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Numerical study of the influence of solid polarization on electrophoresis at finite Debye thickness
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The influence of solid polarization on the electrophoresis of a uniformly charged dielectric particle for
finite values of the particle-to-fluid dielectric permittivity ratio is analyzed quantitatively without imposing
the thin Debye length or weak-field assumption. Present analysis is based on the computation of the coupled
Poisson-Nernst-Planck and Stokes equations in the fluid domain along with the Laplace equation within the
solid. The electrophoretic velocity is determined through the balance of forces acting on the particle. The
solid polarization of the charged particle produces a reduction on its electrophoretic velocity compared to a
nonpolarizable particle of the same surface charge density. In accordance with the existing thin-layer analysis,
our computed results for thin Debye layer shows that the solid polarization is important only when the applied
electric field is strong. When the Debye length is in the order of the particle size, the electrophoretic velocity
decreases with the rise of the particle permittivity and attains a saturation limit at large values of the permittivity.
Our computed solution for electrophoretic velocity is in agreement with the existing asymptotic analyses based
on a thin Debye layer for limiting cases.
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I. INTRODUCTION

The surface charge density (or surface potential) of a
nonpolarizable (perfect dielectric) particle can be considered
to be independent of the applied electric field. However, the
solid polarization of a dielectric (polarizable) particle due
to an imposed electric field induces a nonuniform surface
potential. The solid polarization is characterized by the ratio
of the solid-to-liquid dielectric permittivity ratio. O’Brien
and White [1] demonstrated through the weak-field analysis
that the electrophoretic mobility does not depend on the
particle dielectric constant. However, the thin-layer analysis
of Yossifon et al. [2] shows that the solid polarization can have
a significant role when the solid-to-electrolyte permittivity
ratio is large. The asymptotic analysis of Schnitzer and Yariv
[3], and the references there-in demonstrate that the solid
polarization affects the leading-order electrokinetic transport
when the applied electric field is strong enough to create
a potential drop across the Debye layer in the order of
the thermal potential. Their asymptotic analysis revels that
the solid polarization affects the electrophoretic velocity
of the particle even for small values of solid-to-liquid per-
mittivity ratios under a strong external electric field.

The electroosmotic flow around a conducting surface is
referred to as the induced-charge electroosmosis (ICEO). The
micro-PIV measurement (Canpolat et al. [4]) of ICEO around
a metallic rod shows that the flow is quadrupolar and has a
much stronger fluid motion than the conventional electroos-
motic flow (EOF) under a specified electric field. A detailed
description of the ICEO near a ideally polarizable particle is
made by Squires and Bazant [5]. The solid polarization of a
conducting particle of symmetric geometry and homogeneous
properties have no effect on its transportation. However, the
polarization could cause the asymmetric particle to move and
is termed as the induced-charge electrophoresis (ICEP). The
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mathematical models for ICEP of conducting particle was
introduced by Yariv [6] and Squires and Bazant [7]. The
induced-charge electrophoresis of an uncharged conducting
symmetric particle such as a cylinder or sphere in the vicinity
of a nonpolarizable uncharged surface has been analyzed under
a thin Debye length by Zhao and Bau [8], Yariv [9], and Hamed
and Yariv [10].

The slip-flow model, which is based on the induced ζ

potential and the Smoluchowski slip velocity at the edge
of the Debye layer, is inapplicable when the Debye length
is comparable with the particle size. The ICEO around a
conducting surface for moderate range of Debye layer was
considered by Yariv and Miloh [11]. Their analysis was
based on the weak-field approximation. The electrokinetic
flow about an ideally polarizable spherical particle with thick
Debye layer was analyzed by Abu Hamed and Yariv [12]
using an inner-outer asymptotic expansion under a weak-field
assumption. Analysis of ICEO about a metallic cylinder
based on direct numerical simulations of the coupled Poisson-
Nernst-Planck and Navier-Stokes equations is made recently
by Davidson et al. [13]. Their results show that induced-charge
electrokinetic can be chaotic at a high applied electric field.

Most solids that are commonly used in electrokinetics may
not be perfectly conducting (or ideally polarizable). Schnitzer
and Yariv [14] have pointed-out certain characteristic differ-
ences of the electrokinetic flow about a perfectly conducting
particle from a dielectric particle. For a dielectric solid, the
electric potential is nonuniform, which must be solved inside
the particle and then matched to that in the liquid. Under a
small ζ potential assumption, Yossifon et al. [2] studied the
ICEO about a dielectric particle of large dielectric constant
and demonstrated a technique to determine the induced ζ

potential in a thin Debye layer limit, which relates the electric
potentials within the dielectric solid and the bulk electroneutral
solution. Subsequently, Yariv and Davis [15] considered the
electroosmotic flows over a highly polarizable surface under
the thin Debye layer assumption without imposing a condition
of small ζ potential. The asymptotic analysis of Yariv and
Davis [15] shows that the solid polarization affects the
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electrokinetic processes even for the thin Debye layer case
when the dielectric ratio between the solid-to-fluid is large.
The study of Schnitzer and Yariv [14] on the electroosmotic
flow about a dielectric surface of zero surface charge shows
that the induced EOF undergoes a transition from a quadratic
variation with the imposed electric field for low to moderate
range of imposed field to a linear variation when a strong
electric field is considered.

In this paper, we consider the electrophoresis of a dielectric
charged particle based on the first principle of electrokinetics.
The coupled set of equations governing the electrokinetics
is solved numerically without making any simplifications
based on the thin double layer or weak applied electric-field
assumptions. Thus, the present study takes into account the
surface conduction and solid polarization automatically. Under
the thin-double-layer limit, the electric field lines can be
assumed to be tangential to the surface. However, for a highly
charged particle, surface conduction can be appreciable and
its effects on electrokinetics must be taken into account. The
study on electrophoresis of an ideally polarizable particle
by Figliuzzi et al. [16] shows that the surface conduction
significantly decreases the electrophoretic mobility when the
particle surface potential and applied electric field are strong.
The parameter, Dukhin number expresses the importance
of the surface conduction. An account of previous studies
dealing with the role of surface conduction on electrophoresis
is provided by Schnitzer and Yariv [17]. There they have
analyzed the electrokinetic flow about a highly charged
surface in the limit of a thin double layer but relaxing
the weak applied field limitation underlying the classical
work of O’Brien [18] and O’Brien and Hunter [19]. A
weak-field analysis appearing in Schnitzer and Yariv [17]
shows that the solid polarization for the thin-double-layer
case does not affect the leading order transport properties.
Subsequently, Schnitzer et al. [20] extended the weak-field
approximation of Schnitzer and Yariv [17] to obtain a nonlinear
velocity correction proportional to the field cubed. Recently,
Schnitzer and Yariv [21] analyzed the general problem of
electrophoresis of the thin-double-layer limit, as considered
by Schnitzer and Yariv [17], and obtained a nonlinear solution
for the electrophoretic velocity for small but finite Dukhin
number.

The present work is based on the computation of the govern-
ing Poisson-Nernst-Planck and Stokes equations. The agree-
ment of our computed results with the existing asymptotic
analysis is encouraging. In practical context, the bioparticles
have moderate range of particle-to-electrolyte permittivity
ratio and the thickness of the double layer may appear to
be in the order of the particle size. We have analyzed the
electrophoresis for finite Debye length and moderate range of
the applied electric field for a wide range of the particle-to-
electrolyte dielectric permittivity ratio. Our results show that
the effect of solid polarization is significant when the Debye
layer thickness is comparable with the particle size.

II. MATHEMATICAL MODEL

A dielectric spherical particle of radius a with uniform
surface charge density σ and dielectric permittivity εp is
submerged in an electrolyte of permittivity εe. A uniform

(a) (b)

FIG. 1. (Color online) Schematic description of the geometry
and the spherical coordinate system is shown in panel (a). Grid
distribution inside and around the solid sphere is shown in panel
(b). The dashed red line represents the surface of the particle. The
potential field is computed within the particle.

electrical field E0 is imposed far from the particle. As a
result of the electrostatic force, the particle migrates with a
velocity U ∗

E relative to the otherwise quiescent electrolyte.
The migration speed U ∗

E is unknown a priori. Our intention
is to determine the electrophoretic velocity U ∗

E of the particle.
This problem is equivalent to that of a stationary sphere
experiencing an incoming flow at a uniform velocity of −U ∗

E

far from the particle surface in a frame of reference fixed at
the center of the particle. We define the spherical coordinate
(r,θ,ψ) system with its origin fixed at the center of the particle
[Fig. 1(a)] and axial direction is along the imposed field E0.
The equations governing this electrokinetic phenomena are the
Stokes equation with electric body force term for fluid flow and
the Nernst-Planck equations for ion transport. The electric field
in the electrolyte is governed by the Poisson equation, whereas
the electric potential inside the particle satisfies the Laplace
equation. Following Saville [22], we scale the dimensional
variables as follows: the length scale as the radius of the
sphere a, the potential scale is φ0 = kBT /Ze, U0 = εeφ

2
0/aμ

is the velocity scale, εeφ
2
0/a

2 is the pressure scale, and the
bulk ionic number n0 is the scale for ionic concentration.
The dimensionless Stokes equation for the incompressible
Newtonian fluid is

∇p − ∇2u + (κa)2

2
ρe∇φ = 0, (1)

∇ · u = 0, (2)

where u is velocity vector, p is pressure, and ρe = (n1 − n2)
is the charge density with ni as the ionic concentration of
ith ionic species with valence zi . Since the present model
is based on Nernst-Planck equations it has the flexibility to
handle multivalent ions. For simplicity, we have considered
symmetric z-z electrolyte with valance zi = ±Z for i = 1,2,
respectively. Here φ and φp are denoted, respectively, the
potential within the liquid or the particle. Here e is the
elementary electric charge, kB is the Boltzmann constant, T is
the absolute temperature, and κ = √

2Zen0/εeφ0 is the inverse
of EDL thickness.

The nondimensional form of the Nernst-Planck equation
governing the transport of the ith ionic species is

Pe(u · ∇ni) = ∇2ni ± ∇ · (ni∇φ). (3)

For the sake of simplicity the diffusivity of the ions are
considered to be equal and is equal to D. The nondimensional
parameters governing the electrophoresis are Pe = εeφ

2
0/μD,
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which provides the relative importance of electroconvection to
electromigration (Khair and Squires [23]), the Debye-Huckel
parameter κa, particle-to-electrolyte dielectric permittivity
ratio εr = εp/εe, scaled surface charge density σ and the scaled
electric field β = E0a/φ0. The uniform surface charge density
is scaled by εeκφ0. The ρ and μ are the density and the viscosity
of the medium, respectively. The electric potential in the liquid
satisfies the Poisson equation,

∇2φ = − (κa)2

2
ρe. (4)

The electric potential inside the particle obeys the Laplace
equation as the net charge density is zero within the
particle,

∇2φp = 0. (5)

A nonslip boundary condition and no-normal flux of ions
are imposed on the surface of the particle (r = 1),

u = 0, (∇ni ± ni∇φ) · er = 0. (6)

The jump in the electric displacement on the surface of
the particle (r = 1) is related to the surface charge density
as

∂φ

∂r
− εr

∂φp

∂r
= −(κa)σ, φp = φ; (7)

the later condition is governed by the electric-potential
continuity. Far from the particle (r → ∞),

u = −UEez, φ = −βr cos θ, ni = 1. (8)

In the far field, the gradient of the electric potential must
approach the applied electric field. Here er and ez are the unit
vectors along the radial and axial direction, respectively. A
symmetry condition is imposed along the axis of symmetry;
i.e., θ = 0,π . In this study we have restricted our attention for
finite values of εr and κa.

The problem can be considered to be axisymmetric and
steady. However, we adopt a time-marching procedure to
obtain the steady-state solution with the initial condition
being governed by the equilibrium condition with particle
initially at rest. The electrophoretic velocity of the particle
(UE) is obtained by solving iteratively the balance of drag
and electric forces experienced by the particle. The iteration
process starts with an initial assumption for electrophoretic
velocity based on the Henry mobility [24]. The drag and
electric forces are obtained by computing the governing
equations using the approximate value of the electrophoretic
velocity. Iteration process continues till the balance of forces is
established.

The forces experienced by the particle are the electric
force and drag force. The axisymmetric nature of our problem
suggests that only the z component of these forces need to
be considered. The electrostatic and hydrodynamic forces
along the flow direction can be calculated by integrating the
Maxwell stress tensor σ E and hydrodynamic stress tensor
σ H , respectively, on the surface of the particle and are

given by

F ∗
E =

∫∫
S

(σ E · er ) · ez dS, (9)

F ∗
D =

∫∫
S

(σ H · er ) · ez dS, (10)

where σ E = εe[E E − (1/2)E2 I] and σ H = −p I +
μ[∇u + (∇u)T ]. Here E = −∇φ, E2 = E · E, E E denotes
the vector direct product and I is the unit tensor. The variables
with an asterisks denote dimensional quantities:

FE = −
∫∫

S

[
∂φ

∂r

∂φ

∂z
− 1

2

{(
∂φ

∂r

)2

+
(

1

r

∂φ

∂θ

)2
}

cos θ

]
dS,

(11)

FD = −
∫∫

S

[
p cos θ + sin θ

∂u

∂r

]
dS. (12)

The forces FE and FD are scaled by εeφ
2
0 . Here u is the cross

radial velocity component.

FIG. 2. (Color online) Comparison of our computed results for
electrophoretic velocity as a function of the imposed electric field for
large κa with the corresponding asymptotic models. Comparison with
Schnitzer and Yariv [3] for different values of the permittivity ratio
εr (=1, 10, 50, 300) with σ = 1.04 and κa = 70 is shown in panel (a).
Here, variables are rescaled by considering Debye length (κ−1) as the
length scale. Comparison with Schnitzer and Yariv [17] and Schnitzer
et al. [20] for lower range of β(�1) when σ = 20.03, κa = 40.2,
and εr = 1, 10, 300 and comparison with Yariv and Davis [15] for
different choice of α = εr/κa = 1 and 4.28 with σ = 1.04 and κa =
70 are shown in panels (b) and (c), respectively. Variation of nonlinear
velocity correction (UE − ζβ) with β when σ = 1.04 κa = 50, εr =
300, and Pe = 0.1, which corresponds to Du = 0.025 in panel (d).
Here solid blue lines represent our computed results and dashed red
lines corresponds to asymptotic solutions.
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FIG. 3. (Color online) Variation of surface potential φp on the
surface of the dielectric particle when κa = 50, σ = 1.04 (a) for
different εr (=1, 50, 300) with β = 1; (b) for different β(=1, 3, 5)
when εr = 50. The dashed line corresponds to Squires and Bazant [5]
for a perfectly polarizable particle.

III. NUMERICAL METHODS

The governing equations under the axisymmetric assump-
tion are solved in a coupled manner through a control
volume approach over a staggered grid arrangement. The
discretized form of the governing equations is obtained by
integrating the governing equations over each control volume.
Different control volumes are used to integrate different
equations.

The discretized equations are solved through the pressure
correction based iterative SIMPLE (semi-implicit method
for pressure-linked equations) algorithm. This procedure is
based on a cyclic guess-and-correct operation to solve the
governing equations. The pressure link between the continuity
and momentum equations are accomplished by transforming
the discretized continuity equation into a Poisson equation
for pressure correction. This Poisson equation implements
a pressure correction for a divergent velocity field. At each
iteration the equations for electric field, i.e., Eqs. (4) and (5) are
computed to obtain the potential field. Equations (4) and (5)
are computed through the successive-over-relaxation (SOR)
technique.

A time-dependent numerical solution is achieved by ad-
vancing the variables through a sequence of short time steps.
We start the motion from the initial stationary condition and
achieve a steady-state after a large time step for which the
variables become independent of time. At the initial stage
of motion, the time step is taken to be 0.001, which is
subsequently increased to 0.005 after the transient state.

The variables near the surface of the rigid sphere varies
more rapidly than elsewhere. In order to account for this fast
change, we considered a nonuniform grid distribution along
the r direction; however, a uniform grid is considered along
the θ direction [Fig. 1(b)]. We adopt a finer grid distribution
around the solid sphere. Grid size in the radial direction is then
increased in an arithmetic progression as we move away from
the sphere. We made a grid independency study by considering
three sets of nonuniform grid points, namely 150 × 300,
150 × 350, and 150 × 400, with first and second number
being the total number of grid points in θ and r directions,
respectively. The optimal grid size is found to be 150 × 350,
where the nonuniform radial grid size varies between 0.01 to
0.1 and a uniform grid is considered along the cross-radial
direction. For the sake of brevity the grid independency
test is not shown here. We have compared our computed
results with the asymptotic models and found them in good
agreement. A detailed discussion is made in the following
section. Our computed solution for electrophoretic velocity
of a nonpolarizable particle compares well with the velocity
based on Henry’s formula [24] for lower range of applied field.
However, our computed solutions underpredicts the results
based on the Henry’s formula when applied field is strong.

IV. RESULTS AND DISCUSSION

We have compared our computed solutions with the
solutions based on asymptotic methods for thin Debye length
as obtained by several authors. The asymptotic solution as
obtained by Schnitzer and Yariv [3] under strong-field condi-
tion for arbitrary values of εr is compared Fig. 2(a). We have
considered κa = 70 for moderate range of applied electric
field when native surface charge density σ = 1.04, which
corresponds to ζ = 1 based on the relation σ = 2 sinh(ζ/2). In
order to make the comparison, we have rescaled the velocity
and electric field with the Debye length (κ−1) as the length
scale. A good agreement between the computed result and the
asymptotic solution is evident for higher values of the dielectric
permittivity ratio. However, a slight discrepancy between the
computed solution and asymptotic result is evident at εr = 1
for large values of the imposed field. This may be due to the
double-layer polarization (DLP) effect. In Fig. 2(b), we present
a comparison of the electrophoretic velocity with the analytical
formula (9.20) of Schnitzer and Yariv [17] for a highly charged
dielectric particle with thin Debye layer under the weak applied
field condition. The parameter values as considered by them

FIG. 4. Distribution of counterions around the particle for different values of its electric permittivity when σ = 21.29, κa = 5, β = 1 for
εr = 0, 50, and 300.
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FIG. 5. Distribution of counterions around the particle for differ-
ent values of nondimensional applied electric field β when σ = 21.29,
κa = 5, εr = 50 for β = 3 and 5. Contour levels are the same as
described in the caption of Fig. 4.

suggest that κa = 40 and ζ = 6. We consider the permittivity
ratio εr = 1, 10, 300. Our computed results agree well with the
results obtained by Schnitzer and Yariv [17] for lower range
of the imposed field. We made a comparison of our computed
results with the asymptotic solution of Yariv and Davis [15]
under a thin Debye layer assumption in Fig. 2(c). They
estimated the electrophoretic velocity of a highly polarizable
particle as a function of the polarization parameter α =
εr/(κa). We present results for different choice of εr and κa

so as to have a constant value of α. We find that at large values
of κa and εr our computed results is in agreement with those
of Yariv and Davis [15]. This agreement is excellent for higher
εr , i.e., εr = 300. In Fig. 2(d) the difference between the com-
puted electrophoretic velocity from the linear Smoluchowski
formula (i.e., βζ ) as a function of the applied electric field is
compared with the asymptotic solution Eqs. (67) and (69) of
Schnitzer and Yariv [21] when the Dukhin number is small and
Debye length is thin. We have considered κa = 50, σ = 1.04,
εr = 300, with diffusivity D = 6.68εe, which corresponds to
Pe = 0.1 and Dukhin number Du = 0.025. Our computed
results for κa = 50 is in agreement with the asymptotic
solution for low to moderate range of the imposedxbrk
field.

Distribution of the surface potential along the outer surface
of the particle is depicted in Figs. 3(a) and 3(b) for large values
of κa (thin Debye layer) for different values of εr and β when
the surface charge density is σ = 1.04. Under the influence
of the imposed electric field the ions of opposite polarity
moves along the direction of the electric field. Due to the
nonpenetration condition on the solid surface, the positive ions
accumulate on the side facing the electric field and negative
ions cluster around the opposite face of the solid. This ionic
cloud attracts image charges within the dielectric sphere. Thus,

FIG. 7. (Color online) Variation of electrophoretic velocity with
κa for different σκa(=1,3,5) and εr (=0.01,10,300) when β = 1.
Symbols corresponds to velocity based on Henry function [24].

the Debye layer enveloping the dielectric particle is different
from the Debye layer, which occurs around a nonpolarizable
particle. The magnitude of the surface potential increases
with the increase of the dielectric permittivity. This increment
in magnitude with the increase of εr occurs at a faster rate
for medium range of εr . At large εr , the induced potential
approaches the value corresponding to an infinitely polarizable
particle. The surface potential of an infinitely polarizable par-
ticle (εr → ∞) under a thin Debye layer condition was given
by Squires and Bazant [5] as φs = (3/2)β cos θ . We find that
as εr becomes large, the induced surface potential approaches
the above analytic solution. Figure 3(b) shows the distribution
of surface potential at different values of the imposed electric
field. In Figs. 3(a) and 3(b) the dashed lines correspond to
the analytic solution obtained by linear super position of
(3/2)β cos θ with the native surface potential (ζ = 1) of the
particle under a thin Debye layer assumption. Variation in the
imposed electric field produces a large change in the induced
electric potential. We have shown later that the strong dielectric
polarization of the particle surface at high imposed field creates
a large deviation of its electrophoresis from a nonpolarizable
particle.

The motion of the particle creates a deformation of the
electric double layer that is enveloping the particle, which in
turn leads to a retardation effect on the electrophoresis. This
phenomena is referred as the DLP and it is important when the
Debye length is in the order of the particle size. The distribution

FIG. 6. Electric potential lines around dielectric particle for different εr when κa = 5, β = 1, and σ = 5.21 for εr = 0, 50, and 300.
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FIG. 8. (Color online) Variation of (a) hydrodynamic and electric
forces; (b) ratio of electrophoretic velocity between a polarizable
particle and nonpolarizable particle with applied electric filed β for
different σ (=0.5, 1.04, 4.26), where κa = 50, εr = 50.

of counterions near the particle for moderate value of the EDL
thickness is illustrated in Figs. 4(a)–4(c) for different values of
dielectric permittivity ratio. The deformation of the ion cloud
near the particle is evident from the figure. The deformation
of Debye layer and DLP is high for a nonpolarizable particle
(εr = 0). A strong plume of counterions in downstream shows
that the electric field generated due to the ion transport is
opposite to the direction of the applied electric field. This
DLP effect results in a net dipole moment that is antiparallel
to the applied field. The impact of DLP accentuates when
the Debye layer is in the order of the particle radius, i.e.,
κa ∼ O(1) [25], and it reduces as the electric permittivity of
the particle is raised. The deformation of double layer enhances
as the imposed field grows [Figs. 5(a) and 5(b)]. It is evident
from Figs. 4(b), 5(a), and 5(b) that the plume of counterions
extends with the rise of electric field.

The equipotential lines (φ1) outside the particle
[Figs. 6(a)–6(c)] for different values particle-to-electrolyte
permittivity ratio shows that the strong surface conduction
tends to contract the field lines around the particle. Contraction
of field lines slows down the electrophoretic velocity of the
dielectric particle.

Figure 7 presents the scaled electrophoretic velocity as a
function of the Debye length at a fixed value of the surface
charge density. We present results for different values of the
dielectric permittivity ratio. It is evident from Fig. 7 that the ef-
fect of solid polarization is strong when κa is O(1). The
velocity is presented as a function of κa for a fixed value
of σκa so as to have a constant surface charge density when
Debye length is varied. Our computed results show that the
solid polarization effect is negligible for large κa (thin Debye

layer) under an electric field E0 � κφ0. However, it is evident
from Fig. 2(c) that the impact of solid polarization for a thin
Debye layer is not negligible when the applied electric field
and permittivity ratio is large.

The balance of electrical and hydrodynamical forces ex-
perienced by the particle in electrophoresis is illustrated in
Fig. 8(a). Figures 2(b), 2(c), and 8(a) show that the elec-
trophoretic velocity and forces vary nonlinearly with the
imposed electric field. Figure 8(b) shows that the ratio of the
electrophoretic velocity between the polarizable particle and
the nonpolarizable particle is less than one and it reduces as
the electric field is raised. Effect of the particle polarization
becomes strong as the imposed field grows. The induced
charge electroosmotic flow around the particle produces the
hindrance effect and it grows at the quadratic order of the
imposed field.

Dependence of the electrophoretic velocity on the dielectric
permittivity ratio for different values of the Debye length
(κa = 1, 5, 50) is illustrated in Figs. 9 and 10. In Figs. 9(a)–
9(c) we present the variation for different values of the scaled
surface charge density σ of the particle. The dependence of the
electrophoretic velocity on the permittivity ratio for different
values of the applied electric field when the scaled surface
charge density σ = 1.04 is illustrated in Figs. 10(a)–10(c).
Comparison of the electrophoretic velocity of a polarizable
particle with the corresponding nonpolarizable particle is
also illustrated in those figures. These results indicate that
the variation in velocity due to the variation of dielectric
permittivity ratio occurs at a faster rate for moderate range
of permittivity ratio and this variation with εr is higher when
κa is O(1). Velocity decays with the increase of permittivity
ratio and approaches a constant value when the permittivity
ratio becomes large. This saturation in electrophoretic velocity
is expected as the particle behaves like a conductor at large
values of the permittivity. As far as we know, no theoretical
analysis exists for a conducting particle at finite Debye length
and nonweak electric field, as considered here. It is evident
from the results that UE for a polarizable particle deviates
by a large extent from the corresponding value due to a
nonpolarizable particle. Figures 9 and 10 show that a larger
imposed electric field (or surface charge density) produces a
stronger polarization effect. Figure 10(c) shows that the solid
polarization effect for a thin Debye layer is not negligible
when the imposed field is strong. It is evident from Figs. 9
and 10 that the difference in electrophoretic velocity of a
polarizable particle from the corresponding nonpolarizable
particle is highest when κa = 1.

FIG. 9. (Color online) Variation of electrophoretic velocity with εr for different σ (=0.5, 1.04, 4.26) when β = 1 for κa =1, 5, and 50.
Here symbols represents the electrophoretic velocity corresponding to a nonpolarizable particle.
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FIG. 10. (Color online) Variation of electrophoretic velocity with the particle-to-electrolyte permittivity ratio at different values of the
applied electric field β(=1, 3, 5) when σ = 1.04 for κa =1, 5, and 50. Here symbols represents the electrophoretic velocity corresponding to
a nonpolarizable particle.

The variation of the electrophoretic velocity of a polarizable
particle with the square of the imposed field for different values
of the Debye layer thickness is presented in Fig. 11(a). Results
show that the dependence of UE with β2, where β = E0a/φ0,
is similar for all three values of κa considered. At a fixed
value of the electric field and Debye length, the electrophoretic
velocity increases with the increase of scaled surface charge
density. The nonlinear dependence of the electrophoretic
velocity with the imposed field is evident from Fig. 11(a).
The corresponding variation for a nonpolarizable (εr = 0)
particle is shown in Fig. 11(b) to analyze quantitatively the
variation of electrophoretic velocity with nonweak applied
electric field of a nonpolarizable particle. In Fig. 11(b) the
variation of the electrophoretic velocity of a nonpolarizable
particle with the electric field at different values of the Debye
length is shown. A comparison with the velocity obtained by
Henry’s [24] formula is also made in Fig. 11(b). It may be noted
that the electrophoretic velocity of a nonpolarizable particle
based on Henry’s formula does not take into account the DLP
and ion convection effects. As is expected, the results based
on Henry’s formula overestimate our computed solutions. A
linear variation of the electrophoretic velocity for low values
of the electric field is evident from the results. At higher values
of the imposed field the DLP effect becomes stronger and the
dependence of the electrophoretic velocity with the applied
electric field is no longer linear even for the nonpolarizable
particle.

FIG. 11. (Color online) Variation of the electrophoretic ve-
locity UE of a (a) dielectric particle with β2 for different
σ (=0.5, 1.04, 4.26) and κa(=1, 5, 50) when εr = 50. Symbols rep-
resent the results due to Yariv and Davis [15] for ζ = 0.5 and 1;
(b) of nonpolarizable (εr = 0) particle with β for different values of
κa(=1, 5, 10) when ζ = 3. In Fig. 11(b) the dashed lines represent
the Henry velocity.

V. CONCLUSIONS

The electrophoresis of a charged dielectric particle for mod-
erate values of the imposed electric field and finite values of the
Debye layer thickness is considered. Results are obtained for
a wide range of particle-to-electrolyte dielectric permittivity
ratio. A quantitative measure of the electrophoretic velocity
based on the force balance is made. None of the previous
studies have provided the electrophoretic velocity based on
a full nonlinear model. An analytical treatment forbids the
investigation of cases with finite Debye length and nonweak
electric field. Our computed solution agrees well with the
existing asymptotic analysis. The main findings of this study
can be highlighted as follows:

(1) Electrophoretic velocity reduces as the particle-to-
electrolyte dielectric permittivity ratio is increased and the
velocity attains a saturation at large values of the permittivity
ratio. This reduction in electrophoretic velocity occurs at a
faster rate for a moderate range of the dielectric ratio. The
electrophoretic velocity does not vary linearly with the applied
electric field when a moderate range of the imposed electric
field is considered. The solid polarization gets stronger with
the rise of the applied electric field as well as surface charge
density of the particle.

(2) The dependence of the electrophoretic velocity on the
particle-to-electrolyte dielectric permittivity of the particle is
not uniform for any choice of the Debye layer thickness.
Variation in electrophoretic velocity due to the variation of
the dielectric permittivity ratio occurs at a faster rate when the
Debye length is in the order of the particle size. Our computed
solution for thin Debye layer case, as has been established
in previous studies, i.e., Schnitzer and Yariv [3], shows that
the solid polarization is important for higher values of applied
electric field and dielectric ratio.

(3) The surface potential strongly depends on the dielectric
permittivity ratio when a moderate range of the dielectric
permittivity ratio is considered. The surface potential for high
values of the Debye-Huckel parameter and permittivity ratio
of a dielectric particle approaches to the ζ potential of a
conducting particle obtained by the slip-flow model.
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