the same role as the latter in the classical
expression of MFPT [52]:

τCNT ∼ z−1
d f (X∗)−1eβW (X∗). (53)

The integral of Eq. (49) depends on the monomer attachment
mechanism. In order to perform such an integral we use
the expressions given in the literature for the most usual
experimental situations (see Table I) for both homogeneous
nucleation (HON) and heterogeneous nucleation (HEN): (i)
f (X) = ζX1/2 for 2D HEN of clusters with monolayer height,
with ζ given by Eqs. (10.6), (10.7), (10.63), and (10.66) of
Kashchiev [13]; (ii) f (X) = ζX1/3 for 3D HON and HEN of
caps in liquid or solid solutions, with ζ given by Eqs. (10.18),
(10.20), and (10.24) of Kashchiev [13]; and (iii) f (X) = ζX2/3

for 3D HON and HEN of caps when the monomer attachment
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TABLE I. Integration of equation (49) by employing some of the most used expressions for the monomer attachment rate and the
corresponding approximations of the MFPT.

Nucleation type Mass-transport mechanism f (X)
∫ ∞

0 e−β�̃(s)ds τMFPT

2D HEN direct impingementa
ζ1X

1/2 I1(α) = 2�(α+1)ζα−1
1

βα+1�α+1
1
2 I1χeβϕ(X∗)

disks with monolayer height interface transferb

3D HON or HEN volume diffusionc ζ2X
1/3 I2(α) = 3�((α+2/2))ζ2

α−1

2β(α+2)/2�(α+2)/2
1
2 I2χeβϕ(X∗)

spheres or caps from liquid or solid

3D HON or HEN direct impingementd

spheres or caps from vapor, liquid, or solid interface transfere ζ3X
2/3 I3(α) = 3�((2α+1)/2)ζ3

α−1

2β(2α+1)/2�(2α+1)/2
1
2 I3χeβϕ(X∗)

3D HON or HEN arbitrary ζXδ/ν I (α) = 3�((3/2)(αδ/ν−δ/ν+1))ζα−1

2β(3/2)(αδ/ν−δ/ν+1)�(3/2)(αδ/ν−δ/ν+1)
1
2 Iχeβϕ(X∗)

aζ1 prefactor multiplying N1/2 in Eqs. (10.6) and (10.7) of Ref. [13].
bζ1 prefactor multiplying N1/2 in Eqs. (10.63) and (10.66) of Ref. [13].
cζ2 prefactor multiplying N1/3 in Eqs. (10.18), (10.20), and (10.24) of Ref. [13].
dζ3 prefactor multiplying N2/3 in Eqs. (10.3)–(10.5) and (10.9) of Ref. [13].
eζ3 prefactor multiplying N2/3 in Eqs. (10.60)–(10.65) of Ref. [13].

frequency is controlled by direct impingement or by interface
transfer, with ζ given by Eqs. (10.3), (10.4), (10.5), (10.9),
(10.60), (10.61), (10.64), and (10.65) of Kashchiev [13].
Hereafter the integral of Eq. (49) will be called I (α). From
Eq. (46) we can finally give the approximation of the MFPT

τ (α) ∼ 1
2χI (α)f (X∗)−αeβW (X∗), (54)

which makes a comparison with that predicted by CNT (54)
possible:

τ (α)

τCNT
= z−1

d [1 + αO((X∗)−2)]−1/2f (X∗)−αI (α)

z−1
d f (X∗)−1

= I (α)f (X∗)1−α[1 + αO((X∗)−2)]−1/2, (55)

which under backward Itô calculus turns into

τ (α = 1)

τCNT

∼ I (1). (56)

The approximations are not exactly the same, even though
α = 1 produces the same FPE, because we follow a different
route to derive τ .

One immediately observes the similitude of Eq. (54) with
Kramers’ law. In fact, the former is in accord with the latter
with a prefactor deduced analytically. Furthermore, Eq. (54)
allows us to reach an approximation of the nucleation rate via
Eq. (41). Now this result can be extended as a first-order ap-
proximation for time-varying conditions, as shown by Getfert
and Reimann [51] for slow time-dependent Kramers-Moyal
coefficients. Thus, under the assumption of the semiadiabatic
limit and following the notation introduced by Getfert and
Reimann [51], the instantaneous MFPT can be estimated as

τ (α; t) ∼ 1
2χ (t)I (α,κ(t))f (X∗,κ(t))−αeβW (X∗,κ(t)). (57)

While these results can be very useful in characterizing the
time required to start the phase transition, we must bear in mind
that they are approximations. To get more accurate estimates
of this characteristic time an exact numerical integration of the
above equations can be performed. Indeed, the best estimation
will be determined via stochastic integration of Eq. (15). The
main advantage of a numerical approach is that it is valid for
both time-independent and time-dependent coefficients.

V. CONCLUSION

In this work an alternative route to derive the classical
theory of nucleation has been introduced. Over the past
century, CNT has been exposed to intense examination, which
has reported many of its flaws and strengths. One of the
most remarkable strengths of this framework is the majestic
simplicity underlying its formulation. However, several differ-
ent equations for the size distribution resulted from such an
extensive investigation. Based on the ideas that constitute the
classical theory, a unified equation can be reached, starting
from a unified Itô-Stratonovich stochastic equation.

From a heuristic derivation, the initially unknown coef-
ficients of the proposed stochastic equation were obtained.
This stochastic cluster-growth law was interpreted under a
general stochastic calculus, despite what is usually done. As
a result, our postulated model recovers the cluster-growth law
postulated by Becker and Döring [7] and Tunitskii [8] if slowly
varying energy barriers and Itô integration convention are
considered. Indeed, such an assumption will be always true
within the range of applicability of CNT since the initial state
is near equilibrium. Besides that achievement, we employed
the tools of the theory of stochastic processes to go from the
stochastic equation to a unified FPE. It is called unified given
the fact that it contains both the classical Zeldovich-Frenkel
equation when we select backward Itô convention and the
equation derived by Lutsko and Durán-Olivencia [32] for the
usual Stratonovich calculus.

Another interesting result generated by this stochastic for-
malism was found while studying the short-time propagators.
They constitute the tools required to know the probability for a
cluster to grow or shrink. Surprisingly, when we set the initial
cluster to be critical (whose growth law is supposed to be
purely random), we found that all the interpretations of the
noise give a tendency to grow. It could be argued that this
fact would be enough to make us select Itô’s interpretation.
Nevertheless, the only interpretation that has reported the
ability to produce a covariant theory has been the Stratonovich
calculus [32]. Furthermore, the study of the general covariance
of the theory reported another interesting result, namely, the
Zeldovich-Frenkel equation cannot be fixed to be covariant.
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This result indeed sheds some light on the question of whether
or not it is worth trying to fix CNT by considering much more
sophisticated models for the cluster.

Finally, estimates of the nucleation time and rate were com-
puted. The approximation we reached for these quantities was
specifically applied to the most typical experimental situations.
An inevitable similarity to the CNT expressions appeared.
A comparison with such an expression was performed by
computing their ratios.
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APPENDIX: SHORT-TIME PROPAGATOR

In order to get the expression of the short-time propagators
in a general α convention, we follow the procedure introduced
by Wissel [53], which was also used by Risken [34]. The
formal solution of a general FPE can be written as (see, e.g.,
Ref. [34])

p(x,t |x ′,t ′) = �T exp

[∫ t

t ′
LFP[x(s),s]ds

]
δ(x − x ′), (A1)

where LFP denotes the Fokker-Planck operator (A3) and �T is
the time-ordering operator. For small time intervals τ = t − t ′,
Eq. (A1) can be approximated by

p(x,t+τ |x ′,t) = [1+LFP(x ′ + α�x,t)τ + O(τ 2)]δ(x − x ′),
(A2)

where we have used the stochastic integral [45] introduced
in Eq. (2). Now we can perform the differentiation in the

Fokker-Planck operator

LFP(u(x),t) = − ∂

∂x
D(1)(u(x),t) + ∂2

∂x2
D(2)(u(x),t), (A3)

with u(x) = αx + (1 − α)x ′. Accordingly, we obtain

LFP(u(x),t) = − α
∂D(1)

∂x
(u(x),t) + α2 ∂2D(2)

∂x2
(u(x),t)

−
[
D(1)(u(x),t) − 2α

∂D(2)

∂x
(u(x),t)

]
∂

∂x

+ D(2)(u(x),t)
∂2

∂x2
. (A4)

By substituting Eq. (A4) into (A2) and using the Taylor
expansion of the exponential function we get

p(x,t + τ |x ′,t) =eLFP(u(x),t)τ δ(x − x ′). (A5)

With the aim of obtaining an exponential function, the Fourier
representation of the Dirac δ function will be used. Thus, we
finally obtain the short-time propagator

p(x,t + τ |x ′,t)

= exp

(
− ατ

∂D(1)(u(x),t)
∂x

α2τ
∂2D(2)(u(x),t)

∂x2

−{x−x ′−[D(1)(u(x),t) − 2α(∂D(2)/∂x)(u(x),t)]τ }2

4τD(2)(u(x),t)

)
×[

√
4πτD(2)(u(x),t)]−1. (A6)

As can be checked, this short-time propagator recovers those
presented by Dekker [54] and Risken [34] [e.g., Eqs. (4.55) and
(4.55a) of Ref. [34]] for α = 0 and α = 1, respectively. This
derivation can be seen as an alternative route to that carried
out by Lau and Lubensky [45].
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[7] R. Becker and W. Döring, Kinetic treatment of grain-formation
in super-saturated vapours, Ann. Phys. (Leipzig) 24, 719 (1935).

[8] N. N. Tunitskii, On the condensation of supersaturated vapors,
Zh. Fiz. Khim. 15, 1061 (1941).

[9] I. J. Frenkel, Kinetic Theory of Liquids (Oxford University Press,
Oxford, 1946).

[10] I. J. Frenkel, Statistical theory of condensation phenomena,
J. Chem. Phys. 7, 200 (1939).

[11] J. B. Zeldovich, On the theory of new phase formation, Acta
Physicochim. (U.R.S.S.) 18, 1 (1943).

[12] D. Turnbull and J. C. Fisher, Rate of nucleation in condensed
systems, J. Chem. Phys. 17, 71 (1949).

[13] D. Kashchiev, Nucleation: Basic Theory with Applications
(Butterworth-Heinemann, Oxford, 2000).

[14] K. Kelton and A. L. Greer, Nucleation in Condensed Matter:
Applications in Materials and Biology (Pergamon, Oxford,
2010).

[15] M. Sleutel, J. Lutsko, A. E. S. Van Driessche, M. A. Durán-
Olivencia, and D. Maes, Observing classical nucleation theory at
work by monitoring phase transitions with molecular precision,
Nat. Commun. 5, 5598 (2014).

[16] B. Shizgal and J. C. Barrett, Time dependent nucleation, J.
Chem. Phys. 91, 6505 (1989).

[17] D. Kashchiev, Nucleation at variable supersaturation, Surf. Sci.
18, 293 (1969).

032407-8

http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1038/ncomms6598
http://dx.doi.org/10.1038/ncomms6598
http://dx.doi.org/10.1038/ncomms6598
http://dx.doi.org/10.1038/ncomms6598
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1016/0039-6028(69)90172-1


UNIFICATION OF CLASSICAL NUCLEATION THEORIES . . . PHYSICAL REVIEW E 92, 032407 (2015)

[18] R. Kaichew and I. N. Stranski, On the theory of linear
crystallization velocity, Z. Phys. Chem. B 26, 317 (1934).

[19] K. F. Kelton, in Solid State Physics, edited by H. Ehrenreich and
D. Turnbull (Academic, New York, 1991), pp. 75–178.

[20] J. F. Lutsko, Density functional theory of inhomogeneous
liquids. IV. Squared-gradient approximation and classical nu-
cleation theory, J. Chem. Phys. 134, 164501 (2011).

[21] A. Laio S. Prestipino, and E. Tosatti, Systematic Improvement
of Classical Nucleation Theory, Phys. Rev. Lett. 108, 225701
(2012).

[22] C. Dellago W. Lechner, and P. G. Bolhuis, The Role of the
Prestructured Surface Cloud in Crystal Nucleation, Phys. Rev.
Lett. 106, 085701 (2011).

[23] J. S. Langer, Theory of the condensation point, Ann. Phys. (NY)
41, 108 (1967).

[24] J. S. Langer, Statistical theory of the decay of metastable states,
Ann. Phys. (NY) 54, 258 (1969).

[25] J. Lothe, Simplified considerations of the Onsager symmetry in
the general diffusion equation of nucleation theory, J. Chem.
Phys. 45, 2678 (1966).

[26] D. Reguera, J. M. Rubı́, and A. Pérez-Madrid, Kramers-type
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