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Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces
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The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at
the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic
velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system
parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a
one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the
classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity
as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness
of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate
closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks
accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that
the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key pa-
rameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems
in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.
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I. INTRODUCTION

Extended frictional interfaces under increasing shear stress
eventually break and enter a macroscopic sliding regime.
They do so through the propagation of a rupturelike microslip
front across the whole interface. The propagation speed of
such fronts is typically of the order of the sound speed
in the contacting materials, which made them elusive to
measurements until the rise of fast camera monitoring of
frictional interfaces in the late 1990s. It is now well established
that a whole continuum of front propagation speeds v, can
be observed along macroscopic frictional interfaces, from
intersonic (between the shear and compression wave speeds
of the materials, ¢, and ¢y, see, e.g., Ref. [1]) to quasistatic
(proportional to the external loading rate, see, e.g., Refs. [2,3]),
going through sub-Rayleigh fronts (v. < cg with cg the
Rayleigh wave speed, see, e.g., Refs. [4-6]) and slow but still
dynamic fronts (v, ~ 0.01 to 0.1cg, see, e.g., Ref. [4]). This
huge variety in observed speed triggered the natural question
of what the physical mechanisms underlying speed selection
of microslip fronts are.

Experimentally, it has been shown that the larger the local
shear to normal stress ratio T/ p just prior to rupture nucleation,
the faster the local front speed [5]. This result is consistent
with the observation that a larger shear stress promotes
intersonic rather than sub-Rayleigh propagation [7,8]. The
observed relationship between prestress and front speed has
been reproduced in simulations for both fast [9-11] and
slow [11] fronts. On other aspects of front speed, models are
ahead of experiments, with various predictions still awaiting
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experimental verification. Among these are the following:
(i) Models with simple Amontons-Coulomb (AC) fric-
tion [9,11-13] have shown that front propagation speed is
controlled by 7 = Z{SP_—_M":, with py and u; the local static
and kinematic friction coefficients, T thus appearing as a
generalization of the parameter t/p used to analyze the
experimental data. (ii) A model with velocity-weakening
AC friction [10] has suggested that front speed is direction
dependent, with different speeds for fronts propagating with
and against the shear loading direction. (iii) Two-dimensional
(2D) spring-block models [11,13] and 1D continuous mod-
els [14,15] have shown that front speed v 1S proportional to

some relevant slip speed vgjp, with a relationship of the type
v shear modulus of the interface ,,
front stress drop during rupture = SHp-

Giving quantitative predictions of front speed is difficult for
at least two reasons. First, any real interface is heterogeneous
at the mesoscopic scales at which stresses can be defined
(scale including enough microcontacts), due both to intrinsic
heterogeneities of the surfaces and to heterogeneous loading.
Thus, even if the front speed was selected only locally, i.e.,
as a function of the local stresses and local static friction
threshold, the front speed would still be varying with front
position along the interface. Second, models actually show
that front speed can have long transients [13] (extending over
sizes comparable to that of the samples used in a number
of experiments), even for carefully prepared homogeneous
interfaces. This suggests that the instantaneous front speed
does not only depend on local quantities but rather on the
slip dynamics along all the broken part of the interface and
from all times after front nucleation. Here we overcome
these difficulties by (i) considering fronts propagating along
homogeneous interfaces and (ii) focusing on front speed only
in steady-state propagation, i.e., after transients are finished.
For the sake of simplicity and to enable analytical treatment,
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we use a 1D spring-block model for the shear rupture of
extended frictional interfaces, introduced in Ref. [12] to study
the propagation length of precursors to sliding [9,16-20].
Whereas the dynamics of multiple successive events in the
macroscopic stick-slip regime of this model was discussed
in detail in Ref. [12], here we focus on the steady-state
propagation of a single rupture front. We show in the discussion
that the main results obtained using the 1D model still hold in
a 2D extension of the model.

We emphasize that fully dynamic (as opposed to cellular
automata) spring-block (or spring-mass) models have previ-
ously been widely used in the literature to model not only
friction [see, e.g., Refs. 9,11,12,17,21,22] and earthquake
dynamics [see, e.g., Refs. 23-25] but also, among others,
self-organized criticality in nonequilibrium systems with many
degrees of freedom (e.g., Ref. [26]), adsorbed chains at
surfaces (Ref. [27]), fluctuations in dissipative systems (e.g.,
Ref. [28]), or creep in granular materials [29].

Rupture velocities in 1D spring-block models have been
studied previously [30-32] in the framework of the Burridge-
Knopoff (BK) model [23]. In the BK model, a chain of blocks
and springs is loaded uniformly from the top through an array
of springs connected to a rigid rod. Note that this loading
configuration differs from the one used in the present paper, in
which the chain of blocks is loaded from one edge. In Ref. [30],
the rupture speed of the BK model with velocity-weakening
friction was obtained in the case of a uniform loading exactly
at the local slipping threshold. The model was found to have a
range of possible propagation velocities among which one is
selected dynamically. The rupture velocity was also found to
be resolution dependent. This resolution problem was solved
in Ref. [31] by introducing a short-wavelength cutoff, obtained
by adding Kelvin viscosity to the model. Rupture velocities in
the BK model with Amontons-Coulomb friction were studied
in Muratov [32] and found to have a unique solution for any
given value of the initial shear stress at the interface, with a
well-defined continuum limit. We compare our results to those
of Refs. [30-32] in Sec. IV.

The paper is organized as follows: We first describe our
model and derive its nondimensional form (Sec. II). We
then present our results for the velocity of steady-state front
propagation as a function of the prestress on the interface
prior to rupture (Sec. III) for three variants of the model. We
start with a simple AC friction law and obtain a closed-form
equation for the front velocity. We then add either a bulk
viscosity or an interfacial stiffness and provide for each an
approximate equation for front speed. In Sec. IV, we discuss
our results in the light of a 2D model. Conclusions are in Sec. V.
Four appendices provide additional mathematical details.

II. MODEL DESCRIPTION

We investigate the propagation of microslip fronts in the
1D spring-block model originally introduced by Maegawa
et al. [17] to study the length of precursors to sliding. We
have improved this model to include a bulk viscosity and
a friction law allowing for a finite stiffness of the interface
[12]. A schematic of this minimalistic model is given in
Fig. 1. The slider is modelled as a chain of blocks with
mass m = M /N connected in series by springs with stiffness
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FIG. 1. Schematic of the model system. The slider is modelled
as N blocks with mass m connected by springs of stiffness k. The
trailing edge block (block 1) is slowly driven through a loading spring
of stiffness K. Each block # is also submitted to a normal force p,, a
friction force f,,, and a viscous damping force F}}, which is described
by the viscous coefficient 7.

k= (N —1)ES/L, where M is the total mass of the slider,
N is the number of blocks, E is the Young’s modulus, S is
the cross-section area, and L is the length of the slider. The
applied normal force on each block n is given by p, = Fy/N,
where Fy is the total (uniformly) applied normal force. The
tangential force Fr is applied at the trailing edge of the system
through a loading spring with stiffness K. One end of this
spring is attached to the trailing edge block (block 1), while
the other end moves at a (small) constant velocity V.
The equations of motion are given by

mun:F,];“r‘F,?'i‘fnv I <n<N, (1)

where u, = u,(t) is the position of block n as a function of
time relative to its equilibrium position (in the absence of
any friction force) and " denotes the double derivative with
respect to time ¢. The forces F,f, F), and fn are the total

spring force, relative viscous force, and the friction force on
block n, respectively, and are given by

k(up —uy) + Fr, n=1
FF = Yk(upr —2uy +up—1), 2<n<N—-1 (2
k(uy—1 —un), n=N,
(i — i), n=1
Bl = {n(ns1 — 20n +tp—1), 2<n<N-1 (3
ny-—1 — un), n=N,
with the tangential load Fr given by
Fr =KVt —uy). 4)

In the following we will simply use the term “viscosity” to
mean the viscous coefficient . We consider two different
functional forms for the friction force f;,, one corresponding to
the rigid-plastic-like AC friction law, discussed in Sec. III A,
and one to the elastoplastic like friction law introduced in
Amundsen et al. [12] allowing for a finite stiffness of the
interface, discussed in Sec. III B.

Before solving Eq. (1) it is instructive to rewrite it on a
dimensionless form to derive the combination of parameters
controlling the behavior of the system. Here we derive the
dimensionless equations of motion for a generic friction force
f» and will later consider the two special cases discussed
above, (i) AC friction in Sec. IIT A and (ii) with tangential
stiffness of the interface in Sec. III B.
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We begin by eliminating the initial positions of all blocks,
u,(0), from the block positions u,(¢). Any movement can be
described by u),(¢) defined by

un(t) = uy(0) + u,, (1), (5a)
() = 1, (1), (5b)
ii (1) = i (1), (5¢)

i.e., the position of a block is the position it had at = 0 plus
any additional movement u/,(¢). The forces F,f , F), and Fr
then become

k(uy —u)) + 1 + Fr, n=1
Ff= kG, —2u,+u,_)+1, 2<n<N-1 (6)
k(uy_y —uly) + v, n=N,
(s — u}), n=
EFl={nG , —2i,+ui, ), 2<n<N-1 (7)
n@iy_y — i), n=N,
Fr =KVt —u)), ®)

where we have introduced a new force t,, the initial shear
force, given by

k[uz(0) — u1(0)] — Ku(0), n=1
T, =  klup1(0) — 2u,(0) +u,—1(0)], 2<n<N-—1
kluy—1(0) — un(0)], n=N.

€))

Next we introduce our dimensionless variables, it,, = u,,/ U

for block positions, 7 =¢/T for time, and ¥ = x/X for
horizontal positions. Substituting these back into Eqs. (1)
and (6) to (8) yields our dimensionless equations of motion.
We make the following choices for the scaling parameters U,
T, and X:
(s kﬂk)pn T= m’ X =a, (10)
where p, and u are the static and kinetic friction coefficients
in AC-like friction laws and a = L /(N — 1). The dimension-
less equations of motion become

U =

in = Fy + F] + fo, (11)
with
i, — ity + Fr, n=1
F,=ditp1 — 2it, +itp_y, 2<n<N-—1 (12)
Uy-—1 — Uy, n=N,
ity — ify), n=1
_,;7 = ﬁ(ﬁn-i—l - 2’/_ln + ﬁn—l)a 2 sn< N -1 (13)
fitn—1 — in), n=N,
_ 1 Tn +fn
fn = _(fn + Tn) - - > (14)
kU (Ms —,U«k)Pn
_ T2 _
Fr = —K(Vt—u)) = K(VTi—i), (15)
mU
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where " (overdot) now denotes the derivative with respect to 7
and not ¢. Note that, for convenience, and being of frictional
origin, the initial shear force t, has been included in the
effective dimensionless friction force f, in Eq. (14) rather
than in F,,. The dimensionless relative viscosity is defined as

_ n
= ——, (16)
7 km
and we have introduced
_ K _ \%
K=— V=—— (17
k u/r

The velocity of sound in this model is given by [33]

Vg =a\/z, (18)
m

and in our dimensionless units this becomes

‘—,/kT—l (19)
BTN x T

which was the reason for our choice of X.

Looking at our new dimensionless set of equations itis clear
that the number of parameters has been reduced. In addition
to the dimensionless friction force f,, only K, V, and 7, the
dimensionless driving spring constant, driving velocity, and
relative viscosity, respectively, will impact the evolution of the
dimensionless block positions.

III. STEADY-STATE FRONT PROPAGATION

Most previous studies of rupture front propagation in
spring-block models have initialized the models with the shear
stresses set to zero. External loading is then applied, and the
evolution of the systems in time is studied [9,12,17-19,21].
The interface states at the time of nucleation of microslip fronts
are selected naturally through the evolution of the system in
time, mimicking the experimental setups of, e.g., Refs. [16,17].

To facilitate systematic study of the front velocity in our
system, as previously done in, e.g., Refs. [11,13], we prepare
a desired interface state at the time of rupture nucleation and
look at the resulting rupture dynamics. The initial state is
governed by the initial shear stresses, t,, which is one of
the important parameters in the effective friction force f,.
In this paper we discuss steady-state front propagation, i.e.,
fronts propagating at a constant velocity v., and for this reason
all surface properties, including 7,, are kept homogeneous
throughout the interface. For convenience, the block index n
will therefore be dropped in the following discussion where
possible. We also make the assumption that the driving spring
constant K is much smaller than the material spring constant k,
i.e., K < 1, which means Fr can be treated as constant during
the front propagation. This assumption is valid both in models
studied previously (e.g., Refs. [9,12,17]) and in experimental
studies (e.g., Refs. [5,17]).

Here we use both numerical and analytical tools to study
steady-state rupture fronts in 1D spring-block models. In
Sec. Il A we measure the front speed in our model with AC
friction. We compare the cases without and with bulk viscosity
7 and show that in a few special cases closed-form expressions
for the front velocity as a function of model parameters may be
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obtained. In Sec. III B we study the impact of a finite stiffness
of the interface before concluding with some remarks on the
complete model.

A. Amontons-Coulomb friction

Perhaps the simplest dry friction law in widespread use
is Amontons-Coulomb friction, which introduces static and
dynamic friction coefficients u, and py, respectively. We
impose this law locally on each block in our system as
in Refs. [9,12,17], i.e., a block has to overcome a friction
threshold u, p to start sliding, during which it experiences a
force i p. The friction force f, is therefore given by

gﬂ“spa ’/.tn =0
o= { ‘ . (20)
—Sgﬂ(un)MkP, u, #0,

where, when %, = 0, f, balances all other forces acting on
block n. Blocks are assumed to repin to the track when their
velocity becomes 0 and will only start moving again if the sum
of all forces, except the friction force, again reaches the static
friction threshold p; p.

For sliding blocks we insert Eq. (20) into Eq. (14) and
obtain the effective dimensionless friction force f,:

fﬂ:zf/l’:FMk. @1
Ms — Mk

Note the necessary separation into £+ and f~ at this point,
where f* applies if the block is moving in the positive
direction and f~ if it is moving in the negative direction. This
is related to the change in sign of the friction force f, as the
block velocity changes between being positive and negative.

In the model, a front propagates in the following way:
The driving force increases on block 1 up to the local static
friction level. As block 1 moves, the tangential force on block 2
increases, eventually reaching its static friction threshold, and
starts to move. We interpret the successive onset of motion
of blocks as the model equivalent of the microslip fronts
observed in experiments and define the local front velocity as
the distance between two blocks divided by the time interval
between the rupture of two neighboring blocks. We label
these two blocks n =i and n =i + 1 and denote the time
between the onset of motion of these two blocks by A¢;. Since
the material springs are very stiff, the distance between two
neighboring blocks can be approximated to be a, independent
of time. We define the rupture velocity v, as

a T Ve

= > c =Ve = —» 22
At; v v X Uy 22)
where we have used the velocity of sound in Eq. (18).
A block begins to move if the forces on it reach the static
friction threshold,

Ve

Fy+ F) = 4u,p, (23)
which in dimensionless units becomes
F,+ Fl =41 - f*%, 24)

A rupture initiates when the total force on block 1 exceeds
the static friction threshold, while all other blocks are still
unaffected. We initialize the system with T + F;. = u,p, i.e.,

T+ Fr=1, (25)
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where
Fo P T HE_ gy (26)
Hs — Uk
Note the definition of 7, which we will later show to be a very
important model parameter. We exclusively consider positive
initial shear forces, the maximum being restricted by the static
friction threshold. Consequently, all values of 7, the dimen-
sionless initial shear force, lie between — ;. /(s — (y) and 1.
To summarize, the equations of motion for the system are
given by Eqs. (11) to (15) and (21) and rupture initiates when
Eq. (25) is satisfied. We will now proceed by first considering
the simplest case where i = 0 before studying the effect of
introducing a bulk viscosity.

1. Model without bulk viscosity (ij = 0)

As in the model by Maegawa et al. [17], we firsttake 7 = 0
and apply AC friction locally at each block. Since, as discussed
above, we keep Fr constant during rupture, and since its initial
value is given by the rupture criterion [Eq. (25)], only two
parameters remain that control the front propagation, T = f+
and f~. We first want to identify for which values of f*
steady-state ruptures can be supported.

We have tried many different values for 7, some examples
of which are shown in Fig. 2(a). We observed that blocks
never move in the negative direction for as long as the front
propagates, which means that f~ becomes irrelevant, and
we are left with only one parameter, T, controlling front
propagation. We have found that, for a steady-state rupture
to be supported, T > O is required. The natural restriction
T/p < W places another constraint on 7, and we can conclude
that steady-state ruptures occur only if

0<7<l. Q27)

The straightforward way to compute the steady-state
rupture velocity as a function of T is to solve Egs. (11)
to (15) and (21) explicitly in time for a given value of 7.
Fronts go through a transient, as seen in Fig. 2(a), before
reaching the steady-state velocity. As shown in Fig. 2(b), the
transient length is strongly dependent on the prestress, T, and
extrapolation is necessary to estimate the final steady-state
rupture velocity. We extrapolate the rupture velocity by fitting
a first-order polynomial to the curve 9.(1/n) for the last few
(~50) blocks towards the leading edge. These extrapolated
steady-state velocities are plotted as a function of 7 in Fig. 3
as red circles.

Alternatively, equations for the steady-state front velocity
can be derived from Egs. (11) to (15) and (21). We provide
this derivation in Appendix Al, with Egs. (A3), (AS), (A6),
and (A8) the final set of equations. The numerical scheme
used to solve these equations is detailed in Appendix B2. We
show in Fig. 3 the steady-state front velocity v, as a function
of T obtained by solving these equations numerically as blue
crosses. This solution is seen to match the extrapolated front
velocities obtained previously.

It is also possible to solve the equations for the steady-state
rupture velocity, Egs. (A3), (AS), (A6), and (AS8), analytically
using an iterative approach. The solution technique is identical
to the one used by Muratov [32], and we present the detailed
calculation in Appendix B1. The result is a series expansion of
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FIG. 2. (Color online) (a) Simulated front velocity as a func-
tion of position along the interface for several different values
of = f* obtained with N =200. From bottom to top, T =
—0.1,—0.01, 0.01, 0.1, 0.5. Velocities are seen to approach a steady-
state velocity for T > 0, while for T < 0 the fronts slow down
and eventually arrest. (b) Transient length, defined as the block
number where the front velocity reaches 97% of the steady-state
value, normalized by system size as a function of 7 obtained with
N = 1000.

T as a function of z = 1/9,, given in Eq. (B8). In the present
case with 7 = 0, we get

B A L B T4 B P

oo L E 2% L 0¢D), (28
t 778 16 18 1256 TP @D

which we recognize as the series expansion of

2 4 6 528 Z10

7
MZI—%—Z——Z—____+O(ZIZ)_

8 16 128 256
(29)

Consequently, we have a closed-form expression for the front
velocity as a function of the initial shear stress:

1
T = 1-— l_)C_z or v, = ﬁ (30)
-7

This solution is plotted as the black solid line in Fig. 3, which
matches the numerical results perfectly.
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FIG. 3. (Color online) Steady-state front velocity o, as a function
of initial stress, T. U, approaches 1 as T — 0 and infinity as T — 1.
Red circles are the extrapolated steady-state front velocities from
simulations [as in Fig. 2(a)], blue crosses are the numerical solution
of the steady-state equations (Appendix B2), and the solid black line
is the analytical solution given by Eq. (30).

To summarize, the steady-state front velocity 9. in the
model with AC friction and 77 = 0 only depends on the dimen-
sionless initial shear stress, 7, and is given by Eq. (30), plotted
in Fig. 3. The front velocity increases with increasing T, as
expected. All steady-state front velocities are supersonic, with
values approaching the sound velocity as T — 0 and infinity
as T — 1. The latter is easily explained: as T — 1, every
block will be infinitely close to the static friction threshold,
and infinitesimally small movement of the neighboring blocks
is enough to set them into motion. The time between the
triggering of neighboring blocks will therefore approach 0,
causing the front velocity to approach infinity, see Eq. (22).
This is a known feature of spring-block models [34]. We
discuss these results in more detail in Sec. IV.

This model and the above results serve as our reference for
investigating now the effect of a bulk viscosity and a tangential
stiffness of the interface on the steady-state front velocity.

2. The effect of a bulk viscosity

In this section we study the effect of the relative viscosity
7], identical to the one used in Amundsen et al. [12] to smooth
grid-scale oscillations during front propagation [31,35]. Phys-
ically, it is a simple way of introducing energy dissipation
that will occur during deformation. As in Sec. I[II A 1 we have
found that steady-state ruptures may occur if

0<% <1, 31)

independent of the value of the viscosity, 7. Similarly, we
have also found that blocks exclusively move in the positive
direction as the front propagates along the interface. Conse-
quently, we have two parameters controlling front velocity in
this system, T and 7.

The steady-state equations are solved numerically as in
Sec. III A 1 for several different values of 7, and we plot 0.(7)
inFig. 4. Asin the model with 77 = 0, the steady-state equations
can be solved analytically, and the result is a series expansion of
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FIG. 4. (Color online) Steady-state front velocity v, as a function
of initial shear stress, T, for several different values of the relative
viscosity 7j. From bottom to top, 7j = 0 (blue circles), +/0.1 (green
crosses), 1 (red pluses), and V10 (cyan squares). The point markers
are the numerical solutions of the steady-state equations and the solid
lines are the semiempirical closed-form expression in Eq. (36).

7 in terms of z = 1/9, and 7j. For brevity we do not reproduce
this expansion here; it is given in Eq. (B8).

Unfortunately, we have been unable to find a closed-form
expression for the front velocity as a function of T and 7 from
Eq. (B8). The special case ij = 1, however, yields

T=1-z4+0E"), (32)
i.e.,
1 1
'L_':l—_— or v, = —. (33)
Ve 1—-7

We use this to derive a semiempirical expression for T(i,).
From Eqgs. (30) and (33), we can write

1—51\"?
T(0c, 1 = 1)=f(17c,ﬁ=0)< _Cl) . (34
1+ v,
The factor [(1 — z)/(1 4+ z)]'/? can be thought of as a more
general scaling factor including the 77 dependence but taken at
7 = 1. We have found that we can estimate the 7 dependence
with an exponent of 7/2, which fits the numerical solution
fairly well. We therefore propose the following approximation:

1_1—)71 ﬁ/z
f(ﬁLvﬁ) ~ f(l_)L,T_] = 0)<1 + EC‘I) ’ (35)
1— 971\
_ 1—562(1+2L_,> . (36)

We plot Eq. (36) in Fig. 4, and it is seen to match the numerical
solution perfectly for 7 =0 and 7 = 1 as expected and to
yield acceptable accuracy for 0 < 77 < 1. The value of 77 =
/0.1 adopted by Amundsen et al. [12] is within this range.
The accuracy of the semiempirical expression deteriorates for
i > 1, which corresponds to a regime where all waves are
overdamped [12].

In Fig. 4 the relative viscosity is seen to not alter the
limiting behavior as T — 0 and T — 1, for which the front
velocity still approaches 9, = 1 and 9, — oo, respectively.
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An overall increase of front velocities compared to the 7 = 0
case, discussed in Sec. III A 1, is, however, seen.

The reason for this particular behavior is that the relative
viscosity serves to dampen out (reduce) relative motion
between blocks. At the front tip, the rightmost moving block
is increasing the load on the leftmost stuck block through
the material spring connecting them and through the relative
viscous force. This viscous force acts in the direction of
movement of the moving block. This causes the static friction
threshold to be reached sooner, and the stuck block starts
moving earlier than it would have with a smaller value of
. Note that the stuck block will act with an equal and
opposite force on the moving block, slowing it down. This
effect remains small, however, due to the large momentum of
the blocks behind the front tip. Overall, At,, the time between
the rupture of block n and n + 1, is reduced.

B. Elastoplastic like friction law

As discussed in Amundsen et al. [12], in the model
with AC friction, only the first block will experience the
tangential loading force. This causes an unphysical resolution
dependence in the model, which was improved considerably
by introducing a finite tangential stiffness of the interface.
In addition, the interface between the slider and the base
is indeed elastic (see, e.g., Ref. [2]), a feature which is
often accounted for in models using an ensemble of interface
springs to model the microcontacts binding the slider and base
together [11,13,21,36,37].

We introduce a tangential stiffness of the interface as in
Amundsen et al. [12] by modifying the static Amontons-
Coulomb friction law to include springs between the blocks
and the track. Each block bears one interface spring having
a breaking strength equal to the static friction threshold i p.
When a spring breaks, dynamic friction u; p applies until the
spring reattaches when the block velocity becomes zero. The
spring is reattached such that at the time of reattachment the
total force on the block is zero.

In this section we study front velocity as a function of T and
the stiffness of the interface springs, k,. For attached blocks
the friction force is given by

fo = —ke[un(t) — ul*(@1)]
= —k; [, (1) — u (1)] — ki [ (0) — uiF(0)], (37)

where u%ik(¢) is the position of the attachment point of the
spring. At t+ = 0 the total force on all blocks is zero, i.e.,
fa(t =0) = 1,,, and we get

fo = =k [u,(t) — u$"¥ ()] — 1, (38)
Using Eq. (14) we obtain an expression for the dimensionless
friction force,

- T =k [u,) — ul K 0)] - 7,

fn = 39)
MsPn — Mk Pn
_ ’ __ ., stick’
_ w0 — uy )] 40)
MsPn — Kk Pn
= —k[it,(t) — @ ()], (41)

where k = k, / k.
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FIG. 5. (Color online) Steady-state front velocity v, as a function
of initial shear stress, T, for several different values of the interface
stiffness k. From top to bottom, k = 10°, 10!, 1, 10~', 10~3. The
crosses are the numerical solution, and the solid lines are the empirical

closed-form expression in Eq. (48).

The rupture criterion is modified as it is a condition on the
strength of the interface springs. It is given by

ki[un () — w5 (0)] = psp, (42)
which in dimensionless variables becomes
k[, () — @ )] + 7, = 1. (43)

As discussed above, interface springs reconnect when the
block velocity becomes zero and reconnect at zero total force:

0=F,+F"+ f, (44)
= Fy + F)] — k[iin(1) — @), (45)

which yields
ﬁ;tick(tstick) — ﬁn([stick) _ Fn(tStiCk) "_‘ Fr?(tSliCk) (46)

3 )
where the only new parameter introduced is the dimensionless
interface stiffness k = k;/k, and ¢*i° is the time at which
the block velocity becomes zero. L‘tff“k(t) stays constant for
¢t > 13k yntil the block reattaches after another detachment
event.

For simplicity we investigate the behavior of this model
without the relative viscosity here, 7 = 0, but this assumption
is relaxed in Sec. III C. As in Sec. IIT A 1 we have investigated
when steady-state ruptures occur and found that it is again
restricted to

0<t <1, “7)

independent of the value of the interface stiffness, k. Similarly
we have also found that blocks exclusively move in the
positive direction as the front propagates along the interface.
Consequently, we have two parameters controlling the rupture
velocity in this system, T and k.

We solve the steady-state equations (derived in Ap-
pendix A2) and show in Fig. 5 the front velocity as a function
of the dimensionless initial shear force T for various values
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TABLE 1. Best fit coefficients to be used in the empirical
expression for the front velocity given in Eq. (48). Note that the
empirical approximation for k = 10? is identical to Eq. (30).

k n ny
10° 2 2
10! 3.75 1.7
10° 7.86 1.97
107! 20.8 2.01
1073 106 2.87

of the interface stiffness k. In the limit k — oo the interface
is infinitely stiff and the static friction law approaches AC’s
friction law. As k decreases the front velocity also decreases
and 9. — 1inthe k — 0 limit where the interface is infinitely
soft.

The rupture criterion, Eq. (43), is essentially a criterion for
the displacement of a block relative to its attachment point.
For a given prestress 7, as the interface stiffness k is reduced,
blocks move a larger distance before detaching. In the limit
k — 0the rupture front will essentially become a displacement
wave which moves with a velocity equal to the velocity of
sound. This explains the behavior of the model seen in the
k — 0 limit.

Unfortunately, we have not been able to obtain an analytical
solution for the front velocity in the model with a tangential
stiffness of the interface. Instead, we have found the empirical
expression

f(l_}c,];) — (1 _ l—}(_—n,)l/nz’ (48)
where the coefficients n; and n, are functions of k, to yield
satisfactory agreement with the numerical solutions. Best-fit
values of the coefficients 71, and n,, for the values of k in Fig. 5,
are given in Table I. These were obtained by solving the steady-
state equations (Appendix A2) numerically as described in
Appendix B2 and fitting with Eq. (48) using a least-squares
method. The predictions made by Eq. (48) are shown as solid
lines in Fig. 5.

C. Behaviour of the complete model

Figure 6 shows the evolution of front velocity as a function
of prestress in the complete model, i.e., where both a relative
viscosity and a tangential stiffness of the interface are included.
Several values of # and k are used, demonstrating that the
complete model behaves in a way qualitatively consistent with
the results of Sec. III A2 and Sec. III B. In particular, front
speed increases both with increasing 7 and with increasing k.

IV. DISCUSSION

We have found that, in general, the rupture front velocity
increases with increasing pre-stress in our 1D spring-block-
like models of extended frictional interfaces, as seen in Figs. 3
to 6. This is in agreement with observations on poly(methyl
methacrylate) interfaces by Ben-David et al. [S]. We have also
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FIG. 6. (Color online) Steady-state front velocity v, as a function
of initial shear stress, T, for several different values of relative
viscosity 77 and interface stiffness k.

found the governing prestress parameter to be
T/p — Ik

Ms — Kk

That is, in addition to the prestress t itself, the steady-state
rupture velocity also depends on the local friction parameters
s and py and on the applied normal load through p. The same
parameter T has successfully been applied to 2D spring-block
models to scale non-steady-state front velocities obtained
with different model parameters (see Fig. 4(b) in Ref. [9]
or Ref. [13]). It is also equivalent to the S ratio used in the
geophysical literature [38], defined as

T

(49)

=279 (50)

01 —O'f"

where oy, 01, and oy are the yield stress, initial stress, and
sliding frictional stress, respectively. In terms of the parameters
in the model discussed here, oy = usp, o1 =1, 05 = Wi p,
and we can express S in terms of T:

_Ms—t/p 1

T/p—pk T

The parameter T is therefore much more general than the
derivation from the present model alone would indicate.

The second parameter of importance to steady-state rup-
tures is the relative viscosity parameter 7 discussed in
Sec. I A 2. It provides a simple way of introducing energy
dissipation that will occur during deformation of the slider and
also removes resolution-dependent oscillations in Burridge-
Knopoft-like models [12,39], with the recommended value
i1 = +/0.1. Note that the viscosity n considered here is a
bulk viscosity affecting the relative motion of blocks. It
thus qualitatively differs from an interfacial viscosity that
would affect the absolute motion of a single block on the
track, as was sometimes introduced at the microjunction level
in multijunction models (see, e.g., Ref. [21]) or directly at
mesoscales as a velocity strengthening branch of the friction
law at large slip velocities (see, e.g., Ref. [40]). In our case,
the friction force on a block in the sliding state is up,
independent of slip speed. At a given 7, increasing 7j increases

-1 ShH
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the steady-state front velocity, see Fig. 4. As discussed in
Sec. III A 2 this is due to the added shear force arising from
the damping of relative motion between blocks. The particular
choice 7 = V0.1 (used in Refs. [9,12]) is in Fig. 4 seen to only
modestly increase the front velocity compared to 7 = 0.

The third and last parameter studied here is k = k,/k, the
interface to bulk stiffness ratio, discussed in Sec. III B. In Fig. 5
the limit k — oo is seen to yield Amontons-Coulomb-like
behavior, while decreasing k yields decreasing front velocities.
In fact, as k — O the front velocity approaches the speed of
sound as discussed earlier due to the front becoming a sound
wave. These results should be relevant to various similar 1D
and 2D models in which blocks are elastically connected to
the base by springs [9,11-13,21,22].

Recent simulations, in a 2D spring-block model with a
friction law at the block scale emerging as the collective
behavior of many microjunctions in parallel, have identified
two different slip regimes for individual blocks [11]. A fast
(inertial) slip regime is followed by a slow slip regime,
controlled by the healing dynamics of the interface after
rupture. Fronts driven by fast slip are fast inertial fronts,
whereas fronts propagating when a significant portion of the
slipping blocks are in the slow regime are slow [13]. In this
context, all fronts observed in the present 1D models are of
the fast type.

Although as seen in Fig. 2(a) the transient front velocity is
often subsonic, in our model, all steady-state fronts are super-
sonic, i.e., U, > 1. The fronts can propagate at arbitrarily large
speeds as long as the prestress 7 is large enough. This has been
discussed previously by Knopoff [34]. The velocity of sound
in a 1D model is the longitudinal wave speed, while shear and
Rayleigh waves do not exist. Nevertheless, we think it useful to
point out that supershear fronts have recently been observed in
model experiments [5] and that in the geophysical community,
such fronts have been both predicted theoretically [41,42] and
confirmed experimentally [1,6,43,44].

As seen in Fig. 2(b), and previously found in Ref. [13], the
initial transient in front speed before steady state is reached can
be very long when 7 is close to zero. Because the dimensionless
equations of motion do not change with the model resolution,
itis clear that in this model, the length of the transients is given
by a fixed number of blocks rather than a physical length, so
we have overcome the problem of getting close to the steady
state by performing simulations with a large number of blocks.
In the other limit of T — 1, the transient length vanishes. We
provide a demonstration of this result in Appendix C.

To investigate the transient length’s dependence on T for
small values of T we initialize the system with a constant
prestress as in Fig. 3 and let the rupture propagate until its
velocity has reached 97% of the steady-state value. We define
the point at which this happens as the transient length and plot
in Fig. 2(b) the transient length as a function of 7. For small
values of 7 the transient length is very large.

The above considerations emphasize the fact that in spring-
block models like the one studied here it is important to choose
the resolution carefully: This choice will indeed select the
physical length of transients in front dynamics. The size of each
block should be equal to the screening length [45], which in a
purely elastic model is given by Ay &~ d?/a, where d is the dis-
tance between microcontacts and a is the size of microcontacts.
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For micrometer-ranged roughnesses, we expect a ~ 1um and
d ~ 100 pm to 100 pum, yielding A ~ 0.1 mm to 10 mm, i.e.,
in the millimeter range. The typical horizontal length scale for
extended laboratory-scale interfaces is L ~ 100 mm, which
yields N ~ 100, which is consistent with the number of blocks
used here or in our previous studies [9,11-13].

Let us now compare our results to those of previous studies
of steady-state rupture velocities. In the Amontons-Coulomb
case, our solution v.(T) takes the exact same form as the
one found in Ref. [32] for the Burridge-Knopoff model with
Amontons-Coulomb friction (compare Eq. (B8) and Eq. (A14)
in Ref. [32]). Asin Ref. [32], we find a well-defined continuum
limit where rupture velocities do not depend on the chosen
resolution. Compared to the studies in Refs. [30,31] of the
Burridge-Knopoff model with velocity weakening friction,
our results are qualitatively, although not quantitatively,
similar. In particular, we also find that the rupture velocity
increases with increasing shear prestress of the interface
and with increasing values of the viscous coefficient. Note
that Refs. [30-32] did not discuss the effect of an interfacial
stiffness on rupture speed.

Trgmborg et al. [11,13] showed that, in their 2D model,
the rupture and slip velocities are proportional. In 1D it
is possible to derive a similar, exact relationship between
the average slip speed and rupture velocity in the case of
Amontons-Coulomb friction and no viscosity. This derivation
is provided in Appendix D, where it is found that the local
rupture velocity ¥, ; at block i in a simulation is related to the
local average slip velocity ﬁi,avg by

(52)

This relationship is demonstrated in Fig. 8, where we have
plotted the local rupture velocity as a function of the local
average slip velocity for various values of T as measured in
simulations similar to those seen in Fig. 2(a). Rescaling the av-
erage slip velocity by 1/(1 — T), a straight line of unit slope is
obtained. For comparison with the rescaling formula found by
Trgmborg et al. [11,13], itis instructive to write Eq. (52) using
dimensional quantities. Equations (10), (18), and (22) yield

l/.t,',avgak I/'ti’angS

Hsp — T psp — T’
where we have used a = L/(N — 1) and k = (N — 1)ES/L
asin Ref. [12], where L is the length of the slider, E is Young’s
modulus, and § is the cross-sectional area of the slider. This
strongly resembles the rescaling formula in Refs. [11,13]
which has the same denominator, while the characteristic
force in the numerator differs due to the different interfacial
laws applied.

An important question is whether the results obtained in the
present 1D model can be extended to 2D models. To answer
this question, we perform a series of simulations using the
2D model described in Refs. [11,13], with model parameters
suitable for the study of steady-state front propagation. In
particular, the slider’s length is 20 times larger thanin Ref. [11],
so front propagation has a chance to converge towards a steady
state (the length of transients ranges from less than 40 blocks
for T = 0.95 to longer than the system length for T = 0.2). We
first choose a reference set of parameters, in which parameters

Ve = (53)
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FIG. 7. (Color online) Steady-state front velocity, ., as a func-
tion of initial shear stress, T, for simulations using the full 2D model
of Ref. [11] for several different values of mass, damping coefficient,
bulk stiffness, and interface stiffness. Five sets of parameters were
used: (i) Reference set; (ii) mass doubled and damping coefficient
increased by a factor of +/2, leaving 7j unchanged; (iii) bulk and
interface stiffnesses halved, leaving k unchanged; (iv) damping
coefficient and 7 reduced by a factor of 4; and (v) interface stiffness
and k increased by a factor of 10. The dashed line plots Eq. (36)
for the reference value of 7. Front speeds are normalized against the
longitudinal bulk wave speed.

are the same as in Table S1 of Ref. [11], except L = 2.8 m,
N, =1140, M = 1.5kg, Fy = 3840N, Tyigeer = 0.95, and
o = n/160. The rest of the settings are as follows: The width
of the initial junction force distribution is zero, so the interface
springs effectively act as a single spring per block. We checked
that the mean junction slipping time fg, while important for
slow fronts, does not affect these fast front results. Steady-state
front velocity is estimated as in Sec. III A 1, by fitting a straight
line to v.(1/n) for the last (~N, /2) blocks towards the leading
edge (excluding the last ~40, which have 9, increasing due to
an edge effect).

We first run simulations of the reference model for various
values of T and plot the normalized steady-state front speed
v, as a function of T in Fig. 7 (blue crosses). We observe that
the results are qualitatively fully consistent with the behavior
in 1D, i.e., Fig. 6. In particular, the steady-state front speed is
always supersonic, tends towards the longitudinal bulk wave
speed for small prestress and diverges for large prestress.

We then show that the two control parameters identified
in 1D, 7 and k, are also controlling the 2D front speed. To
do this, we change model parameters (slider’s mass, damping
coefficient, bulk, and interfacial stiffnesses) in such a way
that the rescaled parameters 7 and k are kept unchanged.
Figure 7 clearly shows (see cyan dots and red squares) that
these changes do not affect the values of v,.

Finally, we show that changes to the values of either 7 or k
induce variations in the 9.(7) curve which are fully consistent
with those observed in 1D (Fig. 6): decreasing i decreases
the front speed (see black diamonds), whereas increasing k
increases the front speed (green stars). All these results indicate
that our main findings from the 1D model are not specific to
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1D but also hold in 2D, with the same nondimensional control
parameters and all the same qualitative characteristics.

V. CONCLUSIONS

We have systematically studied the quantitative dependence
of the steady-state rupture front velocity on prestress, damping,
and stiffness of the interface in a 1D spring-block model. We
find that front velocity changes significantly by changing any
of these parameters, the result of which can be seen in Figs. 3
to 6.

Increasing prestress leads to increasing rupture velocities,
in agreement with both experiments [5] and 2D models (see
discussion and Refs. [9,10,13]). Specifically, for the model
with no viscosity and no finite stiffness of the interface, we
derive a closed-form expression for the front velocity, given by
Eq. (30). The dimensionless prestress parameter found to be
controlling front velocities, T = (t/p — ux)/(Us — tr), also
depends on the strength of the interface through the frictional
parameters (., and p. It is essentially a version of the $ ratio
often used by the geophysical community [38] and shown to
also apply in 2D models [9,13].

Material damping affects the front velocity through the
parameter 77 = n/+/km. Increasing values of 7 are seen to
yield increasing front velocities caused by the additional shear
force. A semiempirical expression for the dependence of the
front velocity on 7 and 7 is given in Eq. (36).

Front velocities are seen to decrease with decreasing
tangential stiffness of the interface through the parameter
k=k /k, i.e., the ratio between the shear stiffness of the
interface and the material stiffness of the slider. An empirical
expression for this dependence is given in Eq. (48). In fact,
in the limit of a very soft interface compared to the material
stiffness, steady-state rupture velocities are seen to approach
the velocity of sound. The qualitative behavior of all these
parameters are seen to carry over to a model with both a finite
stiffness of the interface and relative viscosity.

From Fig. 2(b) it is clear that transients can become very
long, especially for low prestresses. This, coupled with a
heterogeneous interface where T can be negative, suggests
that experimentally observed rupture fronts like those in, e.g.,
Refs. [4,5] may be dominated by transients. Direct comparison
between these rupture fronts and the ones studied here may
therefore not be possible, but the qualitative behavior on
parameters such as the internal damping and interface stiffness
should remain valid.

Also note that viscoelastic materials have been shown in
finite-element simulations to exhibit memory effects. Stress
concentrations left at the arrest location of one precursory slip
event are not erased by the following rupture [46]. This causes
nonhomogeneous initial stresses for subsequent events. An
interesting direction for future work would be to investigate
the transient speeds resulting from such complicated stress
states.

Despite the limitations of the model discussed above, it can
provide valuable insight into rupture dynamics of frictional
interfaces. We have shown here that the 1D results can be
extended to a 2D model with the same interfacial law and
bulk damping. Experimentally, it would be interesting to
investigate the dependence of front velocities on the interface
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stiffness and bulk viscosity as they have been shown here to
affect the rupture velocity significantly. Also, investigating the
dependence of the front velocity on the system length would
shed light on the influence of transients on observed ruptures.
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APPENDIX A: DERIVING THE EQUATIONS FOR THE
STEADY-STATE RUPTURE VELOCITY

Here we derive the equations for steady-state rupture in
the models discussed in this paper. We assume i, (f) > 0 for
all detached blocks, in agreement with the numerical solution
of the equations for all cases where f+ > 0, as discussed in
Sec. III. The system is considered to be infinitely long and
the tangential driving velocity much smaller than the front
velocity, we can therefore ignore the system boundaries.

1. Amontons-Coulomb friction

Here we derive the equations for the steady-state front
velocity for the model with AC friction. As our starting point
we use the dimensionless equations of motion, Eqs. (11)—
(13), (21), and (25). Consequently, the controlling parameters
in the equations of motion are 7 = f+ and 7.

The equations of motion for moving blocks are given by

iy = fpy1 — 20 +lp_y 4 (g1 — 20, i)+ 7. (Al)
To eliminate the dependence on 7 we introduce ii,, defined by
iy = (i, +1°/2), (A2)

where the acceleration of blocks due to the force 7 is taken into
account explicitly by the term 772 /2 in Eq. (A2). Equation (A1)
simplifies to

ﬁn = ﬁn-H - Zﬁn + ﬁn—l + r_](u;n-‘rl - Zﬁn + u;n—l)a (A3)
which is our final equation of motion for moving blocks.
If the front is propagating at a constant velocity,

Izn(f) = lzn+l(t_+ AZT), ’/_.‘n(f) = Ijn-‘rl(t_‘i_ AIT), (A4)

must hold, where A7 is the time between the triggering of
two neighboring blocks. It is therefore sufficient to consider
the system in a time interval of length A7. We choose
f € [t;,t; + Af], where block i begins to move at f = ;. For
convenience, and without loss of generality, we choose 7; = 0.
Using Eq. (A2) this yields

i;(0)=0, 0 =0, (A5)
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which is the initial condition for block i. For convenience we
choose i = 0.

The initial condition for Eq. (A3) can be obtained by
evaluating Eq. (A4) at f = 0 and using Eq. (A2). This yields

1
7 0) = ity _-_1 )
i12(0) = fins1 (D] )+25§
(A6)
X 2 T 1
i1,(0) = it 11 (0, ") + -
since
_oa/X
A[ = — = V. (A7)
e

from the definition of X, Eq. (10).

The equation of motion for all moving blocks is given
by Eq. (A3), but the equation of motion for block i can be
rewritten taking into account that block i 4 1 is stationary.
Inserting ;) = 0 into Eq. (A2) yields &;4; = —72/2, and
using Eq. (A3) with n =i we have

i = fii_y — 2i; — /2 + fil;_1 — 2il; — D), (A8)

Solving Egs. (A3), (A5), (A6), and (AS8) result in i, ()
for a given rupture velocity v.. This velocity is related to
the parameter 7 through the rupture criterion, Eq. (24), at
time 7 = O for block i = 0. At7 = 0 we have ii¢(0) = i1,(0) =
itp(0) = ii;(0) = 0, and using Eqgs. (12), (13), (24), and (A2)
in addition to T = f* we get
1-7

ii_1(0) + fjii_1(0) = (A9)

or, equivalently,

1
ii-1(0) + fjii_1(0) + 1

which relates the solution of Egs. (A3), (AS), (A6), and (AS8)
for a given v, to the corresponding 7. Note that these equations,
in the case of 77 = 0, reduce to the equations determining the
front velocity in the Burridge-Knopoff model using AC friction
and the approximations of slow and soft tangential loading as
derived by Muratov [32].

T= (A10)

2. Including a finite tangential stiffness of the interface

Here we derive the steady-state equations for the model
including a tangential stiffness of the interface discussed in
Sec. III B. The equations of motion for sliding blocks are
given by Eq. (A3) as their equation of motion is identical to
the AC case. For stuck blocks we combine Eqs. (11)—(13), (41),
and (A2) and get

ﬁn = ﬁn+l + iy — 21211 + ﬁ(ljn-&-l - 2’/;‘11 + u;n—l)

—k(i, +172/2) — 1, (A11)

where, without loss of generality, we have set u5%* = 0. For
convenience we again let block i = 0 detach at 7 = 0, and by
the same argument as above these equations need only to be
solved for 7 € [0, Af]. The initial conditions are the same as
for the AC case, Eq. (A6), with the exception that only blocks
far away from the rupture front keep a constant position. The
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initial conditions are therefore given by

)

ii,—1(0) = ii, (0 ") +

20,
. . 1
Hpsoo = ’/;in—>oo =0.
Using Egs. (43) and (A2) at 7 = 0 with ﬂ;ﬁd‘ = 0 we get
_ 1—7
ki, (0) = ——, (A13)
T

which relates the solution of Egs. (A3), (Al1), and (A12) for
agiven v, to T.

APPENDIX B: SOLVING THE EQUATIONS FOR THE
STEADY-STATE RUPTURE VELOCITY

Here we solve for the steady-state velocity analytically
using the equation set derived in Appendix A 1 for the model
with AC friction. In addition, we describe a numerical solution
procedure that we use to solve the steady-state equations for
the models with either AC or elastoplastic friction laws.

1. Analytical solution of the Amontons-Coulomb steady-state
rupture velocity equations

We solve Egs. (A3), (A6), (AS), and (A8) using the iterative
approach employed by Muratov [32] where the solution is a
power expansion in
v (B1)

c -

Z

If the front velocity is large, i.e., in the limit z = ;' — 0,
the distance required for block 0 to move in order to initiate
movement of block 1 is negligible. Therefore, block O is sta-
tionary in this limit. Also, when the rupture velocity is infinitely
high, interactions between the blocks become less prominent
because the time interval A7 becomes negligibly small.

To zeroth order in z, we therefore ignore the interaction
terms in Egs. (A3) and (A8), which yields #? = 0, i.e.,

% = a1 + b, (B2)

where a'® and »'¥ are constants to be determined from the
initial condition. Using Eq. (A6) we get the two coupled
difference equations

a? = afﬂ, +z, (B3)
0 0
b0 =a z+ b, + 122, (B4)

where a(()o) e b(()o) = 0 from Eq. (AS5). The solution is

al = —nz, (BS)
2
b = 22, (B6)
and we therefore have
2
iV = —nzf + %zz, n<O0. (B7)

This is the first iteration, giving the zeroth-order solution to
Egs. (A3), (AS), (A6), and (A8). The zeroth-order relationship
between ¥, and T is obtained by using Egs. (B7) and (A10).
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The first-order solution is obtained by substituting i,
and i, using Eq. (B7) into Egs. (A3) and (AS), integrating
twice with respect to 7 and then using Eqs. (A6) and (AS5)

J

z 2 3

_
|

1!
4 5

7

B z° _ 7 _ _
= 1=+ 5,0 = DA+ D+ 3060 = DG+ 1)

8
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to eliminate the integration constants. This approach rapidly
becomes cumbersome, so we have used MATHEMATICA to go
to higher orders. Here we simply give the solution:

6

%(ﬁ — DG+ DT = 3) - %ﬁ(ﬁ — (i + DA9F — 11) + %(ﬁ — 1)(7 + 1)(2297* — 2267 + 45)

—i—%ﬁ(ﬁ — D) + 1)(9957* — 11547 + 295) — %(ﬁ — D7 + D(171517° — 268377* + 123497> — 1575)

9

- %ﬁ(f; — 1)(7f + 1)(1020837° — 1781777* + 9503377* — 14971)

10

+ 27— 1)@ + 1)(22941417° — 493038470 + 36405147* — 106381672 + 99225) + O(z'1).

10!

We conclude this section with a brief discussion of the
validity of the solution in Eq. (BS8). It is valid only for T < 1
due to the form of the rupture criterion. It is not valid for
7T = 0 because of the transformation in Eq. (A2). If T <O,
then i7,, becomes negative [combine Egs. (A2) and (B7)]. Asa
result, the velocity must be negative, but it was assumed to be
positive. Equation (B8) is, consequently, not valid for 7 < 0,
i.e., we get the constraints

O0<tT<l1, (B9)

which is consistent with the numerical results in Sec. I11.

2. Numerical solution procedure

To solve the steady-state equations derived in Appendix A
numerically, we used the following iterative scheme:

(1) Select the desired z = 17;1 for which the value of T is
to be found. An initial guess for the position and velocity of
all blocks must be made at 7 = 0, we used i, (0) = ii,(0) = 0
as the initial guess for all results presented here.

(2) Solve Eqgs. (A3) and (A8) or Egs. (A3) and (A11) using
a numerical scheme for solving differential equations, e.g., the
fourth-order Runge-Kutta method.

(3) Calculate a new estimate for the initial conditions using
Egs. (AS) and (A6) or Eq. (A12) and the chosen front velocity.
In the model with a tangential stiffness of the interface we have
fiposoo = linsoo = 0, which is implemented as iiy = iy=0
where N is the number of blocks in the calculation. We find
that N = 100 yields satisfactory results. Calculate T using
Eq. (A10) or Eq. (A13).

(4) Repeatsteps 2 and 3 until T has converged. The solution
has converged when the difference in 7 between two iterations
is less than some tolerance €. We use € = 107°.

The functions 0.(T) or, equivalently, 7(v.) can be calculated
by repeating the above steps for several values of v..

APPENDIX C: DERIVING THE t — 1 LIMIT
OF TRANSIENT LENGTH

Here we show that in the limit of T — 1 the transient length
vanishes by considering the motion of the trailing edge block
as it begins to move.

(B8)

Using Eqgs. (11) to (15) with AC friction Eq. (26), the
equation of motion for the trailing edge block becomes

g = —itte + T + Fr (CD

where we have set 7 = 0 for simplicity. As before we assume
that Fr is independent of time. The initial condition for
the trailing edge block is iite(f = 0) = iite(f = 0) = 0 and
rupture initiates when 7 + F7 = 1. This yields

ute(®) =1 —cosf. (C2)

The rupture criterion, Eq. (24), applied to the second block
from the trailing edge, yields

() =1—cosf =1 — 7, (C3)

where 7; is the time at which the motion of the second block
from the trailing edge is triggered. Noting that z; = f; =
1/v.,1, we have

_ 2?2 p

T=cosz=1 2+24+(’)(z).
Comparing with Eq. (28), the series of the steady-state rupture
velocity, the first two terms are identical, i.e., as T — 1 (z —
0), the rupture will instantly reach the steady-state velocity
and the transient length approaches 0. For smaller values of T
(larger values of z), the transient length increases due to the
deviations in the higher-order terms.

(C4

APPENDIX D: SLIP SPEED VS RUPTURE SPEED

Here we derive the relationship between the rupture and
slip velocity in the model with Amontons-Coulomb friction
and no viscosity. Consider block i, which started to move at
time 7 = #;, causing an increased shear force on block i + 1.
We only consider blocks moving in the positive direction, i.e.,
only fi’L = T is required. The local rupture velocity is given
by Eq. (A7),

_ 1
‘Uc,i = —, (Dl)

At

where f; = f; | — f; is the time between the triggering of block
i andi + 1. The position of block i at#; is it; = 0. The increase
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FIG. 8. (Color online) Rupture velocity and slip velocity are closely related. These results have been obtained using simulations as in
Fig. 2(a) for T = 0.1,0.2, ... ,0.9. (a) Local rupture velocity v. as a function of local slip velocity ﬁavg. (b) Local rupture velocity v. as a
function of the rescaled local slip velocity ifay, /(1 — 7). The black line is a straight line through the origin with a slope of unity as predicted by

Eq. (52).

in shear force required for block i + 1 to start moving is given
by the rupture criterion, Eq. (24), and the position of block i
at ;1 is therefore given by

ii(fiv1) =1—1. (D2)
The average slip velocity is, consequently,
- ii(tip) — i) 1-7
i,avg — = = —, D3
Hiave Aft; Aft; (D3)

and the rupture and slip velocities are related by

_ _ ’/_ti,avg

i = D4
R - D4

This relationship is demonstrated in Fig. 8, where we have
plotted the local rupture velocity as a function of the local
average slip velocity for various values of 7 as measured in
simulations [similar to the simulations shown in Fig. 2(a)].
Rescaling the average slip velocity by 1/(1 — T), a straight
line with unit slope is obtained.
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